
Web Performance Acceleration by Caching
Rendering Results

Yuusuke Nakano
Graduate School of

Information and Science Technology
Osaka University

Osaka 565–0871, Japan
NTT Network Technology Labs

Tokyo 180–8585, Japan
nakano.yuusuke@ist.osaka-u.ac.jp

Noriaki Kamiyama
Graduate School of

Information and Science Technology
Osaka University

Osaka 565–0871, Japan
NTT Network Technology Labs

Tokyo 180–8585, Japan
kamiyama.noriaki@ist.osaka-u.ac.jp

Kohei Shiomoto
NTT Network Technology Labs

Tokyo 180–8585, Japan
shiomoto.kohei@lab.ntt.co.jp

Go Hasegawa
Cybermedia Center
Osaka University

Osaka 560–0043, Japan
hasegawa@cmc.osaka-u.ac.jp

Masayuki Murata
Graduate School of

Information and Science Technology
Osaka University

Osaka 565–0871, Japan
murata@ist.osaka-u.ac.jp

Hideo Miyahara
Graduate School of

Information and Science Technology
Osaka University

Osaka 565–0871, Japan
miyahara@ist.osaka-u.ac.jp

Abstract—Web performance, the time from clicking a link on
a web page to finishing displaying the web page of the link, is
becoming increasingly important. Low web performance of web
pages tends to result in the loss of customers. In our research, we
measured the time for downloading files on popular web pages by
running web browsers on four hosts worldwide using PlanetLab
and detected the longest portion in download time. We found the
longest portion in download time to be Blocked time, which is the
waiting time for the start of downloading in web browsers. In this
paper, we propose a method for accelerating web performance
by reducing such Blocked time with a cache of rendering results.
The proposed method uses an in-network rendering function
which renders web pages instead of web browsers. The in-network
rendering function also stores the rendering results in its cache
and reuses them for other web browsers to reduce the Blocked
time. To evaluate the proposed method, we calculated the web
performance of web pages whose render results are cached by
analyzing the measured download time of actual web pages. We
found that the proposed method accelerates web performance of
long round trip time (RTT) web pages or long RTT clients if the
web pages ’dynamic file percentages are within 80%.

I. INTRODUCTION

Web performance, the time required from clicking a link
on a web page to finishing displaying the web page of the link,
is becoming increasingly important. Low web performance of
web pages tends to result in the loss of customers and revenue.
For example, a 2000-ms delay reduces per-user revenue by
4.5% [1].

There are three types of web performances, web server,
network, and web browser. Web server performance is related
to the processing time for each request and number of retrans-
missions. Retransmissions are required when the web server
discards requests due to overflow of its queue. Network per-
formance is related to round trip time (RTT), throughput, and
number of retransmissions between a web browser and web

server. The RTT has a higher impact on web performance than
throughput [2].Retransmission is required when routers discard
packets because of congestion. Web browser performance is
related to the structure of a web browser and web page. A web
browser downloads files, such as scripts and images, composes
a web page, creates a bitmap, and displays it on a screen. This
web browser’s process is called rendering. The web browser
attempts to download files in a parallel manor to accelerate web
performance, but files of some web pages are not downloaded
in parallel due to the structure of the pages. This difficulty of
parallel downloading may affect web performance [1].

We detected the lowest performance among the three
types and found that web browser performance is the lowest.
This is the same result as Souders mentioned [1].To improve
web browser performance, we propose a method for reduce
rendering time by reusing cached rendering results. With this
method, an in-network rendering function renders web pages
instead of web browser and caches the rendering results. After
caching the rendering results, the proposed method reuses the
results to reduce rendering time. As a result, web performance
is accelerated.

II. DETECTION OF FACTORS FOR LOW WEB
PERFORMANCE

To find the most dominant factor for low web performance,
we conducted the following investigation.

1) Measurement of download time of files in real web
pages.

2) Detection of the lowest of the three types of perfor-
mances among by considering the measured down-
load time.



