Virtual Network Allocation for Fault Tolerance with Bandwidth Efficiency in a Multi-Tenant Data Center

Yukio Ogawa Hitachi, Ltd., Japan Go Hasegawa and Masayuki Murata Osaka University, Japan

Contents

- Introduction
- Research background and objectives
- Modeling a multi-tenant data center network
- A hypothesis on the failure recover time
 Network model for a multi-tenant data center
- Network model for a r
 Objective
- Recovery time model of a single virtual network
- Evaluation
- Data center network for evaluation
- Overview of a single virtual network mapping
- Trade-off between fault tolerance and physical bandwidth consumption
 Virtual network allocation policy derived from the results

2

Conclusion

Research background

- A data center (DC) for the laaS cloud computing
- serves virtual DC for multiple client organizations, i.e. tenants
 needs to host business-critical and mission-critical applications
- The virtual network (VN) for a tenant's virtual DC
- is an overlay network built by connecting VMs, based on VXLAN, etc
 has a topology independent of the physical substrate network (SN)
 should be appropriately assigned to the SN
 - to share the SN's resources effectively and tolerate SN failures

• Goal:

ensuring high availability for the VN so that mission critical applications can be hosted on it

Research objectives

- Mapping VNs to the shared physical SN is a kind of the *Virtual Network Embedding* problem
- Problems:

in a multi-tenant data center,

- nodes and links of VNs share a single component of the SN
- a failure of a single SN component can cause multiple simultaneous failures in a VN
 - significantly disrupts the services offered on the VN, as compared to a traditional network

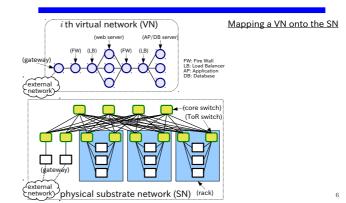

• Research objectives:

clarifying how the fault tolerance of a VN is affected by a SN failure, from the perspective of VN allocation

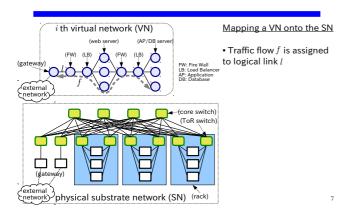
A hypothesis on the failure recovery time in a single VN

• A hypothesis: multiple simultaneous failures can lead to a longer recovery time in physical and virtual networks

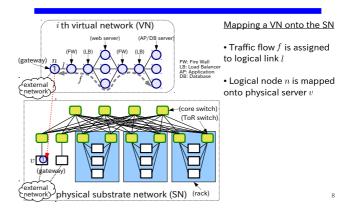
• Proposal: switching from hot- to cold-standby recovery with reference to the failure complexity

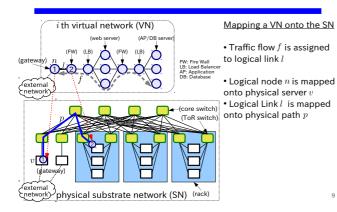


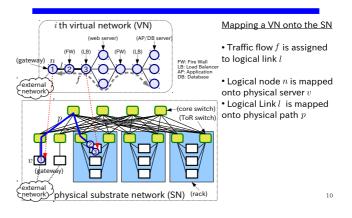
A Low complexity

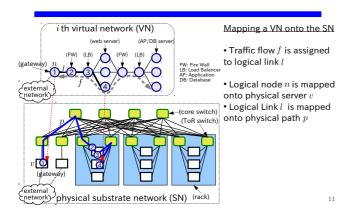

One or a few simultaneous failures
 VN recovers after a few seconds by
switching to hot-standby nodes and
links (VRRP, VMware FT, etc)

B High complexity • Many simultaneous failures > A centralized control force the failed nodes to be terminated and cold-standby nodes are alternatively booted (VMware HAT, etc)

