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Abstract—Dynamic placement of the virtual network functions
(VNFs) is one of the promising approaches to handling time-
varying demands; when demands are small, the energy consump-
tion can be reduced by placing the VNFs to a small number of
physical nodes and shutting down unused nodes. If the demands
becomes large, the VNFs are migrated to allocate the sufficient
resources. In the dynamic placement of the VNFs, it is important
to avoid a large number of migrations at each time because the
migration requires a large amount of bandwidth. In this paper,
we propose a new method to dynamically place the VNFs to follow
the traffic variation without migrating a large number of VNFs.
Our method is based on the model predictive control (MPC). By
applying the MPC to the dynamic placement of the VNFs, our
method starts migration in advance by considering the predicted
future demands. As a result, our method allocates sufficient
resources to the VNFs without migrating a large number of VNFs
at the same time even when traffic variation occurs. Through
simulation, we demonstrate that our method handles the time
variation of the demands without requiring a large number of
migration at any time slot.

I. INTRODUCTION

In recent years, the time variation of the Internet traffic has
increased due to the emerging new applications such as cloud
computing. Backbone networks must accommodate such time-
varying traffic. However, the increase of the time variation of
the traffic causes the difficulty in accommodating traffic in a
single static backbone network; the network that can handle
any possible traffic requires a large amount of resources and
consumes a large amount of energy.

The network function virtualization (NFV) is one of the
promising approaches to handling such time variations effi-
ciently [1]. In the NFV, the network functions such as routers
and firewalls are virtualized. The virtual network functions
(VNFs) are hosted by ordinary server computers. The network
services are provided through the virtual network constructed
of the VNFs. The VNFs can be migrated by using the live
migration technologies [2]. By dynamically placing the VNFs
to the suitable server, the network services are provided
without wasting the resources and energy consumption; the
VNFs are hosted by a small number of servers when the
demand is small and each VNF requires only small resources.
If the demand increases and more resources become required,
the VNFs are migrated to new servers [3].

The problem to obtain the suitable servers hosting the VNFs
can be formulated as the virtual network embedding problem,
and has been investigated in many papers [3]–[10]. These

methods obtain the optimal locations of the VNFs and the
topology of the virtual network that minimize the objective
functions such as the amount of the used resources. Then,
the network is reconfigured based on the obtained solution
by migrating the VNFs or changing the configuration of the
routing.

In the dynamical placement of the VNFs, the cost of the
migration of the VNFs is important, because the migration
consumes network resources. Thus, migrating a large number
of VNFs at the same time should be avoided. The method
proposed by Blenk et al. [10] considers the cost of the
migration by minimizing the weighted sum of the performance
metrics and the cost of the migration. This method considers
only the currently required resources, and does not perform
migration unless the necessity of the migration is detected
However, when the necessity of the migration is detected, a
large number of migrations may be required. If we can detect
the necessity of the migration in the future time slots from the
predicted demands, we can start the migration in advance and
avoid a large number of migration at each time slot.

In this paper, we propose a new method to dynamically
place the VNFs so as to follow the traffic variation without
migrating a large number of VNFs. Our method is based on the
model predictive control (MPC). In MPC, a controller inputs
the system parameters so as to maintain the output of the
system at close to a target value. The controller calculates the
optimal input values for the future time slots based on the
prediction, but implements the input values only for the next
time slot. Then, the controller observes the output and corrects
the prediction by using the observed output as feedback.
After the correction, the controller calculates the optimal input
values again by using the corrected prediction. By repeating
the above steps, the controller calculate suitable input for the
future time slot even when prediction errors occur. We have
already applied the MPC to the dynamic route control [11],
and showed that dynamic route control based on the MPC
avoids the congestion by changing the routes in advance.

By applying the MPC to the dynamic placement of the
VNFs, our method starts migration in advance of the change
of the required resources by considering the predicted future
demands. As a result, our method handles time variations of
the required resources without migrating a large number of
VNFs at the same time.

This rest of this paper is organized as follows. Section II
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Fig. 1. Physical network.

formalizes the problem of the placement of the VNFs and the
construction of the virtual network. Section III explains our
method for the dynamic placement of the VNFs based on the
MPC. Section IV evaluates our method. Finally, Section V
presents our concluding remarks.