��������	�
�����
���� ����

��������	�
�����
���

�����	����	

������	��	��

���������

����������

�	���������

�������

��	��	

���

�� ���	��	

�������

 ��


�� 

!���"�


#������ #��������� �������$%���

&'(

'(

(

(

�������


������

���)*�����+,-.��
���	���

������
�����	�%�/

������
�����	�%��

������
�����	�%��

��%�

������
�����	�%��

&

'

(

!	�"
���

Fig. 1. Breakdown of download time

A. Measurement of download time of files on web pages

1) Measurement format: Modern web browsers, such as
Firefox and Chrome, enable us to measure the download
starting time of files on web pages and the time for download-
ing and outputting them as JSON files called HTTP Archive
(HAR) [3] files. The time for downloading is divided into
six parts. Figure 1 shows relationship between web browser
behavior, download starting time and each portion of the
download time.

2) Download starting time: A web browser analyzes
HTML documents of web pages and some types of scripts
defining them. At the same time, the web browser generates
events to start downloading files that make up the web pages
in accordance with the analysis results. As shown in Figure 1,
an event for downloading a file from web server X is generated
first, then three events for downloading from web server A are
generated. The time for generating these events is written in
the HAR file as the download starting time.

3) Each portion of divided download time: There are
dependencies between files on a web page, and files are
downloaded in a particular order of these dependencies. In
addition, the number of web server parallel downloads is
limited to a predefined number for reducing web server load,
and such a maximum number of parallel downloads is set for
each web browser in advance as a locked-in value. In Figure 1,
the maximum number of parallel downloads is assumed to be
1 (the max number for Chrome is 6). While the web browser
is downloading a file, the rest of the downloading files are
enqueued and wait to be dequeued. After being dequeued,
the web browser starts downloading the file. This kind of
waiting time in the web browser is registered as Blocked in the
HAR file. There are many factors that cause Blocked time and
they are summarized by Wang et al [4]. After waiting for the
downloading to start, the web browser obtains an IP address

���������	��
�	

�������	��	������	����

���	������	

��������� ����

���������

������	���	���������		���	

����������	����������

������	���	�������	���	

���� !���	���	�����

����

������	���	�����

"���������	����������

Fig. 2. HAR file generation environment

by name resolution using a domain name system (DNS) server.
The time for name resolution is registered as the DNS in the
HAR file. If the DNS cache in the web browsers has a result
of the name resolution, the DNS in the HAR file is 0. After
name resolution, the web browser establishes a connection
with a web server, sends an HTTP request, waits for an HTTP
response, and receives the HTTP response. The time for each
process is registered as Connect, Send, Wait, and Receive,
respectively, in the HAR file.

Blocked time is time spent waiting for the start of down-
loading in web browsers, and the DNS, Connect, Send, and
Receive are time spent in the network. On the other hand,
Wait is time spent in both the web server and network. The
most dominant factor for low web performance is assumed to
be where the rendering process spends the longest time.

4) HAR file generation environment: We generated HAR
files using real web browsers for displaying web pages to
detect the most dominant factor for low web performance.
Figure 2 shows the HAR file generation environment. The
time for downloading files that make up web pages depends
on where the web browser is. To run web browsers in hosts
worldwide, we used PlanetLab [5], which is an experimental
environment that provides a huge amount of hosts connected to
the Internet worldwide. We selected four hosts from PlanetLab
and installed a web browser (Firefox) and an HAR generation
program on each host. The selected hosts were in California,
USA, France, Australia, and Argentina. The HAR generation
program downloads a description of generation conditions,
which are starting time for generation and URLs of target
web pages, from a server providing the generation conditions,
and operates the web browser to generate an HAR file in
accordance with the generation conditions. Finally, the HAR
generation program uploads the generated HAR files to a
server for storing and analyzing them.

