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Preface

As the Internet becomes a social infrastructure, it is important to design the Internet that has adapt-

ability against environmental changes. However, operators of ISP networks usually add link capac-

ity and routers in an ad-hoc way. That is, they enhance link capacity when link utilization exceeds

a certain threshold, and they introduce new routers when existing routers become unable to accom-

modate traffic on enhanced links. Such an ad-hoc approach will not be useful when traffic volume

is changing drastically and unpredictably. That is, when the nodes/links are added in an ad-hoc

manner, those would not help accommodate another traffic increase or possibly taking place in the

future. Even worse, those newly added nodes/links would be useless when the traffic is decreased

around those equipment. Therefore, a new network design method which has a capability to adapt

various kinds of environmental changes with less amount of equipment is necessary.

In this thesis, we propose a new network design method that is adaptive to dynamic environ-

mental changes including traffic changes and node failures. Unlike a traditional design approach,

our design approach tries to reduce a degree of specialization. That is, we do not simply increase

network resources when facility expansion is found to be necessary. Instead, we tries to increase

adaptability against future possible traffic changes as much as possible. In doing so, two problems

arise for developing the new design method; how to quantify “a degree of specialization” and how

to minimize or reduce “a degree of specialization.”

We first introduce a mutual information to quantify the degree of specialization in a topological
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sense. Specifically, we define the topological diversity by the mutual information between degrees

of two nodes that are connected by the direct link. We compare the mutual information for various

topologies including router-level topologies and biological networks, and find that the mutual in-

formation of router-level topologies is higher than that of biological networks. The reason of high

mutual information in the router-level topologies can be explained as follows. Since router-level

topologies are designed under the physical and technological constraints such as the number of

switching ports and/or maximum switching capacity of routers, there are some restrictions to con-

struct the topology. Such the constraints lead to high correlation in degrees of two connected nodes.

Further, and more importantly, progress of facility expansion leads to higher mutual information

due to the specialization taken by environmental changes. It is often pointed out that the diversity

is a source of keeping evolution in the biological networks. In our study, the diversity is quantified

by the mutual information, and we can say that the router-level topologies are less diverse when

compared with the biological networks. Actually, the network with low mutual information has a

potential to evolve in various environments, that is, to be adaptive against the traffic changes and/or

node failures.

We then propose a network design approach to enhance topological diversity by which the

network can be easily adapted to deal with new environments without requiring a lot of additional

equipment. Essentially, in our approach, a new node is connected to existing nodes to minimize

the mutual information of the topology. We then evaluate the total cost, which is defined by the

total amount of equipment, needed for accommodating traffic in two cases; in an ordinary situation

where the traffic is increased gradually, and in the situation where a node failure takes place. Our

results show that a thousand-node network evolved by our design approach reduces the total cost of

the equipment by 15% comparing to a thousand-node network evolved by an ad-hoc design method.

Finally, we consider the diversity of link capacity in addition to the topological diversity. For
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that purpose, we extend the definition of mutual information by considering load of the link and

the available capacity after a failure of the link. Then, a network with low mutual information

is obtained by repeatedly exchanging a small amount of capacity between links. Although the

diversity of available capacity does not contribute for the case of single link failure, we expect

the additional capacity will work for severe environmental changes and expect that less capacity

is required as in the case of topological diversity. Using a 15-node topology with 28 links, we

examine the effectiveness of the capacity planning with low mutual information. Our results show

that the total amount of capacity is decreased when two or more links are failed simultaneously and

is decreased by 20% at a seven-link failure.
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Chapter 1

Introduction

1.1 Background

The traffic in the Internet becomes more changeable and unpredictable. Actually, it is estimated that

download and upload traffic by broadband subscribers is about 5.7 Tbps in Japan in 2015 [1], and

is increased by 1.9 Tbps in the latest one year. The speed of traffic growth is 1.5 times per a year.

Since this is only the current total traffic growth, the traffic around servers providing a new service

which attracts many users is increasing even more. Furthermore, a Cisco report [3] forecasts that

the total global IP traffic will grow about 1.9 times in the next four years as shown in Fig. 1.1. The

increase of mobile traffic will be 1.9 times larger than that of traffic in fixed-line Internet. This infers

that, not only traffic growth, but also changes in traffic pattern has a possibility to occur in the near

future. According to an accident report [4], 54% of the accidents of telecommunication carriers

in 2014 in Japan is caused by external factors. Among them, 86% of the accidents are caused by

other carriers stopping their service, and the rest of them are caused by cable cut and power-outage.

Comparing with the past report, the number of accidents caused by external factors is increasing.

Traditionally, ISPs design information networks with over-provisioning [5]. That is, ISPs put

some extra link capacity and routers more than they actually needed. With the over-provisioning,
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Figure 1.1: Traffic growth forecast (data from[1])

ISPs expect that a congestion will not occur when traffic changes. However, operators of ISP net-

works usually add link capacity and routers in an ad-hoc way. That is, they enhance link capacity

when link utilization exceeds a certain threshold, and they introduce new routers when existing

routers become unable to accommodate traffic on enhanced links. Such an ad-hoc approach will

not be useful when traffic volume is changing drastically and unpredictably. That is, when the

nodes/links are added in an ad-hoc manner, those would not help accommodate another traffic in-

crease or possibly taking place in the future. Even worse, those newly added nodes/links would

be useless when the traffic is decreased around those equipment. Therefore, a new network de-

sign method which has a capability of following various kinds of environmental changes with less

amount of equipment is necessary. Throughout this thesis, we call a network having an adapt-

ability against new environments without needs to increase/decrease its resources as “an evolvable

network”.

There are plenty of studies for network design methods. Many of studies formulate a network
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Chapter 1. Introduction

design problem as an optimization problem, and try to minimize, for example, operating cost by

using given traffic demand, network size and equipment cost (see, e.g., [6]). However, when an

environment surrounding networks changes rapidly, and the changes are hard to predict, a network

designed through optimization does not guarantee its optimality under an unknown and/or inex-

perienced environment. Therefore, a new network design method which can follow any kind of

environmental changes with less amount of equipment should be considered in facing with change-

able and unpredictable environment.

To approach this problem, we can learn from a biological system which has a robustness to

environmental changes. It is known that living things survive from environmental changes by re-

peatedly adapting and evolving themselves for a long while, and many researches in biological field

investigate the mystery of mechanisms which let the biological system be robust [7, 8]. In a recent

study, it has been found that the biological system has a characteristic where a component of the

system is not intended to serve for a specific function, but is intended to serve for various kinds of

functions [9,10]. Thanks to the low degree of specialization of the components, a biological system

obtain a robustness against failures of components in the system.

In this thesis, we propose a new network design method that can be adaptive to dynamic en-

vironmental changes including traffic changes and/or node failures. Unlike a traditional design

approach, our design method tries to reduce the degree ofspecialization. That is, we do not simply

increase network resources when facility expansion is found to be necessary. Instead, we tries to

increase adaptability against future possible traffic changes as much as possible. In doing so, two

problems arise for developing the new design method; how to quantify “a degree of specialization”

and how to minimize or reduce “a degree of specialization.”

We first introduce a mutual information to quantify the degree of specialization in a topological

sense. Specifically, we define the topological diversity by the mutual information between degrees
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of two nodes that are connected by the direct link. Note that the concept of the mutual informa-

tion is not a new measure. Solé et al. use the mutual information in [11] to analyze a topological

characteristic. They calculate the mutual information of remaining degree distribution of biological

networks and artificial networks such as software networks and electronic networks, and show that

both of them have higher mutual information than randomly connected networks. In our study,

we use the concept of mutual information to design an information network rather than to analyze

the topological characteristic. We compare the mutual information for various topologies including

router-level topologies and biological networks, and find that the mutual information of router-level

topologies is higher than that of biological networks. The reason of high mutual information in

the router-level topologies can be explained as follows. Since router-level topologies are designed

under the physical and technological constraints such as the number of switching ports and/or max-

imum switching capacity of routers, there are some restrictions to construct the topology. Such

constraints lead to high correlation in degrees of two connected nodes. Further, and more impor-

tantly, a progress of facility expansion leads to higher mutual information due to the specialization

taken by environmental changes. It is often pointed out that the diversity is a source of keeping

evolution in the biological networks [12]. In our study, the diversity is quantified by the mutual in-

formation, and we can say that the router-level topologies are less diverse when compared with the

biological networks. Actually, the network with low mutual information has a potential to evolve

in various environments, that is, to be adaptive against the traffic changes and/or node failures.

We then propose a network design approach to enhance topological diversity, by which the

network is easily adaptable to deal with new environments without requiring a lot of additional

equipment. Essentially, in our approach, a new node is connected to existing nodes to minimize

the mutual information of the topology. We then evaluate the total cost, which is defined by the
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total amount of equipment needed for accommodating traffic in two cases; in an ordinary situa-

tion where the traffic is increased gradually, and in the situation where node failure takes place.