II. PROBLEM FORMULATION

In this paper, we maps the virtual network to the physical
network. This section formulates this problem as an optimiza-
tion problem.

A. Physical network

Figure 1 shows a physical network. The physical network is
constructed of physical nodes and physical links. We denote
the set of physical nodes by Np, and the set of physical
links by Lp. The physical network is modeled by a weighted
directed graph Gp = (Np, Lp). The bandwidth of the physical
link l ∈ Lp is denoted by Bp

l . The resource of the physical
node n ∈ Np is denoted by a vector Up

n , whose number of
elements corresponds to the number of kinds of resources
such as CPU and memory. We denote the number of kinds
of resources by R, and ith element of Up

n by up
n,i.

In the physical network, multiple paths exist between two
physical nodes. Among them, we consider k shortest paths.
We denote the set of the all k shortest paths between all node
pairs by P p. Each path p ∈ P p is defined by the set of physical
links on the path. nstart

p and nend
p indicate the first and last

nodes on the path p, respectively.
We also define a matrix Ap whose element api,j is 1 when

path i goes through link j; otherwise, 0.

B. Virtual Network

Figure 2 shows a virtual network. The virtual network is
constructed of the virtual nodes and virtual links. We denote
the set of virtual nodes by Nv, and the set of virtual links by
Lv. The virtual network is modeled by a weighted directed
graph Gv = (Nv, Lv).

In this paper, we consider two kinds of virtual nodes, VNF
nodes and user nodes. Each VNF node corresponds to a VNF,
and must be mapped to the physical node that has sufficient
resource to run the VNF. The user nodes correspond to the
users who use the network service. The location of each user
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Fig. 2. Overview of placement of virtual network.

node is fixed. We denote the set of the VNF nodes by NVNF,
and the set of the user nodes by Nuser. Nv = NVNF∪Nuser.

Each VNF node nvnf ∈ NVNF requires the resources of
the physical node. The required resources change in time. We
denote the resource required by nvnf at the time slot t by a
vector Uv

nvnf (t). The location of the user node nuser ∈ Nuser

is denoted by np
nuser ∈ Np.

The virtual link requires the bandwidth. The required band-
width changes in time. We denote the bandwidth required by
l ∈ Lv at the time slot t by Bv

l (t).
nstart
l and nend

l indicate the source and destination nodes
of the virtual link l ∈ Lv .

C. Optimization Problem

In this paper, we map the virtual network to the physical
network. Each VNF node must be mapped to the physical node
that has the sufficient resources to host the VNF. In addition,
the virtual links must be mapped to the physical paths so that
all physical links on the paths have the sufficient bandwidth
to accommodate the virtual link. Therefore, we calculate the
suitable mapping that satisfies these constraints.

We minimize the number of active physical nodes that host
the VNFs, though there may be other objective functions. By
minimizing the number of active physical nodes and sleeping
the servers on the other physical nodes, we can reduce the
energy consumption.

When mapping the virtual network to the physical network,
the cost of the migration should be considered. Therefore, we
also minimize the number of migrated VNFs in addition to
the number of active physical node.

We formulate the problem to map the virtual network to
the physical network at the time slot t by the optimization
problem. In this optimization problem, we set the following
variables.

• MNode
v,n : A binary variable, which is 1 if the virtual node

v is hosted by the physical node n; otherwise, 0.



• MNode
n : A binary variable, which is 1 if at least one

VNF node is hosted by the physical node n; otherwise,
0.

• MLink
l,p : The ratio of the traffic amount on the virtual

link l passing through the physical path p.
In this optimization problem, the information of the physical

network Gp and the information of the virtual network Gv ,
including the predicted values of the required resources of
the VNFs and the required bandwidths, are given as input. In
addition, the locations of the VNFs at the previous time step
Mprev

v,n are also given as input. Mprev
v,n is set to 1 if the VNF

node v is hosted by the physical node n, otherwise 0. w is a
parameter indicating the weight to the cost of the migration;
setting w to a large value avoids migration.

minimize (1− w)
∑

n∈Np

MNode
n +

w
∑
n∈Np

∑
nvnf∈NVNF

|MNode
nvnf ,n −Mprev

nvnf ,n
| (1)

subject to

∀n ∈ Np,
1

|NVNF|
∑

nvnf∈NVNF

MNode
nvnf ,n≤MNode

n (2)