The time for downloading files of web pages also depends
on which web pages the web browsers display, and it is
necessary to generate HAR files from a huge variety of web
pages. We made a list of 959 URLs by extracting URLs from
the Alexa [6] popular web page ranking, a web site ranking
providers. We extracted the top 70 URLs from each category
such as news and shopping, and merged them into the 959-
URL list. We generated HAR files in accordance with the list.

B. Longest time among six portions of download time

As mentioned above, we generated HAR files of target
web pages by displaying them with web browsers installed on
hosts in four countries and detected the longest time among



the six portions of the downloading time. Table 1 lists the
averages of each portion of downloading time in each host.
We found Blocked and Wait times are longer than other parts
of the downloading time and Blocked time is the longest and
occurs when the web browser reaches the maximum number
of parallel downloads.

In addition to reaching the maximum number, Blocked time
also occurs when there are dependencies between files making
up a web page. Wang et al. argued that there are various types
of dependencies between files in a web page [4] and to start
downloading a file, it is often required to finish downloading
previous files. This leads to a long Blocked time.

As above, we found that the most dominant factor for low
web performance is waiting time in the web browser. Reducing
this kind of time can accelerate web performance.

III. PROPOSED METHOD

It is assumed that the waiting time in the web browser
increases when the number of files to be downloaded in-
creases because the number of dependencies between the
files increases. To reduce such waiting time in web browsers,
reducing the number of files to be downloaded is effective. Our
proposed method reduces the waiting time in web browsers for
accelerating web performance by caching rendering results and
reducing the number of files to be downloaded.

The proposed method is composed of in-network rendering
functions near the network edge which render and cache the
web pages and special web browsers installed in user client
PCs. In-network rendering functions are implemented in the
form of special server instead of web proxy and the special
web browsers are implemented in the form of web browser
extension. The user sends a URL of a web page he/she wants
to see via the web browser to the function. Then, the function
renders the web page of the URL in the same manner as
ordinary web browsers. After that, the function caches the
rendering results of the web page and sends the rendering
results to the web browser. Finally, the web browser displays
the rendering results. In this way, the waiting time in the web
browser occurs as before at the first time of rendering the
web page. On the other hand, when there are rendering results
previously rendered for another user, all the function has to do
is obtain the rendering results from its cache and send them
to the web browser. As a result, the web browser can quickly
display rendering results.

However, most web pages have files that dynamically
change, and this means that rendering results for one user are
not usable for every user. For example, web advertisements
dynamically change every time they are displayed on web

TABLE I. AVERAGES OF EACH PORTION OF DOWNLOAD TIME IN EACH
HOST (MS)

Part of download time \ Host California Argentina France Australia
Blocked 255.36 552.92 418.45 377.77

DNS 0.68 0.30 0.43 0.85
Connect 13.86 25.01 81.32 21.18

Send 0.02 0.01 0.01 0.02
Wait 195.10 392.28 235.04 292.07

Receive 53.10 78.61 46.43 72.43

�������

��	

	
����


�������

��	

	
����


�������
���

��	 ��
��
������
���

��������
��


����
������������

�����
����
������

���������������������

 ���

!"#��$��������%

�$����

&����

'�(
���������������	
����

������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
)*

������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������
������������������������������������������������������

)*

Fig. 3. Proposed method

browsers and time lines of twitter or Facebook are dynamic.
Files for such content seem to be dynamic.

Figure 3 shows an abstract of the proposed method which
takes into account the problem of such dynamic files. As
mentioned above, the in-network rendering function renders
a web page in the same manner as ordinary web browsers if
it renders the web page for the first time. After rendering, the
function sends the rendering results to the web browser. On
the other hand, if it is not the first time to render the web page,
the process of the function is as follows.

• 2nd time The function renders again and obtains the
difference between the 1st and 2nd time rendering re-
sults. As a result, the function extracts a static portion
of the web page and caches that portion. At the same
time, the function sends the newly rendered results to
the web browser. The cached rendering results contain
serialized data generated in the rendering process such
as DOM trees and render trees of static portions,
JavaScript converted into a web browser ’s special
expression, external resources such as scripts and
images, and Extensible Stylesheet Language Transfor-
mations (XSLTs) for connecting dynamic portions in
HTMLs and nods in the render trees.