Our results show that a thousand-node network evolved by our design approach reduces the total

cost of equipment by 15% comparing to a thousand-node network evolved by an ad-hoc design

method. Next, we evaluate the amount of additional capacity needed for accommodating traffic to

deal with unpredicted environmental changes. Here, link capacities are assigned by assuming that

single node failure occurs at networks, and we then consider a two-node failure for the unpredicted

environment. Our results show that, when two-node failures occur, the network designed by our

design approach can use existing capacity more than that by the ad-hoc design method. Note that a

network evolved with our design approach requires more capacity on average to cover every pattern

of single node failure than that evolved by the ad-hoc design method. This is because the topology

constructed by our design approach is not specialized to a single node failure since our design ap-

proach does not consider physical length of links. However, such the unspecialized nature results

in less requirements of link capacity to cover various kinds of environmental changes.

Finally, we consider the diversity of link capacity in addition to the topological diversity. For

that purpose, we extend the definition of mutual information by considering load of the link and

the available capacity after a failure of the link. Then, a network with low mutual information

is obtained by repeatedly exchanging a small amount of capacity between links. Although the

diversity of available capacity does not contribute in the case of single link failure, we expect the

additional capacity will work for severe environmental changes and expect that less capacity is

required as in the case of topological diversity. Using a 15-node topology with 28 links, we examine

the effectiveness of the capacity planning with low mutual information. Our results show that the

total amount of capacity is decreased when two or more links are failed simultaneously and is

decreased by 20% at a seven-link failure.
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1.2 Outline of Thesis

Quantifying Diversity in Network Using Mutual Information [13–16]

In Chap. 2, we first introduce a mutual information to quantify the degree of specialization in a

topological sense. More specifically, we quantify the topological diversity by the mutual informa-

tion between degrees of two nodes that are connected. From calculating the mutual information

of router-level topologies and a BA topology, we find that the mutual information of router-level

topologies are higher than that of the BA topology. The reason of high mutual information in the

router-level topologies is partly explained by the fact that, since router-level topologies are designed

under the physical and technological constraints such as the number of switching ports and/or max-

imum switching capacity of routers, there are some restrictions when constructing the network,

leading to high correlation in degrees of two connected nodes. Then, we show some illustrative

examples of topologies with different mutual information. We generate a mutual information max-

imized topology and minimized one whose number of nodes and links are same as that of a router-

level topology. From the illustrative examples, we show that topology with high mutual information

is less diverse, and have more regularity than the one with low mutual information.

Topology Design Approach Using Mutual Information for Evolvable Networks [17–
19]

In Chap. 3, using the mutual information, we propose a network design approach, called EVN

(EVolvable Network), to enhance topological diversity. In the approach, a new node is connected

to existing nodes to minimize the mutual information of the topology. We compare the link ca-

pacity needed for accommodating traffic in an ordinary situation and single node failure occurring

situations with an ad-hoc design method. We find that link capacity needed for a network grown

with our design approach is less than that grown with the ad-hoc design method. We also find that

a network designed by our design approach can reuse more link capacity than that by the ad-hoc
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design method. Next, we evaluate for additional capacity needed for accommodating traffic to deal

with unpredicted environmental changes. As an unpredicted environment, we chose two node fail-

ures since this is not considered in the designing period. Our results show, when two node failures

occur, the network designed by our design approach can use already placed capacity more than that

by the ad-hoc design method. Note that a network grown with our design approach needs more

capacity on average to cover one pattern of single node failure than that grown by the ad-hoc de-

sign method. This is because the topology generated by our design approach is not specialized to a

single environment. However, such the unspecialized nature results in the necessity of less capacity

to cover various kinds of environmental changes. Another disadvantage is that links in a topology

designed by our design approach have large physical length since our design approach does not con-

sider physical length of links. To see the disadvantage more clearly, we investigate the relationship

between topological diversity and physical distance. We find that there is a trade-off relationship

between them, and we can save a large amount of total link capacity with a little increase in physical

distance.

Capacity Planning Using Mutual Information for Evolvable Networks

In Chap. 4, we present a capacity planning method that enhances the diversity in link capacity

to make information networks more adaptive to large environmental changes with less amount of

equipment. Our basic idea is to assign an additional capacity on each link such that the capacity

can work for more severe environmental changes. More specifically, our method increases the

diversity of available capacity on restoration path under single link failures. Although the diversity

of available capacity does not contribute in the case of single link failure, we expect the additional

capacity will work for severe environmental changes and expect that less capacity is required as in

the case of topological diversity. To quantify the diversity of available capacity under the single

link failures, we extend the definition of mutual information by considering load of the link and
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the available capacity after a failure of the link. Then, a network with low mutual information is

obtained by repeatedly exchanging a small amount of capacity between links. Using a 15-node

topology with 28 links, we examine the effectiveness of the capacity planning with low mutual

information. Our results show that the total amount of capacity is decreased when two or more

links are failed simultaneously and is decreased by 20% at a seven-link failure.
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Chapter 2

Quantifying Diversity in Network Using
Mutual Information

2.1 Introduction

As the Internet becomes the social infrastructure, it is important to design the Internet that has adapt-

ability and sustainability against environmental changes [14,20]. However, dynamic interactions of

various network-related protocols make the Internet into a complicated system. For example, it is

shown that interactions between routing at the network layer and overlay routing at the application

layer degrade the network performance [20]. Therefore, a new network design method which has

the adaptability against the failure of network equipment and has the sustainability against changes

of traffic demand is becoming important. Since complex networks display heterogeneous structures

that result from different mechanisms of evolution [11], one of the key properties to focus on is

the network heterogeneity where, for example, the network is structured heterogeneous rather than

homogeneous by some design principles of ISP networks.

Recent measurement studies on the Internet topology show that the degree distribution exhibits

a power-law attribute [21]. That is, the probabilityPx, that a node is connected tox other nodes,

follows Px ∝ x−γ , whereγ is a constant value called scaling exponent. Generating methods

of models that obey power-law degree distribution are studied widely, and Barabáshi-Albert (BA)
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model is one of it [22]. In BA model, nodes are added incrementally and links are placed based

on the connectivity of topologies in order to form power-law degree distribution. The resulting

topology has a large number of nodes connected with a few links, while a small number of nodes

connected with numerous links. Topologies generated by BA model are used to evaluate various

kinds of network performance [23,24].

However, it is not enough to explain topological characteristics of router-level topologies by

such models. It is because topological characteristics are hardly determined only by degree distribu-

tion [2,25]. Li et al. [2] enumerate several different topologies with power-law, but identical degree

distribution, and show the relation between their structural properties and performance. They point

out that, even though topologies have a same degree distribution, the network throughput highly de-

pends on the structure of a topology. The lessons from this work suggest us that the heterogeneity

of the degree distribution is insufficient to discuss the topological characteristics and the network

performance of router-level topologies.

In this chapter, we focus on the property of diversity, which is extensively studied in biological

systems. Biological systems are systems that evolve robustly under many kinds of environmental

changes. Similar studies have been done in complex system field [9,26–28]. Many of their networks

also exhibit power-law attribute. A study of a key mechanism for adapting to environment changes

in biological systems [9] explain that, because the system components can contribute to required

traits diversely, the system can get traits required in a new environment by changing their contri-

bution adaptively. Prokopenko et al. [12] consider changes of the diversity in a growing process

of some complex systems. They say that an organized system, which we consider as a less diverse

system here, has less configurations to evolve. They also said that a disorganized system, which

is a diverse system, has more configurations to evolve, which makes the sytem be easily adapt to

different environment. Therefore, the diversity is an important and applicable property to focus on
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in router-level topologies.

In [12], they used mutual information to measure the complexity, which we consider as diversity

here. Inspired from their work, we investigate the topological diversity of router-level topologies

by using mutual information. Mutual information yields the amount of information that can obtain

about one random variableX by observing another variableY . The topological diversity can be

measured by consideringY as some random variable of a part of the topology andX as the rest

of it. Solé et al. [11] study complex networks by using a remaining degree distribution as the ran-

dom variable. They calculate the mutual information of remaining degree distribution of biological

networks and artificial networks such as software networks and electronic networks, and show that

both of them have higher mutual information than randomly connected networks. In this chap-

ter, we evaluate the mutual information of some router-level topologies, and show that the mutual

information represents the topological diversity as well.

Heterogeneity of structures have also been studied by Milo et al. [29]. They have introduced

a concept called network motif. The basic idea is to find several simple sub graphs in complex

networks. Arakawa et al. [25] shows the characteristic of router-level topologies by counting the

number of each kind of sub graph which consists of four nodes respectively. They conclude that

router-level topologies have more sub-graphs called “sector”, that is removing one link from four-

node complete graph, than other networks. However, the network motif is expected to evaluate

the frequency of appearance of simple structure in a topology, and is not suitable to measure the

diversity of topology.

The rest of this chapter is organized as follows. The definition of remaining degree and mutual

information is explained in Sec. 2.2. We investigate the topological characteristic and give some

illustrative examples by changing the mutual information through a rewiring process in Sec. 2.3. In

Sec. 2.4, mutual information of several router-level topologies is calculated, and is shown. Another
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topological characteristic, which is from the ISP network aspect, is shown in there too. Finally, we

conclude this chapter in Sec. 2.5.