∀nvnf ∈NVNF,
∑
n∈Np

MNode
nvnf ,n=1 (3)

∀nuser∈Nuser,∀np∈ Np,MNode
nuser,np =

{
1 (np

nuser = np)
0 (otherwise)

(4)

∀l∈Lv,
∑
p∈Pp

MLink
l,p =1 (5)

∀l∈Lv, ∀p∈P p,MLink
l,p ≤MNode

nstart
l

,nstart
p

(6)

∀l∈Lv, ∀p∈P p,MLink
l,p ≤MNode

nend
l

,nend
p

(7)

∀n∈Np, ∀uv
nvnf ,i(t) ∈ Uv

nvnf (t),∑
nvnf∈NVNF

MNode
nvnf ,n · uv

nvnf ,i(t)≤up
n,i (8)

∀lp∈Lp,
∑
l∈Lv

∑
p∈Pp

app,l ·M
Link
l,p ·Bv

l (t)≤Bp
l (9)

In the above optimization problems, Eq. (2) defines the relation
between MNode

nvnf ,n and MNode
n . Eq. (3) ensures that each VNFs

must be hosted by one of the physical nodes. Eq. (4) sets
the locations of the user nodes. Eqs. (5), (6) and (7) ensure
that each virtual link must be accommodated by the paths
whose source and destination nodes are the nodes hosting the
virtual nodes at the both edges of the virtual link. Eq. (8)
ensures that the virtual nodes are mapped to the physical nodes
with the sufficient resources. Similarly Eq. (9) ensures that
the virtual links are mapped to the physical links with the
sufficient bandwidths.

III. PLACEMENT OF VIRTUAL NETWORK FUNCTIONS
BASED ON MPC

A. Model Predictive Control

Figure 3 shows a overview of MPC [12]. The MPC con-
troller predicts the operation of system for the future time
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Fig. 3. Overview of MPC.
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slots [t + 1, ...t + H] called predictive horizon where H is
the length of the predictive horizon. Based on the prediction,
the controller calculates the inputs for the predictive horizon.
However, the controller implements only the calculated inputs
for the next time slots [t + 1]. Then, the controller observes
the output and corrects the prediction, using the output value.
After the correction, the controller recalculates the inputs for
the next time slot with the corrected prediction. Thus, the MPC
controller modifies the prediction by using feedback. By using
and modifying the prediction, the MPC achieves a prediction–
based control that is robust to prediction errors.

B. MPC-VNF-P

In this paper, we apply the MPC to the dynamical placement
of the VNFs, which is formulized in Section II-C. We call this
method MPC-VNF-P. In this method, we consider the pre-
dicted future values of the required resources. By considering
the predicted future values, we can start migration in advance
of the changes of the required resources. As a result, we can
follow the time variation of the required resources without a
large number of migrations at each time slot.

Figure 4 shows an overview of MPC-VNF-P. The MPC-
VNF-P controller (1) predicts the required resources of virtual
nodes and virtual links for each time slot t (1≤ t≤H), (2)
calculates the physical servers hosting the VNFs and topology
of the virtual network for future H time slots, and (3) performs
the migration and configures the routes according to the
calculated results for the next time slot. Then, at the next time
slot, the controller obtains the new information on the required
resources, and perform the above steps again. By continuing
these steps, the MPC-VNF-P controls the locations of the
VNFs considering the future required resources. In addition,
even if the prediction errors are included in the predicted
future required resources, the impact of the prediction errors
is avoided by correcting the prediction at each step.



We formulate the MPC-VNF-P as follows. The MPC-VNF-
P uses the predicted values of the required resources for
the time slots [t + 1, ..., t + H] as input, while the problem
formulated in Section II-C uses the predicted values of the
required resources only at the next time slot t + 1. The
predicted value of resource required by nvnf at time t is
Ûv
nvnf (t). The predicted value of required bandwidth of the

virtual link l ∈ Lv at the time slot t is B̂v
l (t).