• After 2nd time The function obtains the HTML of
requested URLs from the web server and sends it with
the cached static rendering results to the web browser.

For more accurate extraction of static portions of HTMLs,
the function can increase the number of obtaining the differ-
ences.

After obtaining the rendering results, the web browser loads
them into its memory and extracts the dynamic portion from
the HTML received from the function using the XSLTs. After
that, the web browser renders the extracted dynamic portion
by downloading files, such as scripts and images, from web
servers. In this way, the proposed method reduces the number
of files to be downloaded by rendering the dynamic portions
and downloading the dynamic files instead of rendering and
downloading entire HTML and all files. As a result, the method
reduces the waiting time in web browsers and rendering time.
In other words, the method accelerates web performance.

IV. EVALUATION

We evaluated the proposed method before implementation.



A. Evaluation method

To evaluate the effectiveness of the proposed method, we
calculated the rendering time with cached rendering results
from HAR files and compared it with that without the cached
rendering results. The calculation method is as follows.

1) Classification of static and dynamic files in actual
web pages.

2) Calculation of rendering time for the dynamic por-
tions of an HTML document.

We calculated the rendering time for dynamic portions of
an HTML document and found how long it takes to render by
reusing the cached static rendering results. We also assumed
the time for obtaining the cached rendering results and that for
loading them into memory are zero seconds.

We explain the details of the calculation method in the
following sections.

1) Method for classification of static and dynamic files:
We used file size and URLs for the classification of static and
dynamic files. An HAR file has the size and URL of each file
on the web page. By generating multiple HAR files for each
web page and comparing the size and URLs among the HAR
files generated from the same URL’s web page, we determined
if the files are dynamic or static.

2) Method for calculation of rendering time for dynamic
portion: There are dependencies between files on a web page.
The calculation method has to calculate the rendering time
for the dynamic portion by taking into account these kinds of
dependencies. The calculation method calculates the onload
time, which is the time from the start of downloading files
to finish, which are necessary for displaying the web pages.
First, the method clusters the files that start to be downloaded
at nearly the same time. There seems to be no dependence
between files in one cluster because web browsers download
the files in parallel, and all the method has to take into account
is the dependencies between clusters. After clustering, the
method calculates the average time for downloading files in
each cluster by making the download time of dynamic files
zero seconds. The method defines this average download time
as each cluster ’s download time. Using the cache, the web
browser downloads and renders dynamic files instead of all
files on the web page and each cluster ’s download time is
shortened. Because the clusters are dependent on each other,
shortening of one cluster’s download time affects the download
start time of files in other clusters after the shortened cluster.
The calculation method updates the start time of downloading
files in each cluster in accordance with the changes in previous
clusters’download times. In particular, the calculation method
pushes the download start time of files in a cluster ahead
by the sum of the changes in previous clusters ’download
times. Finally, the calculation method calculates the onload
time, which is the time for finishing the downloading of all
files necessary for rendering (files finishing downloading until
onload event generated by the web browser), and provides the
updated onload time as the time for rendering the dynamic
portion.

�

���

���

���

���

�

�� �� �� �� 	� ��

�

���

���

���

���

�

�� �� �� �� 	� ��

�

���

���

���

���

�

�� �� �� �� 	� ��

�

���

���

���

���

�

�� �� �� �� 	� ��


������� ������

�������� ��������

��������� ������������

Fig. 4. Cumulative distribution of onload time by using cache of proposed
method and without it (vertical axis: cumulative probability of onload time,
horizontal axis: onload time (seconds))