2.2 Definitions

Information theory was originally developed by Shannon for reliable information transmission from

a source to a receiver. Mutual information measures the amount of information that can be obtained

about one random variable by observing another. Solé et al. [11] use remaining degree distribution

as the random variable to analyze complex networks. In this section, we explain the definitions of

the mutual information of remaining degree.

Remaining degreek is defined as the number of edges leaving the vertex other than the one

arriving along, so the remaining degree is one less than the degree of nodes. The example is shown

in Fig. 2.1, where the remaining degree is set to two for the left node and three for the right node.

The distribution of remaining degreeq(k) is obtained from:

q(k) =
(k + 1)Pk+1

ΣkkPk
, (2.1)

whereP (P1, ... , Px, ... , PK) is the degree distribution, andK is the maximum degree among

nodes.

The mutual information of remaining degree distribution,I(q), is

I(q) = H(q)−Hc(q|q’), (2.2)

Figure 2.1: Example of remaining degree
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Figure 2.2: Abilene-inspired topology (referred from [2])

where q=(q(1), ... , q(i), ... , q(N)) is the remaining degree distribution, andN is the number of

nodes.

The first termH(q) is entropy of remaining degree distribution:

H(q) = −
N∑
k=1

q(k) log(q(k)), (2.3)

andH(q) is greater or equal to 0. Within the context of complex networks,H(q) provides an

average measure of network’s heterogeneity, sinceH(q) measures the dispersion of the degree

distribution of nodes attached to every link.H(q) is 0 in homogeneous networks such as ring

topologies. As a network become more heterogeneous, the entropyH(q) gets higher. Abilene

inspired topology [2], which is shown in Fig. 2.2, is heterogeneous in its degree distribution, as

Table 2.1: Mutual information of example topologies

Topology H Hc I

Ring topologies 0 0 0
Star topologies 1 0 1

Abilene-inspired topology 3.27 2.25 1.02
A random topology 3.22 3.15 0.07
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Figure 2.3: Degree distribution of Abilene-inspired topology

shown in Fig. 2.3. Therefore, the Abilene inspired topology has higher entropy as shown in Tab. 2.1.

The second termHc(q|q’) is the conditional entropy of the remaining degree distribution:

Hc(q|q’) = −
N∑
k=1

N∑
k′=1

q(k′)π(k|k′) log π(k|k′), (2.4)

whereπ(k|k′) is conditional probability:

π(k|k′) = qc(k, k
′)

q(k′)
. (2.5)

π(k|k′) gives the probability of observing a vertex with remaining degreek′ provided that the vertex

at the other end of the chosen edge has remaining degreek. Here,qc(k, k′) is the joint probability,

which gives the probability of existence of a link that connects a node withk edges and a node with

k′ edges, andqc(k, k′) is normalized as:

N∑
k=1

N∑
k′=1

qc(k, k
′) = 1. (2.6)
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The range of conditional entropy is0 ≤ Hc(q|q’) ≤ H(q). Ring topologies and star topologies have

the lowestHc, because, when the degree of one side of a link is known, the degree of the node on the

other side is always determined. For Abilene inspired topology, because of its heterogeneous degree

distribution, it is hard to determine the degree of the other side of a link than ring topologies or star

topologies. Therefore, the conditional entropyHc(q|q’) of the Abilene inspired topology is higher

than ring topologies or star topologies. However, when we compare with a random topology that

has almost the sameH(q) as Abilene-inspired topology, we observe that theHc(q|q’) of Abilene-

inspired topology is lower than that of the random topology. This means the degree combination of

a pair of nodes connected to a link is more biased in Abilene-inspired topology than in the random

topology.

Using the distribution and probability explained above, the mutual information of the remaining

degree distribution is expressed as follow:

I(q) = −
N∑
k=1

N∑
k′=1

qc(k, k
′) log

qc(k, k
′)

q(k)q(k′)
. (2.7)

The range of mutual information is0 ≤ I(q) ≤ H(q). The mutual information is higher in star

topologies and Abilene-inspired topology since these topologies can get more information about the

degree of a node by observing the other node connected by the direct link.I(q) of ring topologies

and the random topology is low, but the reason for taking low mutual information is different. In

ring topologies, because of the homogeneous degree distribution, no information can be obtained

by observing degree of two nodes that are connected by a direct link. On the contrary, in the random

topology, though the degree distribution is heterogeneous, because of the random connections, less

information can be obtained. As we can see from these example topologies,I(q) is hard to discuss

without considering aboutH(q). Hereafter in this chapter, we mainly useH(q) andI(q) to discuss

the diversity of topologies.
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Figure 2.4: Average hop distance with topologies having different entropy

2.3 Mutual Information and the Characteristic of Topologies

In this section, we explore the relationship between entropy and an average hop distance. Then, we

show some illustrative examples of some topologies with different mutual information.

2.3.1 Entropy and Average Hop Distance

To show the relationship between entropy and the characteristic of topologies, we generate topolo-

gies having different entropy, and compare their average hop distance and degree distribution.

Topologies are generated by simulated annealing that looks for a candidate network that mini-

mize the potential functionU(G). Here, the temperature is set to 0.01, and the cooling rate is set to

0.0001. The simulation searches 450000 steps. The initial topology is set to a topology obtained by

BA model which has 523 nodes and 1304 links. Topologies are changed by random rewiring, and

try to minimize the following potential function:

U(G) =
√

(H −H(G))2 + (Hc −Hc(G))2. (2.8)
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(a) Degree distribution (H = Hc = 2.2)
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(b) Degree distribution (H = Hc = 4.2)

Figure 2.5: Degree distribution with topologies having different entropy

Here,H andHc are pre-specified value of entropy and conditional entropy, respectively.H(G) and

Hc(G) are entropy and conditional entropy calculated from the topologyG generated during in the

search process. We generate topologies by settingH, Hc asH = Hc from 1 to 5. Every time in

the search process,U(G) converge to approximately 0. Therefore, entropy and conditional entropy

of the generated topologies are almost equal, and the mutual information of these topologies is

approximately 0.

Figure 2.4 shows the average hop distance of topologies we generate. Degree distribution of a

topology generated by settingH = Hc = 2.2 is shown in Fig. 2.5(a),H = Hc = 4.2 is shown in

Fig. 2.5(b). Here, average hop distance is defined as the average of hop distance between every node

pairs. We calculate the hop distance by assuming the minimum hop routing. From the result, we can

see that, whenH increases higher than3, the average hop distance decreases. This is because, as

H increases, the degree distribution become biased, and it gets close to power-law aroundH = 4.
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Degree 2 Degree 3

Degree 4 Degree 5

Figure 2.6: Rewiring method to leave the degree distribution unchanged

2.3.2 Mutual Information and Topological Diversity

Next, we show some illustrative examples of topologies with different mutual information. Because

router-level topologies obey power-law, we compare topologies having highH.

Topologies are again generated by the simulated annealing. We set the same parameter and the

same initial topology as we have use in the previous section. The different points are the way to

rewire the topology and the potential functionU I(G). For the first point, the topology is changed

by a rewiring method [30] that leaves the degree distribution unchanged, i.e., by exchanging the

nodes attached to any randomly selected two links (Fig. 2.6). For the second point, the potential

function we used to minimize isU I(G) defined as,

U I(G) = |I − I(G)|, (2.9)

whereI is pre-specified mutual information, andI(G) is mutual information calculated by the

topologyG generated in the search process. Note that looking for a pre-specified mutual informa-

tion I is as the same as looking for a pre-specified conditional entropyHc under the same entropy

H. Because the entropy is same when the degree distribution unchanged, minimizing mutual en-

tropy is identical to maximize conditional entropy.

To show the relationship between mutual information and topological diversity, we use two
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Table 2.2: Mutual information of topologies obtained by simulated annealing

Topology Nodes Links H(G) Hc(G) I(G)

BA 523 1304 4.24 3.98 0.26
TImin 523 1304 4.24 4.13 0.12
TImax 523 1304 4.24 1.54 2.70

(a)TImin with minimum mutual information (b) TImax with maximum mutual information

Figure 2.7: Illustrative examples with topologies having different mutual information

topologies: topologyTImin with minimum mutual information and topologyTImax with maximum

mutual information.TImin is generated by settingI = 0.0 for simulated annealing, and the resulting

mutual information is0.12. The topology is shown in Fig. 2.7(a).TImax is generated by settingI =

3.0 for simulated annealing, and the resulting mutual information is2.70. The topology is shown

in Fig. 2.7(b). In both figures, colors represent the degree of nodes. Topological characteristics of

the initial topology,TImin andTImax are summarized in Tab. 2.2.