We define variables which indicate the location of virtual
nodes and virtual links at the time slot t by MNode

v,n (t),
MLink

l,p (t) and MNode
n (t). The placement of the VNFs can

be calculated by the following optimization problem.

minimize
(1− w)

H · |Np
f |

∑
0<k≤H

∑
n∈Np

MNode
n (t)+

w

2|Nv
j,r|

M (10)

subject to

0<t≤H, ∀n∈Np,
1

|NVNF|
∑

nvnf∈NVNF

MNode
nvnf ,n(t)≤MNode

n (t) (11)

0<t≤H, ∀nvnf ∈NVNF,
∑
n∈Np

MNode
nvnf ,n(t)=1 (12)

0<t≤H, ∀nuser∈Nuser,∀np∈ Np,

MNode
nuser,np(t) =

{
1 (np

nuser = np)
0 (otherwise)

(13)

0<t≤H, ∀l∈Lv,
∑
p∈Pp

MLink
l,p (t) = 1 (14)

0<t≤H, ∀l∈Lv, ∀p∈P p,

MLink
l,p (t) ≤ MNode

nstart
l

,nstart
p

(t) (15)

0<t≤H, ∀l∈Lv, ∀p∈P p,

MLink
l,p (t) ≤ MNode

nend
l

,nend
p

(t) (16)

0<t≤H, ∀n∈Np, ∀ûv
nvnf ,i(t) ∈ Ûv

nvnf (t),∑
nvnf∈NVNF

MNode
nvnf ,n(t) · û

v
nvnf ,i(t)≤up

n,i (17)

0<t≤H, ∀lp∈Lp,∑
l∈Lv

∑
p∈Pp

app,l ·M
Link
l,p (t) · B̂v

l (t)≤Bp
l (18)

0<t≤H,∑
n∈Np

∑
nvnf∈NVNF

|MNode
nvnf ,n(t)−MNode

nvnf ,n(t− 1)|≤M (19)

In this optimization problem, Eqs. (11)–(18) are the similar
constraints to the problem formulated in Section II-C. In
Eq. (19), we introduce a variable M , which indicates the
largest number of migrated VNFs within the predictive hori-
zon.

This optimization problem minimizes the weighted sum of
the number of active physical nodes and the expected number
of migrated VNFs in the future time slot. By this optimization
problem, MPC-VNF-P controls the locations of the VNFs
without a large number of migrations, so as to minimize the
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number of active physical nodes under the constraint that
the VNFs are mapped to the physical nodes with sufficient
resources and the virtual links are mapped to the physical
links with sufficient bandwidths.

IV. EVALUATION

A. Simulation Environment

1) Physical Network: We use the topology shown in Figure
1, which are based on the backbone network of the Internet2
[13]. In this topology, six nodes are connected to the servers.
Only the servers have the resources to host the VNFs. For
the simplicity, we consider the case that the number of the
kinds of the resources is 1, and each server has the resource
whose capacity is 200. We set the bandwidth of each link
to a sufficiently large value to focus on the impact of the
time variation of the resources required by the VNFs. In this
evaluation, we set three shortest paths for each node pair as
the candidate paths used to accommodate virtual links.

2) Virtual network: In this evaluation, the virtual network
includes 8 user nodes and 17 VNFs, shown in Figure 5. This
virtual network includes three kinds of the VNFs. Two of them
handles the traffic near user and are connected to user nodes.
The other VNF is connected to all of the VNFs connected to
user nodes.

We generate the time variations of the required resources.
To demonstrate our method in the case that the total required
resources increases or decreases, we generate the same time
variation of the required resources for all VNFs. Figure 6
shows generated the time variation of the required resources
for each VNFs.



3) Prediction Method: In our evaluation, we use the fol-
lowing simple prediction method. First, we find a best-fit
straight line lk = ak + b which minimizes the sum of squared
distance from the previous observed required resource values
uv
nvnf (t−2) and uv

nvnf (t−1) denoted as
∑2

k=1(u
v
nvnf (t−k)−

lt− k)2. Then, we obtain the future required resource value
as ûv

nvnf (t+ k) = lt+k.
By using this prediction method in our evaluation, the

prediction errors occur at the time slot 7, 17, 24, and 34.
4) Compared methods: We compare the following method.

MinActiveNode: This method decides the location of the
VNFs so as to minimize the number of active physical
nodes hosting the VNFs without considering the cost of
migration. This method solves the optimization problem
in Section II with w = 0. By comparing the MPC-VNF-P
with this method, we clarifies the impact of considering
the cost of the migration.