�

��

��

��

��

���

���

�� �� �� �� ��

	
������


�

��

��

��

��

���

���

�� �� �� �� ��

��
���

�

��

��

��

��

���

���

�� �� �� �� ��

�����
��


�

��

��

��

��

���

���

�� �� �� �� ��

��������


���� ��� ����� ��� ����� ��� ����� ��� ����� ����

Fig. 5. Onload time histogram of every second in each host (vertical axis:
number of web pages in each onload time, horizontal axis: onload time without
cache (seconds), each area: percentage of onload time with cache in onload
time without cache)

B. Evaluation results

We evaluated the proposed method by using the evaluation
method mentioned above. We used the same HAR files as
those discussed in Section 2.1.4 and classified dynamic and
static files by obtaining the differences between HAR files of
the same URLs generated in each host.

Figure 4 shows the cumulative distribution of onload time
by using the cache of the proposed method and without
using it. The onload times in Australia and Argentina were
significantly shortened than those in other hosts. This is
obvious because the cumulative distribution line of onload time
by using the cache lies to the left of that without using it,
compared with those of other hosts. It is often said that most
users stop waiting for the rendering of web pages to finish
after five seconds. In Argentina, the percentage of onload time
shorter than five seconds increased from 28 to 45%.

Figure 5 is a histogram of onload time every second in each
host. We divided the histogram into five areas and each area



�

��

��

��

��

���

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� �

�

��

��

��

��

���

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� �

�

��

��

��

��

���

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� �

�

��

��

��

��

���

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� �

�������� �����

������� ��������

���� ��� ����� ��� ����� ��� ����� ��� ����� ����

Fig. 6. dynamic file ratio histogram of every 0.1 in each host (vertical axis:
number of web pages which have each ratio of dynamic files, horizontal axis:
ratio of dynamic files, each area: percentage of onload time with cache in
onload time without cache)

denotes the percentage of onload time with cache in onload
time without cache. In Australia and Argentina, most web
pages shortened their onload time to 80% or less by using the
cache. In other hosts, a limited number of web pages shortened
their onload time.

Figure 6 is a histogram of the dynamic file ratio of every
0.1 in each host. We divided the histogram into five areas in
the same manner as in Figure 5. In Australia and Argentina,
most web pages, of which 80% of files are dynamic, shortened
their onload time to 80% or less. In other hosts, the number of
web pages that shortened their onload times increased if 10%
or less of their files were dynamic. However, this was observed
in every host, and the reason for the increase in the number
of short-onload-time web pages seems to be that there were a
certain number of web pages whose files were all static; white
area in Figure 6.

C. Discussion

As mentioned above, the proposed method shortened web
pages ’onload times in Australia and Argentina. The reason
seems to be that the RTTs between the web servers and web
browsers in Australia and Argentina are longer than those in
other hosts. The difference in RTTs among hosts is shown in
the“Wait row” of Table 1. In such long RTT hosts, time
for downloading each file tends to be longer and the proposed
method effectively shortened onload time of the web pages by
reducing the number of files to be downloaded. However, in
the hosts with sufficiently short RTTs, the proposed method
had limited effectiveness in shortening the onload time of
web pages. In other words, the proposed method is effective
when the web browser displays a web page whose files are
provided by long RTT web servers. For future work, we will
implement a mechanism to determine the necessity of caching
the rendering results in accordance with each web page’s RTT.

The proposed method is also effective in shortening the
onload time of web pages whose percentages of dynamic files
are less than 80% in Australia and Argentina and less than
10% in the other hosts. For this reason, we will implement

a mechanism to determine the necessity of a cache with the
percentage of dynamic files in web pages.

The reduction in short (in a few seconds) onload time
without a cache tends to be large, as shown in Figure 5. The
reason of this is that short-onload-time web pages tend to have
many static files compared with long-onload-time web pages.

V. RELATED WORK

CDN services are used widely for acceleration web perfor-
mance [7]. Using CDN, download time for each file in a web
page is reduced. However, the waiting time in a web browser is
reduced partially because there are still dependences between
files and the browser waits for starting downloading.