From Fig. 2.7(a) and Fig. 2.7(b), we can see that the topology with high mutual information is

less diverse, and have more regularity than the one with low mutual information. From Fig. 2.8(a) to
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Figure 2.8: Degree distribution under different conditions

Fig. 2.8(d), we showπ(k|k′) dependent on remaining degreek. π(k|k′) is defined as the probability

of observing a vertex withk′ leaving edges provided that the vertex at the other end of the chosen

edge hask leaving edges. Fig. 2.8(a) and Fig. 2.8(c) showπ(k|k′) of nodes with the largest remain-

ing degree and nodes with the smallest remaining degree inTImin, respectively. Figure 2.8(b) and

Fig. 2.8(d) showπ(k|k′) of nodes with the largest remaining degree and nodes with the smallest
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Table 2.3: Mutual information of router-level topologies

Topology Nodes Links H(G) Hc(G) I(G)

Level3 623 5298 6.04 5.42 0.61
Verio 839 1885 4.65 4.32 0.33
ATT 523 1304 4.46 3.58 0.88

Sprint 467 1280 4.74 3.84 0.90
Telstra 329 615 4.24 3.11 1.13

BA 523 1304 4.24 3.98 0.26

remaining degree inTImax, respectively. We can see thatπ(k|k′) of TImax is more biased than that

of TImin. This also represents that the topology with high mutual information is less diverse than

the one with low mutual information.

2.4 Topological Diversity in Router-level Topologies

In this section, we calculate the mutual information for several router-level topologies. Based on

the values of mutual information, we discuss the topological diversity of the router-level topolo-

gies. Then, we investigate the impact of mutual information on ISP networks from a link capacity

perspective.

2.4.1 Mutual Information of Router-level Topologies

We calculate the mutual information for five router-level topologies: Level3, Verio, AT&T, Sprint

and Telstra. The router-level topologies are measured by Rocketfuel tool [31]. For comparison

purpose, we prepare a topology generated by BA model [22] which has the same number of nodes

and links with AT&T. The results are summarized in Tab. 2.3 and Fig. 2.9.

From Tab. 2.3, we can see that all of the router-level topologies have highH, which means they

have heterogeneous degree distribution. Level3 topology has highestH. This is because the Level3

topology includes many MPLS paths. These paths made the topology having high heterogeneity in

degree distribution. Except Level3 topology, other router-level topologies shown in Tab. 2.3 have
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Figure 2.9: Entropy and mutual information of all the calculated topologies

almost the sameH.

Comparing these topologies with BA topology, we can see that the mutual information of router-

level topologies is higher than that of the model-based topology. This can be explained by a design

principle of router-level topologies. Because router-level topologies are designed under the physi-

cal and technological constraints such as the number of switching ports and/or maximum switching

capacity of routers, there are some restrictions and a kind of regulations on constructing the topolo-

gies, so they are less diverse. However, the mutual information of Verio topology is low. This can be

explained by its growing history. Because Verio grows with a merge of small ISPs [32], the topol-

ogy contains various kinds of design principles conducted in each ISP. Therefore, it is consided that

– 22 –



Chapter 2. Quantifying Diversity in Network Using Mutual Information

Table 2.4: Mutual information of topologies rewired from AT&T topology

Topology AT&T0.3 AT&T 0.4 AT&T 0.5 AT&T 0.6 AT&T 0.7 AT&T 0.8 AT&T
H 4.45583 4.45583 4.455834 4.45583 4.45583 4.45583 4.45583
Hc 4.17594 4.07697 3.97701 3.87589 3.77558 3.67903 3.57515
I 0.27989 0.37886 0.47882 0.57994 0.68025 0.77680 0.88068

Average hop 3.57439 3.56669 3.64005 3.74615 3.92027 4.18759 5.06338

Verio topology is more diverse than other router-level topologies.

2.4.2 Link Capacity Needed for Topologies with Different Mutual Information

In this section, we generate several topologies with different mutual information, but having the

same entropy, and investigate the adaptability against environmental changes in ISP networks. It

is preferable for ISP networks to have fewer changes in load on links even when node failures

occur because the increase of load leads to high link usage, which possibly leads to increase delay,

or high link capacity cost. Therefore, we evaluate changes in edge betweenness centrality after

an environmental change. As for the environmental change, we consider the failure of nodes. We

regard edge betweenness centrality as load on links, and evaluate the minimum link capacity needed

to cover node failures. Note that the edge betweenness centrality does not reflect the actual load on

links. Nevertheless, we use the edge betweenness centrality to characterize ISP networks because

it gives a fundamental characteristic to identify the amount of traffic flow on topologies.

Topologies we use to compare are generated from the AT&T topology by rewiring links. The

rewiring method leaves the degree distribution unchanged, which is as same as explained in Sec. 2.3.2.

Because the topological diversity becomes lower as the rewiring proceeds, we calculate mutual in-

formation for every topology, and pick out topologies every time when the mutual information

decreases 1.0. The entropy, conditional entropy and mutual information of selected topologies are

summarized in Tab. 2.4. AT&T0.3 is the topology with lowest mutual information obtained by our

method with a long time of simulation. The average hop distance of each topology is also presented.
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The failure we consider here is a single node failure. First, we evaluate the minimum link

capacity needed to cover every pattern of single node failures. The link capacityC(i) on link i is

calculated as follow:

• Step 0: For all linksi, set the initial edge betweenness centralityE(i) as the link capacity

C(i):

C(i) = E(i). (2.10)

• Step 1: When nodej fails, calculate the new edge betweenness centralityEj(i) for every

link. Renew the link capacity as (2.11) for every link: C(i) = Ej(i) if (Ej(i) > C(i))

C(i) = C(i) otherwise.
(2.11)

• Step 2: Go back to Step1, select a newj until every node has been selected.

The total of edge betweenness centralityΣiE(i) and the total of link capacity needed to cover

every pattern of single node failureΣiC(i) is shown in Fig. 2.10. BecauseΣiE(i) is directly

affected by average hop distance, the difference ofΣiE(i) in each topology is not important here.

Instead, we focus on the amount of additional capacity needed to cover the node failures. We can

see thatΣiC(i) tends to decrease as the mutual information of the topology decrease.

We next evaluate the changes of edge betweenness centrality on each link. The increment in

edge betweenness centrality is also calculated for every pattern of single node failure. Let us denote

the failured node asj. Then, we calculateAj(i) which represents the additional capacity of linki

to cover the failure of nodej as follows. Aj(i) = Ej(i)− E(i) if (Ej(i) > E(i))

Ai = 0 otherwise.
(2.12)

Aj(i) for all thej sorted by link indexi is shown in Fig. 2.11(a) and Fig. 2.11(b). Figure 2.11(a)
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Figure 2.10: Link capacity with topologies having different mutual information

is calculated for original AT&T topology, and Fig. 2.11(b) is calculated for AT&T0.3. We can see

that, in the original AT&T topology, load at some of links are highly increased comparing with

AT&T 0.3. This means many alternative paths tend to concentrate on some of the links when node

failure occurs. In contrast, the increase of edge betweenness centrality on every link is small for

AT&T 0.3. This is because that the alternative paths after the single node failure are balanced on

many links, thanks to the nature of the diversity in AT&T0.3.

From these evaluation, we conclude that link capacity needed to deal with node failures decrease

when the topology becomes diverse because alternative paths are less concentrated on links.

2.5 Summary

We investigated the network heterogeneity of router-level topologies by using mutual information.

From calculating the mutual information of router-level topologies and a BA topology, we found

that the mutual information of router-level topologies are higher than that of the BA topology. The
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(a) Increament of edge betweenness centrality (AT&T) (b) Increament of edge betweenness centrality
(AT&T 0.3)

Figure 2.11: Increment of edge betweenness centrality with topologies having different mutual
information

reason of high mutual information in the router-level topologies is explained by the fact that switch-

ing capacity of routers, there are some restrictions when constructing the network since router-level

topologies are designed under the physical and technological constraints such as the number of

switching ports and/or maximum Such constraints lead to high correlation in degrees of two con-

nected nodes. Then, we showed some illustrative examples of topologies with different mutual

information. We generated a mutual information maximized topology and minimized one whose

number of nodes and links is same as that of a router-level topology. From the illustrative examples,

we showed that topology with high mutual information is less diverse, and have more regularity than

the one with low mutual information. From comparing the topology with different mutual informa-

tion generated from AT&T, we found that link capacity needed to deal with node failures decrease

when the topology becomes diverse because alternative paths less converge in the topology with

high topological diversity.
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Chapter 3

Topology Design Approach Using
Mutual Information for Evolvable
Networks

3.1 Introduction

The Internet now plays a critical role as a social infrastructure and, as Web services become more

popular, the environment surrounding the Internet becomes more changeable. Actually, it is esti-

mated that traffic grows by a factor of 1.4 per year in Japan. However, this is only the current total

traffic growth: traffic in some places increases even more, such as traffic around servers providing a

new service which attracts many users, and there is no doubt that the environment surrounding the

Internet will change even more in the future.