NoMPC: This method decides the location of the VNFs
considering the cost of migration without considering the
future variations of the required resources. This method
uses the predicted required resources only at the next time
slot, and solves the optimization problem in Section II
with w = 0.03. By comparing the MPC-VNF-P with this
method, we clarifies the impact of considering the future
values of the required resources.

In addition to the above methods, we compare of the two cases
of parameters in the MPC-VNF-P; the case with H = 3 and
the case with H = 5. In all methods, we solve the optimization
problem by using Cplex 11.0 [14].

5) Metrics: In this evaluation, we use the following metrics.
Maximum resource utilization: The largest resource utiliza-

tion among all physical nodes at each time slot, which is
defined by

max
np∈Np

(
1

up
n

∑
nvnf∈NVNF

np

uv
nvnf ) (20)

where NVNF
np is the set of virtual nodes hosted by the

physical node np ∈ Np.
Number of active physical nodes: the number of physical

nodes hosting at least one VNFs.
Number of migrated VNFs the number of VNFs which are

migrated at each time slot.

B. Results

Figure 7 shows the time variation of the maximum resource
utilization. In this figure, the horizontal axis is the time slot,
and the vertical axis is the maximum resource utilization.
This figure indicates that all methods map the virtual network
properly so that the resource utilizations do not become larger
than 1. This is because all methods use the predicted values of
the required resources, and migrate VNFs in advance before
the lack of the resource occurs.

Figure 8 shows the number of active physical nodes. In
this figure, the vertical axis indicates the number of active
physical nodes, and the horizontal axis indicates the time
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slot. This figure demonstrates that all methods increases or
decreases the number of active physical nodes according to the
time variation of the required resources; the number of active
physical nodes increases from time slot 10 to 17, and decreases
from time slot 26 to 32. The number of active physical nodes
achieved by the MPC-VNF-P is as small as that by NoMPC.
That is, the MPC-VNF-P achieves the smallest number of
active physical nodes, though the MPC-VNF-P uses the pre-
dicted future values of the required resources. Especially at
time slot 17, the future required resources are predicted to
increase continuously, while the actual required resources stop
increasing. Due to this prediction errors, the MPC-VNF-P
plans to migrate the VNFs so as to handle the predicted
increase. But, at the next time slot, the MPC-VNF-P corrects
the prediction errors by using the newly obtained information
on the required resources, and calculates the locations of the
VNFs again. As a result, even though the MPC-VNF-P uses
the future predicted values of the required resources, whose
prediction errors becomes large as the prediction target is far
ahead, the MPC-VNF-P avoids the increase of the number of
active physical nodes.

Finally, we compare the number of migrated VNFs at each
time slot. Figure 9 shows the results. In this figure, the vertical
axis is the number of migrated VNFs at each time slot,
and the horizontal axis is the time slot. This figure shows
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that MinActiveNode requires a large number of migrations at
several time slot, because MinActiveNode does not consider
the cost of the migration. NoMPC also requires a large number
of migration especially when the required resources decrease.
This is because NoMPC does not consider the future values
of the required resources and considers only the required
resources at the next time slot. As a result, NoMPC does not
start migration even when the required resources decreases,
unless the migration decreases the number of active physical
nodes. On the other hand, the MPC-VNF-P considers the
future values of the required resources. Therefore, the MPC-
VNF-P starts the migration if the migration is expected to
decrease the number of active physical nodes at the future time
slots, even when the migration cannot decrease the number
of active physical nodes at the next time slot. As a result,
the MPC-VNF-P decreases the number of active physical
nodes according to the time variation of the required resources
without a large number of migrations at any time slot.

V. CONCLUSION

In this paper, we proposed a new method to dynamically
place the VNFs based on the MPC. By applying the MPC
to the dynamic placement of the VNFs, our method starts
migration in advance of traffic variation by considering the
predicted future demands. As a result, our method allocates
sufficient resources to the VNFs without migrating a large
number of VNFs at the same time even when traffic variation
occurs. Through simulation, we demonstrated that our method
handles the time variation of the demands without requiring a
large number of migration at any time slot.

Our future work includes the evaluation of our method using
the actual traffic traces. In addition, we plan to establish a
distributed algorithm of the dynamic placement of the VNFs
to handle frequent changes in required resource in a large
network.
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