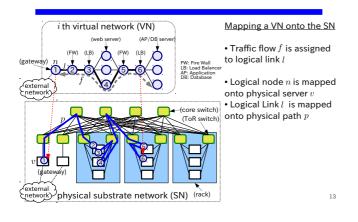

Network model for a multi-tenant data center

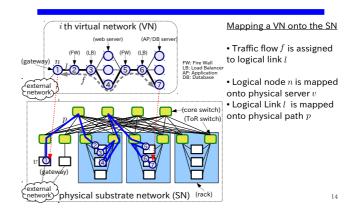

Network model for a multi-tenant data center

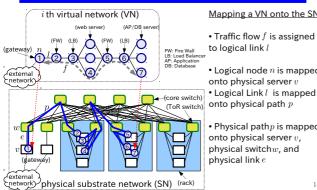

Network model for a multi-tenant data center


Network model for a multi-tenant data center


Network model for a multi-tenant data center

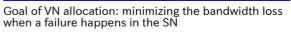

Network model for a multi-tenant data center

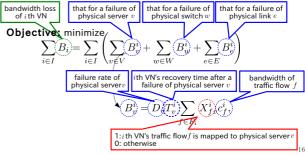

Network model for a multi-tenant data center


Network model for a multi-tenant data center

Network model for a multi-tenant data center

Network model for a multi-tenant data center




Mapping a VN onto the SN

- Traffic flow f is assigned
- Logical node n is mapped onto physical server v
- onto physical path \boldsymbol{p}
- Physical path p is mapped onto physical server v, physical switchw, and

15

Objective

Recovery time model of a single VN

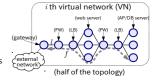
- A failure of a single physical switch/link
- ▷ Recovery of the physical switch/link leads to recovery of the VN links
- Recovery time of the VN does not influenced by how the VN is embedded

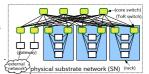
 2μ

- in the physical switch/link
- A failure of a single physical server T^{i} > VN should recover the VMs by utilizing
- its own failure-recovery mechanism Recovery time of the VN depends on
- how complicated the VN becomes
- failing simultaneously = the number of VMs
- assigned to the physical server

Subject to:

- rohibiting assigning more than θ VMs for ensuring the VMs' hot-standby recovery $\sum_{n \in N_i} \mathbf{x}_{nv}^i \le \theta$
- *i* th VN's recovery time under physical server *v*'s failure cold standby hot


Data center network for evaluation


A single VN

- three-tier web serving architecture
 5.8 web and AP/DB servers,
- a total of 15.7 VMs on average > CPU cores per VM: 1
- average bandwidth demand
- from an external network: 1.7×10^8 bit/s recovery time of a VM
 hot-standby: 4 s, cold-standby: 60 s

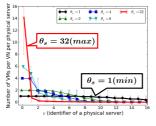
The SN

- two-level fat-tree topology
 max configuration: 8 core switches,
- 16 ToR switches, and 120 physical servers > CPU cores/physical server: 32,
- bandwidth of each link: 1×10¹⁰ bit/s available CPU cores: 3,360
- b failure rates physical server: 4/year, physical link/switch: 0.05/year (neglected)

Overview of a single VN mapping

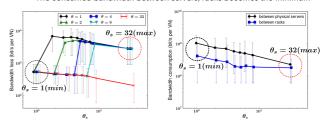
• VN embedding problem is NP-hard :

initially - Greedy Algorithm, refined - Tabu search • VN recovery time depends on θ (threshold for switching hot- to cold-standby), which can not be defined in advance


 $\triangleright \theta_s$ (a setting value of θ) is initially chosen \triangleright VN is allocated by using θ_s , then evaluated for various values of θ

• θ_s determines the *shape* of the VN $\triangleright \; \theta_s = 1(min)$

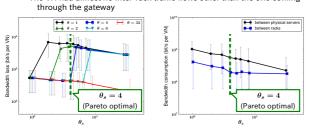
- The VMs and logical links are scattered across many physical servers and links


 $\triangleright \theta_s = 32(max)$

- All the VMs and links are consolidated in a few physical servers

Trade-off between fault tolerance and physical bandwidth consumption

- $m{\cdot} heta_s = 1(min)$: one VM to one physical server mapping The bandwidth loss is nearly the minimum for hot-standby recovery
 The consumed bandwidth between servers/racks reaches the maximum
- $\bullet \theta_s = 32(max)$: many VMs to one physical server mapping \triangleright The bandwidth loss is nearly the maximum for cold-standby recovery The consumed bandwidth between servers/racks becomes the minimum



Conclusion

• Minimizing the bandwidth loss of the VN while avoiding holding too many redundant core switches

VN Allocation Policy Derived from the Results

- Pareto optimality: $\theta_s=4$ $\,^{\scriptscriptstyle b}$ Almost of the logical links were mapped onto the physical links
 - between the physical servers and ToR switches. > The VN had almost no inter-rack traffic flows other than the one coming

• The fault tolerance of each VN in an laaS data center ▷ Focusing on the situation of multiple simultaneous failures in each VN caused by a single physical failure > The trade-off between the bandwidth loss and the required bandwidth between physical servers

▷ Balancing by assigning every four VMs to a physical server, - the required bandwidth of the outside racks was minimized

• Future work

Investigation of resource allocation over WANs, i.e., in a hybrid cloud environment