In spite of upcoming changes, operators of ISP networks usually add link capacity and routers

in an ad-hoc way. For example, they add link capacity when link utilization exceeds a certain

threshold, and they introduce new routers when existing routers become unable to accommodate

traffic from those enhanced links. However, in a changeable environment, such an ad-hoc design

strategy will lead to an increasing amount of equipment. This, in turn, will lead to problems arising

from technical limitations of routers or links, such as processing speed or transmission capacity, in

the near future. Hence, a design approach that uses less equipment to allow a network to respond to
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various environmental changes is urgently needed.

In this chapter, we discuss whether this could be achieved by constructing a network that can

easily adapt to deal with new environments. In ISP networks, nodes or links are often added for a

particular purpose: for example, aggregating or relaying traffic. However, because they are special-

ized to that purpose, nodes and links added in such a way can be effective only in the environment

to which they were introduced; when the environment changes, that equipment may become under-

utilized, and a large amount of new equipment may be needed to cope with the new environment.

Following insights from work in biology and complex systems [12], an ISP network that has a

reduced degree of specialization can be expected to enhance the ability to deal with new environ-

ments; when the environment changes, existing equipment can be more efficiently used for the new

environment as it is not specialized for a particular environment. In this chapter, we propose a de-

sign approach to reduce the degree of specialization, and show the advantages of our design method

in terms of its response to environmental changes, by which we mean unpredictable equipment fail-

ures. Hereafter, we will describe a network having a topology with low degree of specialization as

having “topological diversity”, and the ability to deal with new environments will be referred to as

“evolvability”.

Some may say that the random network has topological diversity. However, it is not efficient to

design an ISP network as a random network. A well-known disadvantage of the random network is

that the average hop distance is larger than that in a scale free network. Because of this, the random

network needs a lager capacity to accommodate the same amount of traffic. Therefore, a measure

is needed to characterize topological diversity so that one can consider it in conjunction with other

factors when designing networks.

The rest of this chapter is organized as follows. Section 3.2 explains our proposed design

approach. We explain the measure we use for design in Sec. 3.2.1. We then present our approach in
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Sec. 3.2.2 and discuss characteristics of reliability against node failures in Sec. 3.2.3. In Sec. 3.3,

we evaluate accumulated equipment, and evaluate the evolvability by showing how the designed

network can easily adapt to new environments. The advantage of our method compared to randomly

selected node attachment is explained in Sec. 3.3.3. Section 3.3.4 shows that our approach of

considering topological diversity is evolvable even if we take account of the physical lengths of

links. Finally, we conclude our chapter in Sec. 3.4.

3.2 An Evolvable Network Design Approach

Evolution and evolvability have been studied for a long time in biology [8]. The core of evolution

in living species is the presence of genetic diversity at the DNA-level and the adaptability of genetic

diversity through natural selection in particular environments: individuals that are better adapted to

their environment survive and pass on their genetic characteristics to the next generation. Various

species exist today as a result of evolution over billions of years, under many kinds of environment.

Information-theoretic interpretations of an evolutionary process can be used to understand adap-

tation and evolution in complex systems, as described in Prokopenko et al [12]. In general, mutual

information is defined as the difference between the heterogeneity and correlation of some vari-

ables. The mutual information of a system can be used to characterize the degree of evolution: the

mutual information of system components increases as evolution progresses since the correlation,

which represents constraints between components from the system perspective, becomes stronger

as the system becomes specialized to the environment. Thus, an unspecialized system, which has

low mutual information, has the potential to evolve in various ways, while a specialized system,

which has high mutual information, is more constrained and less able to evolve.

Soĺe et al. [11] use mutual information to analyze topological characteristics of complex net-

works. The mutual information used in [11] is the difference between the heterogeneity in degree
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distribution and the degree-degree correlation, which is also known as assortativeness [33], appear-

ing in the network’s structure. It was shown in [13] that router-level topologies characterized by

degree-degree correlation [2] lead to high mutual information. Following [13], we will minimize

the information measure proposed in [11] to strengthen topological diversity. In Sec. 3.2.1, we

briefly explain the abstract idea of the mutual information measure presented by Solé et al. Our

proposed approach using this measure is then explained in Sec. 3.2.2.

3.2.1 Metric Used for Design

Soĺe et al. [11] use mutual information on the remaining degree distribution to analyze characteris-

tics of complex networks. Following [11], we briefly explain the definition of mutual information

of remaining degree.

Let us consider a network topology with degree distributionPk, that is,Pk represents the proba-

bility that a node hask edges and
∑

k P (k) =1. Then, the distributionq(z) of the remaining degree

z, which is the number of edges leaving the node other than the edge we arrived along, is defined

by

q(z) =
(z + 1)Pz+1

ΣzzPz
. (3.1)

Using the distribution of remaining degreeq (= {q(z)|1 ≤ z ≤ N}), whereN is the maximum

remaining degree, the mutual information on remaining degree,I(q), is defined as,

I(q) = H(q)−Hc(q|q′), (3.2)

whereH(q) is the entropy of the remaining degree distribution andHc(q|q′) is the conditional

entropy of the remaining degree distributionq, given the remaining degree distributionq′ ( =
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{q(z′)|1 ≤ z′ ≤ N} wherez andz′ are the remaining degrees of linked nodes).H(q) is defined as

H(q) = −
N∑
z=1

q(z) log(q(z)), (3.3)

andH(q) always satisfies the inequalityH(q) ≥ 0. Within the context of information theory,

H(q) measures the uncertainty of remaining degree, and it indicates the heterogeneity of remaining

degree in the network topology. A network topology withH(q) = 0 is a homogeneous network,

and as a network becomes more heterogeneous, the entropyH(q) becomes higher. For example,

a ring topology is homogeneous whereas the Abilene-inspired topology [2] is heterogeneous in the

degree distribution, so it has higher entropy, as shown in Tab. 2.1. For reference, we also show

H(q) for a randomly generated topology. The topology was generated by Random 2 model [34]

with 523 nodes and 1304 links, as in the AT&T topology.

The second termHc(q|q′) of Eq. (3.3) is the conditional entropy of the remaining degree dis-

tribution:

Hc(q|q′) = −
N∑
z=1

N∑
z′=1

q(z′)π(z|z′) log π(z|z′), (3.4)

whereπ(z|z′) is the conditional probability

π(z|z′) = qc(z, z
′)

q(z′)
, (3.5)

which gives the probability of observing a vertex withz′ edges leaving it, provided that the vertex

at the other end of the chosen edge hasz leaving edges. Hereqc(z, z′) represents the normalized

joint probability, that is,

N∑
z=1

N∑
z′=1

qc(z, z
′) = 1. (3.6)

The conditional entropy,Hc(q|q′), always satisfies the inequalities

0 ≤ Hc(q|q′) ≤ H(q). Hc(q|q′) is 0 for the ring and star topologies for which, if the degree
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of one side of a link is known, the degree of the node on the other side is always determined. For

the Abilene-inspired topology, on the other hand, because of its heterogeneous degree distribution,

even if the degree of one side of a link is known, it is hard to determine the degree of the other

side of the link. Therefore,Hc(q|q′) for the Abilene-inspired topology is higher than that of ring

and star topologies. However,Hc(q|q′) for the Abilene-inspired topology is lower than that of the

random topology although these topologies have almost the same entropyH(q). This means that

the degree of correlation of two nodes that are connected is more assortative in the Abilene-inspired

topology than in the random topology, which agrees with the discussions in [2].

Finally, using the probabilities given above, the mutual information of the remaining degree

distribution can be expressed as

I(q) = −
N∑
z=1

N∑
z′=1

qc(z, z
′) log

qc(z, z
′)

q(z)q(z′)
. (3.7)

I(q) is high for the star and Abilene-inspired topologies (see the right-most column of Tab. 2.1),

since information about the degree of a node can be obtained by observing a node connected to it.

In contrast, in the random topology,I(q) is low, that is, little information can be obtained, because

nodes are randomly connected. In the ring topology,I(q) is 0 because of the homogeneous degree

distribution.

3.2.2 Design Approach

In this subsection, we describe our proposed design approach, which we call EVN (EVolvable

Network). Fundamentally, EVN design approach reduces the mutual information on remaining

degree,I(q), so that the designed network has topological diversity. Note that EVN is not designed

to satisfy particular design constraints, for example, performance constrains or budget constraints.

Therefore, networks designed by this design approach may not be as optimal as highly “engineered”

networks that are specialized to meet particular design constraints. Instead, as we will see later in
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this chapter, a network with topological diversity designed by our approach is evolvable, that is, it

can easily be adapted to deal with new environments without requiring a lot of additional equipment.

When designing a network, we should consider various design constraints such as network

performance or budget constraints. In this chapter, we do not explicitly consider the validity or

effectiveness of a particular design constraint; instead, we consider whether networks produced

using our design approach are evolvable or not. For this reason, the following assumptions are

introduced. The initial topology is given and nodes are added incrementally. The number of links

m added with a new node is fixed. Note that these assumptions should be relaxed for real network

maintenance, but we expect that the characteristics obtained by our approach are not much different

from those of realistic cases. Furthermore, for simplicity, we assume for most of this chapter that

topology is the only information we use to decide where to attach a new node.