Acceleration methods for web performance in a mobile
environment by offloading rendering processing on servers
or the cloud have been studied for a number of years. Kim
et al. proposed pTHINC to show a web browser running in
a server on a PDA screen using a thin-client technique [8].
Shen et al. proposed a web browser that quickly displays web
pages containing dynamic objects, such as animations, even
if the rendering process is done in a proxy server. The proxy
server renders the dynamic and static portions separately and
sends the rendering results of the dynamic portion and divided
rendering results of the static portion to the web browser [9].
On the other hand, a web application framework was proposed
that generates rendering results, such as a DOM tree in a web
server, sends them to a web browser, and sends Ajax events
to the web browser after sending the rendering results [10].
As mentioned above, there are various methods for offloading
rendering processing and various types of divisions of roles
between servers and browsers. Wang et al. argued about ways
to divide roles between servers and browsers for efficient ren-
dering processing [11]. Various studies on offloading rendering
processing have been conducted and several products from
such studies are being used [12].

However, there have been no studies on caching rendering
results and reusing them.

VI. CONCLUSION

We proposed a method for web performance acceleration
by reducing the rendering time using the cached rendering
results. The rendering results are generated and cached by the
in-network rendering function.

To evaluate the effectiveness of the proposed method, we
calculated the rendering time by using the cached rendering re-
sults from actual rendering time measured using web browsers
running on hosts worldwide. We found that the proposed
method accelerates web performance in long RTT hosts and
web pages. We also found that the proposed method accelerates
web performance in such long RTT hosts and web pages of
which 80% of files are dynamic. On the other hand, in short
RTT hosts and web pages, the proposed method accelerates
web performance of web pages of which less than 10% are
dynamic.

We plan to implement mechanisms for determining the
necessity of caching the rendering results in accordance with
RTT and/or ratio of dynamic files. In addition, the proposed
method classifies dynamic and static files by obtaining the



differences between the rendering results generated from the
same URL ’s web pages, but there seems to be errors in
the classification. We plan to improve this classification by
using a mechanism of considering cache control descriptions
in HTTP headers. Finally, we will implement a prototype of
the proposed method and measure web performance to evaluate
the method.

REFERENCES

[1] S. Souders, High Performance Web Sites Essential Knowledge for Front-
End Engineers. O’Reilly Media, 2007.

[2] I. Grigorik, High Performance Browser Networking What every web de-
veloper should know about networking and web performance. O’Reilly
Media, 2013.

[3] “Http archive (har) format.” [Online]. Available:
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html

[4] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with wprof,” in Presented as
part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). Lombard, IL: USENIX, 2013, pp.
473–485.

[5] “Planetlab.” [Online]. Available: https://www.planet-lab.org/
[6] “Alexa.” [Online]. Available: http://www.alexa.com/
[7] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A

platform for high-performance internet applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[8] J. Kim, R. A. Baratto, and J. Nieh, “pthinc: A thin-client architecture
for mobile wireless web,” in Proceedings of the 15th International
Conference on World Wide Web, ser. WWW ’06. New York, NY,
USA: ACM, 2006, pp. 143–152.

[9] H. Shen, Z. Pan, H. Sun, Y. Lu, and S. Li, “A proxy-based mobile
web browser,” in Proceedings of the International Conference on
Multimedia, ser. MM ’10. New York, NY, USA: ACM, 2010, pp.
763–766.

[10] B. McDaniel and G. Back, “The cloudbrowser web application frame-
work,” in Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, ser. SPLASH
’12. New York, NY, USA: ACM, 2012, pp. 141–156.

[11] X. S. Wang, H. Shen, and D. Wetherall, “Accelerating the mobile
web with selective offloading,” in Proceedings of the Second ACM
SIGCOMM Workshop on Mobile Cloud Computing, ser. MCC ’13.
New York, NY, USA: ACM, 2013, pp. 45–50.

[12] “What is amazon silk?” [Online]. Available:
http://docs.aws.amazon.com/silk/latest/developerguide/introduction.html