Set an initial topology beG0(V0, E0), whereV0 andE0 are initial sets of nodes and links. Then,

our design approach adds a node and links to the topology at each step by the following algorithm.

At each step, we add a single node and the number of links introduced for each node addition is

denoted bym. Also, letGk(Vk, Ek) be the topology obtained by thekth step of the algorithm,

then it hask additional nodes andkm additional links compared with the initial topology, that is,

|Vk| = |V0| + k and|Ek| = |E0| + km. Note that, because our aim is to show the potential of a

design method based on minimizing mutual information, we use an exhaustive search for deciding

on the appropriate node to connect.

1. Calculate the entropyHk−1(q) of Gk−1(Vk−1, Ek−1).

2. Add a node (denoted byw) to Gk−1(Vk−1, Ek−1).

(a) Choosem different nodes for to connect to the new nodew bym links.

• For this purpose, first enumerate all of the topologies for all the possible cases ofm
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additional links, and calculate the entropyH(q) and the mutual informationI(q)

for each topology. Note that we simply use notationq here, but formally, it should

depend on the topology including the new node and links.

• Choosem nodes that minimize mutual information while making the entropy greater

than or equal to the entropyH0(q).

(b) Connect the nodew and them links, and obtainGk(Vk, Ek).

In each node addition, we addm links such that the entropyHk(q) of the new topology is

greater than or equal to the initialH0(q). The reason why this entropy–restriction is included is

that the reliability of a network is improved by increasing the entropy of the degree distribution,

as Wang et al [35] have shown that increasing the entropy of the degree distribution of a scale-

free network will lead to high reliability against random node failures. Note that, althoughH(q)

measures the heterogeneity of the remaining degree distribution, the distribution is derived from the

degree distribution (Eq. (3.1)), so the entropy of the remaining degree distribution should not be

decreased after the node addition. In the next subsection, we will illustrate this by showing network

growth with and without the entropy constraint.

3.2.3 Improvement in Robustness

In this section, we show the difference in network robustness against equipment failure between

two growing networks with and without the entropy–restriction. Note that in this chapter, we only

present the case of node failure, but we see similar results in the case of link failure.

Figure 3.1 shows the values of entropy, conditional entropy and mutual information of two

networks: one is obtained by the EVN design approach (Fig. 3.1(a)) and the other is obtained by the

EVN design approach without the entropy–restriction (Fig. 3.1(b)). For both networks, we use the

AT&T topology as an initial topologyG0(V0, E0). The AT&T topology we used is a measurement
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(a) EVN design approach
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(b) EVN design approach without entropy–restriction

Figure 3.1: Entropy, conditional entropy, mutual information of topologies obtained by EVN design
approach

result obtained by the Rocketfuel tool [31]; it has 523 nodes and 1304 links. Then, we apply both

design approaches withn = 300 added nodes, that is, we iterate 300 steps of our design approach.

Also, we setm = 2, i.e., we add two links in each step of node addition. The reason why two links

are added in each step is not to let the average degree of the designed networks become significantly

different from the average degree (2.49) of the original AT&T topology. Because it is not possible

to know the number of links added per node addition in reality, we just assume here that the average

degree will not change greatly in the near future. In the figure, the horizontal axis represents the

number of added nodes and the vertical axis represents the value of entropy, conditional entropy

and mutual information for the topology. We can see from Fig. 3.1(a) that the mutual information

of the initial topology is around 1.0, and the entropy is around 4.5. As the number of added nodes

increases, the mutual information decreases and the entropy of the remaining degree distribution

is kept high by our algorithm, as expected. Figure 3.1(b) shows the case without an entropy–

restriction. In this network, the entropy of remaining degree decreases as the network grows.
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Figure 3.2: Average hop distance against random node failures

We now compare the robustness of the two networks just after 300 nodes have been added.

The measure of network robustness investigated here is the change of average hop distance when

node failures occur. The shortest path routing is used for calculating the hop distance. Figure 3.2

shows how the average hop distance changes as nodes are removed one by one in a random order.

The horizontal axis is the failure ratio which is defined as the number of failed nodes over the

number of initial nodes. The vertical axis is the average hop-count distance for the most connected

component after the node failures. In the figure, we observe that the average hop distance of the

network designed with the entropy–restriction is lower than that of the network designed without the

entropy–restriction. Comparing with the results for the initial topology (AT&T topology), when the

failure ratio is low, the average hop distance of the network designed with the entropy–restriction is

lower, while that of the network designed without the entropy–restriction is higher. From this figure,

it can be seen that a network designed with the entropy restriction achieves better performance even
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with node failure, and a robust network is built. This is the reason why we consider the entropy–

restriction in our EVN design approach. Note that we will evaluate the “evolvability” of our design

approach against equipment failure in more depth in the next section.

3.3 Evaluation

In this section, we show the evolvability of designed networks, that is, how networks with topolog-

ical diversity can easily be designed and adapted to meet environmental changes. For comparison,

we could use a “purely ad-hoc method,” in which we add nodes or links at the place where capac-

ity is in short supply. However, instead of using such a method, we consider a more intelligent

approach that takes into account some optimization, for a fairer comparison. Though many compli-

cated network design methods can be considered, we will consider the FKP model [36], in which

nodes and links are incrementally added such that a new link connected to the new node is added

to keep minimizing the weighted sum of physical distances and hop distances. The reason why

we consider the FKP model is that it includes primitive principles for designing an ISP network.

Therefore, a result that shows better performance than the FKP-based method indicates that our

approach has features that would be useful in real-life networks. Hereafter, we call the topology

growth method based on the FKP model, the FKP-based design method.

Network Design Method based on the FKP Model

The FKP model proposed by Fabrikant et al. [36] incrementally adds nodes and connects existing

nodes such that physical distance and hop distance metrics are minimized.

In the original FKP model, the first noden0 is set to be the root of the topology. Then, a new

node incrementally arrives at a random point in the Euclidean space[0, 1]2. After a new nodeni

arrives, the FKP model calculates the following quantity for each nodeni already existing in the
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network:

α · d(nnew, ni) + h(ni, n0), (3.8)

whered(nnew, ni) denotes the physical distance in the Euclidean space[0, 1]2 betweennnew and

ni, andh(ni, n0) denotes the hop distance betweenni and the root noden0. The root node is

prespecified for calculating the hop distance. In this chapter, we set the maximum degree node in

G(V,E) asn0. The parameterα determines the importance of physical distance. Ifα takes a low

value, each node tries to connect to higher degree nodes;α = 0 is an extreme scenario that creates

a star-topology. Ifα takes a high value, each node tries to connect to their nearest-neighbor nodes.

A topology with highα can be shown to behave like a random topology. A power-law degree

distribution appears at moderate values ofα. The power-law attribute here is used to determine

moderateα. Though the power-law degree distribution found in [36] is said to be different from

those given by other Internet models, we think this point is not important here.

For comparing with our method, we modify the FKP model as follows. Given a topology

G0(V0, E0) and the physical locations of nodes, our modified version of the FKP model adds a

node andm links for each node addition in thek-th step according to the following algorithm in

order to obtainGk(Vk, Ek).

1. Map the physical location of nodesV to the Euclidean space[0, 1]2

2. Divide [0, 1]2 into 20×20 areas, and calculate the node existence ratio in each area. The node

existence ratio of an area is defined as the number of nodes in the area over the total number

of nodes.

3. When a new nodennew arrives, determine the area of the node with probability proportional

to the node existence ratio.

4. Calculate the distance metric defined by Eq. (3.8) for each existing nodeni.
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Figure 3.3: Entropy, conditional entropy, mutual information of topologies obtained by the FKP-
based method

5. Selectm nodes in ascending order of their value of the distance metric. Then, add nodennew

and links betweennnew and the selected nodes to the topology.

The modifications to the original model we made in the above are as follows. First, the physical

location of the added node is determined with a probability proportional to the node existing ratio

(Step (ii) above). The reason is that, because routers are often added to areas where traffic demand

is large, an area attracts more traffic as more routers exist in the area. Second, we add multiple links

per node addition so that the average degree of the designed networks can be controlled (Step (v)).

In the evaluations in Subsections 3.3.1 and 3.3.2, the parameterα is set to 10.0, where the

average hop distance is lowest under the condition that the entropyH(q) is moderate, so as not to

obtain a star-like topology.

Figure 3.3 shows the entropy, conditional entropy and mutual information during network
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growth by the modified FKP-based design method. We use the AT&T topology as the initial topol-

ogy, and set the number of added nodes to ben = 300 (i.e., the final topology is obtained after 300

steps) and the number of links for each step to bem = 2. The locations of nodes at the city-level

are obtained from [31], and we rescale the latitude and longitude of each city down to[0, 1]2, by

letting the southernmost node and the northernmost node to be 0 and 1 for latitude, and the eastern-

most node and the westernmost node to be 0 and 1 for longitude. We can see from the results that

entropy, conditional entropy and mutual information are unchanged during network growth. This

is because a principle of growth in the FKP model is to minimize the distance metric (Eq. (3.8)).

Mutual information is around 1.0 and is kept high, which means the topological diversity is kept

low by the FKP-based network growth model. On the contrary, that of a network grown by the EVN

design approach is low, which means topological diversity is kept high.

3.3.1 Evaluation of Accumulated Capacity

We first evaluate equipment accumulated during network growth. In the design process, we assume

that there is an enhancement of equipment needed to cope with single node failure. The reason for

considering this enhancement is to see how designed networks absorb surges of traffic arising from

node failure. The equipment we consider here is the total capacity of links for the same number of

added nodes and links in the EVN design approach and in the FKP-based design method.

Hereafter, we denoteGEV N
k (Vk, Ek) as the topology of the network obtained afterk steps

(with k nodes added) andm = 2 for the EVN design approach. In what follows, we will simply

useGEV N
k instead ofGEV N

k (Vk, Ek). Similarly, we will useGFKP
k as the network obtained by

the modified FKP-based design method withm = 2. We also introduceCEV N
k , which is the total

capacity ofGEV N
k obtained by

CEV N
k =

∑
e∈E

CEV N
k (e), (3.9)
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(a) AT&T topology
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(b) Sprint topology

Figure 3.4: Accumulated link capacity with networks grown with different methods

whereCEV N
k (e) represents the capacity of linke. In the evaluation, the capacity of each link is

chosen such that the link can accommodate the traffic arising from every pattern of single node

failure in the topologyGEV N
k . The method of shortest path with equal hop path splitting [37] is

applied for calculating the capacity. The traffic demand is set to one unit between all node pairs in

GEV N
k for simplicity.

The link capacity is re-designed to cope with an increase of traffic at every node addition and

to cope with single node failures at every 50-node addition. The link capacity is incremental, i.e., if

link capacityCEV N
(k−1)(e) is enough to accommodate the traffic atGEV N

k , we do not reduce the link

capacity but setCEV N
k (e) ← CEV N

(k−1)(e). The initial link capacity,CEV N
k (e), is also calculated to

cope with every pattern of single node failure.CFKP
k (e), the total capacity ofGFKP

k , is obtained

in the same way.

Figure 3.4 shows the total link capacity ofGEV N
k andGFKP

k dependent on the number of added

nodesk. The initial topology is set to the AT&T topology (523 nodes and 1304 links) for Fig. 3.4(a)

and to the Sprint topology (467 nodes and 1280 links) for Fig. 3.4(b). The Sprint topology is also a
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(a) EVN design approach
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(b) FKP-based design method

Figure 3.5: Capacity for preparing for node failures, capacity for accommodating traffic, unused
capacity

measurement result obtained by the Rocketfuel tool [31]. Both figures indicate that our EVN design

approach requires less link capacity than the FKP-based design method.

Table 3.1: Average of additional capacity needed to cover each single node failure

EVN FKP
capacity 6.0535× 103 5.8868× 103

To see in more detail how a network with topological diversity can scale up with less equipment,

we consider three kinds of link capacity: capacity for preparing for node failures, capacity for

accommodating traffic, and unused capacity based on the difference of link capacity between before

and after the addition of 50 nodes. Figure 3.5(a) shows the results for the EVN design approach, and

Fig. 3.5(b) shows the results for the FKP-based design method. Comparing Figs. 3.5(a) and 3.5(b),

we can clearly see that the FKP-based design method requires more capacity for preparing for node

failures, while capacity for accommodating traffic is almost the same as for the EVN method. This
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is caused by the overlap in equipment placement in each single node failure. Table 3.1 shows

the average additional capacity needed to cover one pattern of single node failure. It is calculated

for GEV N
450 andGFKP

450 . Here, the additional capacity is the capacity needed to cover one pattern

of single node failure other than that needed only for accommodating traffic. We can see from

Tab. 3.1 thatGEV N
450 needs more capacity on average to cover one pattern of single node failure than

GFKP
450 . However, it needs less capacity to cover every pattern of single node failure. This is because

the topology generated by the EVN design approach is not specialized to a single environment.

Therefore, it can efficiently use the network equipment placed for one single node failure to cover

another single node failure. We observe from Fig. 3.5 that the unused capacity in the EVN design

approach is larger than that in the FKP-based design method. This means that the EVN design

approach may under-utilize the capacity at a given stage of evolution. However, this unused capacity

will be used at the next (or a later) stage of evolution thanks to the unspecialized nature of the EVN

design approach.

3.3.2 Reuse of Facilities for Unexpected Environmental Changes

In the previous subsection, we showed that a network with topological diversity requires less capac-

ity during network growth. Thanks to the unspecialized design of the topology, most link capacity

is reused in the new environment. However, that evaluation only assumed that link capacity is de-

signed to protect against single node failure. This subsection evaluates evolvability for cases other

than single node failure. However, since unpredicted environmental change is hard to define, we

use a scenario of unpredicted environmental changes following the evaluation presented in [38].

We regard a single node failure between nodes as the environment assumed in designing a network.

Then, we consider a scenario in which the same kind of environmental change occurs but on a large

scale. Here, we choose two simultaneous node failures for the evaluation scenario. Note that, the

amount of traffic demand we assume is same as that assumed in Sec. 3.3.1. Although actual traffic
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demand will be different, our intention here is to show how the designed network reuses existing

capacity in response to unexpected environmental changes. Thus, we use unit traffic demand for

simplicity.

For evaluation, we introduce areuse ratio, rk, of a topology afterk node additions defined by

rk =
F reused
k

Fnew
k

, (3.10)

whereF reused
k represents the capacity that can be reused from the capacity that has already been

deployed, andFnew
k represents the capacity thatwas required to deal with unpredicted environ-

mental changes for thek-th network, that is, the network withk nodes added. The ratiork ranges

from 0 to 1.0. Forrk close to 1.0, capacity that is already in place can be reused for unpredicted

environmental change. However, more capacity is required to deal with unpredicted environmental

change asrk decreases.

We evaluate the reuse ratio for the case of two node failures in bothGEV N
k andGFKP

k . The

reuse ratio depends on the topology and failed nodes (denoted asn1 andn2). Thus, we refine the

reuse ratios asrEV N
k (n1, n2) for GEV N

k andrFKP
k (n1, n2) for GFKP

k .

Figure 3.6(a) showsrEV N
k (n1, n2) for all cases of two-node(n1, n2) failures and Fig. 3.6(b)

showsrFKP
k (n1, n2). Note that we again use the AT&T topology as the initial topology. In these

figures, the horizontal axis represents the rank of reuse ratio in ascending order, and we show the

change of reuse ratio as a result of changingk. Looking at reuse ratios for ranks from1 to 200, those

obtained by the EVN design approach are higher than those of the FKP-based design method, and

this tendency becomes clearer ask increases. This is due to the increase of topological diversity.

Because alternative paths for a single node failure would be less likely to be biased toward some

links, capacity used for coping with single node failures is spread around the network. Therefore,

even when a severe two-node failure occurs, the required alternative paths could be provided mostly
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Figure 3.6: Reuse ratio under two nodes failures

by reusing the capacity already in place. However, when the topology is less diverse, paths would

be likely to be biased toward some links, so the capacity for coping with single node failures is also

biased. Therefore, when a severe two-node failure occurs, alternative paths would use links in place

that have less capacity than the biased links, which leads to lower values of reuse ratio.

We can also observe the non-optimality of the EVN design approach from the figure. The

number of two-node(n1, n2) failure patterns for whichrEV N
250 (n1, n2) is less than 1 is 32 291, and

the number for whichrFKP
250 (n1, n2) is less than 1 is 7557. This means that networks grown by

the EVN design approach are less able to accommodate traffic completely. However, in the EVN

design approach, because most values ofrEV N
250 (n1, n2) are almost1, it can be covered by a slight

increase in the over-provisioning of links.
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Figure 3.7: Entropy, conditional entropy, mutual information of a topology obtained by the random
attachment method

3.3.3 Difference from Random Attachment Method

We showed that minimizing mutual information by the EVN design approach can lead to evolvable

networks in Sec. 3.3.2 and Sec. 3.3.1. However, there are also other methods to lower mutual infor-

mation. Since Solé et al. [11] show that mutual information of a random graph can be approximately

0, a simple method could be to attach new nodes to randomly selected existing nodes. Though the

computation time of that method is faster than the EVN design approach we show in this section

that the randomly attachment method could not increase the topological diversity, and could have

bad performance in terms of evolvability compared to the EVN design approach.

The random attachment method is to attach new nodes to randomly selected existing nodes.

To maintain reliability we also add the entropy restriction to this method. Note that without the

restriction, the evolvability, especially the accumulated capacity, would be much worse. To compare

with the EVN design approach, , we add 2 links per node addition in the simulation. Hereafter we
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Figure 3.8: Accumulated link capacity of a network grown by the random attachment method

denote byGRandom
k the topology obtained by the random attachment method after the addition of

k nodes. Figure 3.7 shows the variation of mutual information during network growth. We can see

that the mutual information ofGRandom
499 is approximately 0.5, while that of a random topology is

approximately 0 as we stated in Tab. 2.1. We suppose that the mutual information ofGRandom
499 is

influenced by the initial (AT&T) topology. Since the AT&T topology has a power-law behavior in

its degree distribution, it has many nodes with degree 2. Therefore, when selecting nodes randomly

from the AT&T topology, nodes with degree 2 have a high probability to be selected. Because nodes

with degree 2 are mostly at the edge of the topology, newly added nodes will be attached to edge

nodes with a high probability. Hence, it is difficult to increase the diversity of the core part of the

topology, and we think this is the reason why the mutual information remains high as the network

grows.

To see the difference in evolvability, we evaluate accumulated capacity during network growth

and reuse of facilities for unexpected environmental changes. Details of these evaluations are given
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Figure 3.9: Reuse ratio under two nodes failures of topologies grown by the random attachment
method

in Sec. 3.3.1 and Sec. 3.3.2, respectively. We used three different random seeds for the simulation.

Hereafter,GRandom(v)
k denotes a topology generated by a seedv.

The accumulated capacity is shown in Fig. 3.8. Total amount of facilities ofG
Random(0)
499 is lower

than that ofGEV N
499 . This means the random attachment method can save facilities when compared
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with the EVN design approach. However, this is only in the environment which is expected. In an

unexpected environment, the network produced by the EVN design approach performs better than

that produced by the random attachment method. Figure 3.9 shows reuse ratios under unexpected

environmental changes. We can see that the worst reuse ratio ofG
Random(0)
k is lower for everyk

than that ofGEV N
k . We suppose this is caused by the lower diversity of the core part ofG

Random(0)
k

as we explained above. Though we only used seed zero in the explanation, topologies generated

with other seeds also have the same tendency.

3.3.4 Trade-off between Topological Diversity and Physical Distance

In Sec. 3.3.2 and Sec. 3.3.1, we showed that our EVN design approach is better than the FKP-

based design method in terms of evolvability. However, links in a topology designed by the EVN

design approach have large physical lengths. In more detail, the total physical length of all links

of GEV N
499 is about 3 times greater than that ofGFKP

499 . In this section, we are going to show that,

even considering physical distance, an approach that increases topological diversity can lead to

an evolvable network. Here, we use an objective function that considers both physical distance and

topological diversity to generate networks, and discuss whether a network with topological diversity

is evolvable even taking physical distance into account.

The objective function we used is a weighted sum of mutual information and physical distance:

ζ · I(q) +
∑
i∈M

f(i), (3.11)

The first term consists of a weightζ and the mutual information of remaining degreeI(q). Whenζ

approaches infinity, the topology generating process is almost as same as the EVN design approach.

The second term is the summation off(i) which is the objective function used in the FKP-based
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Figure 3.10: Relationships betweenζ and mutual information and physical distance

design method:

f(i) = α · d(nnew, ni) + h(ni, n0) (3.12)

See Eq. (3.8) in Sec.3.3 for details.M in Eq. (3.11) represents a set of candidate nodes connected

with a newly added nodennew. If m links are added tonnew in each step, the number of elements

in M will be m. Whenζ is 0, the topology generating process will search for anM that minimizes∑
i∈M f(i) at each step. This is as same as choosingm nodes having smallf(i) in an ascending

order. Therefore, this is the same as the FKP-based design method.

The entropy restriction is also changed. Since the entropy restriction should be active whenζ

approaches infinity, we set the entropy restriction to be

E(ζ) = (2/π) · arctan ζ ·H0(q). (3.13)

Therefore, whenζ approaches infinity,E(ζ) is H0(q), and whenζ is 0, E(ζ) is 0.
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Table 3.2: Mutual information and physical distance of networks grown with different method

GEV N
499 GFKP

499

Mutual information 0.186689 0.791514
Physical distance 477.95 157.855

Total facilities 4.0870 ∗ 106 4.7990 ∗ 106

Accumulated capacity during network growth and reuse of facilities for unexpected environ-

mental changes is evaluated forζ equal to0, 10, 100, 1000, 10 000, 100 000. For the details of

the evaluation methods, please see Sec. 3.3.1 and Sec. 3.3.2, respectively. To compare with the

EVN design approach and the FKP-based design method, in the simulation we add 2 links for every

node addition. Hereafter, the topology obtained by addingk nodes forζ = p will be denoted by

Gζ=p
k . To investigate how mutual information and physical distance change withζ, we show values

for Gζ=0
499 , Gζ=10

499 , Gζ=100
499 , Gζ=1000

499 , Gζ=10 000
499 andGζ=100 000

499 in Fig. 3.10(a) and in Fig. 3.10(b),

respectively. Note that physical distance here indicates the total physical length of all links when

nodes are placed in[0, 1]2. Details are given in Sec.3.3. For anyζ, a node newly added at stepk

is placed in the same physical position that the FKP-based design method would place a new node

at stepk. For comparison, the mutual information and physical distance ofGEV N
499 andGFKP

499 are

shown in Tab. 3.2. Whenζ is 0, 10 or 100, mutual information is close to that ofGFKP
499 . The

reason why the mutual information ofGFKP
499 differs from that ofGζ=0

499 is that, in some steps, dif-

ferent nodes are chosen to attach to a new node when there are more than 3 nodes that all minimize

Eq. (3.12). The mutual information forGζ=10 000
499 or Gζ=100 000

499 is close to that ofGEV N
499 , and that

of Gζ=1000
499 is just 0.075 higher than that ofGEV N

499 . Whenζ is 0, 10 or 100, the physical distance

is almost as same as that ofGFKP
499 . The physical distance forGζ=1000

499 is only 1.3 times larger than

that ofGEV N
499 ; while those ofGζ=10 000

499 andGζ=100 000
499 are more than 2 times larger than that of

GEV N
499 .
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Figure 3.11: Relationship betweenζ and total capacity

Figure 3.11 shows how total capacity decreases asζ increases. There is a large difference be-

tweenGζ=100
499 andGζ=1000

499 , while there is only a slight difference in capacity needed forGζ=10 000
499

andGζ=100 000
499 . If one allows 1.3 times more physical distance than that used in the FKP-based de-

sign method, than one can save11% of total link capacity after the addition of 499 nodes. Moreover,

much more capacity can be expected to be saved when the network grows even larger.

Figure 3.12 shows how the reuse of facilities for unexpected environmental changes depends on

ζ. Results forζ equal to10, 1000 and100 000 are shown in Fig. 3.12(a), Fig. 3.12(b), Fig. 3.12(c),

respectively. We can see that, though the worst reuse ratio ofGζ=1000
250 is worse than that of

Gζ=100 000
250 , it is better than that ofGζ=10

250 .

3.4 Summary

We proposed a network design approach, called EVN (EVolvable Network), to enhance topological

diversity using the mutual information. In the approach, a new node is connected to existing nodes
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Figure 3.12: Reuse ratio under two nodes failures of topologies grown by considering physical
distance

to minimize the mutual information of the topology. We compared the link capacity needed for

accommodating traffic in an ordinary situation and single node failure occurring situations with an

ad-hoc design method. For the ad-hoc design method, we used FKP-based design method since

FKP model includes primitive principles for designing an ISP network. We found that link capacity
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needed for a network grown with our design approach is less than that grown with the FKP-based

design method. We also found that a network designed by our design approach can reuse more

link capacity than that by the FKP-based design method. Next, we evaluated for additional ca-

pacity needed for accommodating traffic to deal with unpredicted environmental changes. As an

unpredicted environment, we choose two node failures since this is not considered in the designing

period. We found that, when severe two node failures occur, the network designed by our design

approach can use more already placed capacity compared to that by the FKP-based design method.

A disadvantage of our approach is that a network grown with our network needs more ca-

pacity on average to cover one pattern of single node failure than that grown by the FKP-based

design method. However, it needs less capacity to cover various environments. This is because

the topology generated by our design approach is not specialized to a single environment. Another

disadvantage is that, since our design approach does not consider physical length of links, links in

a topology designed by our design approach have large physical length. However, from the discus-

sion of trade-off between topological diversity and physical distance, if one allows 1.3 times more

physical distance than that used in the FKP-based design method, than one can save11% of total

link capacity after the addition of 499 nodes. Moreover, much more capacity can be expected to be

saved when the network grows even larger.
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Chapter 4

Capacity Planning Using Mutual
Information for Evolvable Networks

4.1 Introduction

In the previous chapter, we used the mutual information to quantify the diversity of topological

structure, and developed a new design approach that enhances topological diversity using the mutual

information. Because we focused on the topological diversity at the previous chapter, link capacity

was assigned by a simple approach that assigns link capacity which is enough to accommodate

traffic under any patterns of single node failure. In this chapter, we extend the concept of diversity

to the link capacity, and investigate the effectiveness of capacity planning with high diversity for

ISP networks.

Capacity planning for the ISP network is to obtain a capacity assignment that satisfies required

quality such as accommodating traffic under traffic changes and/or equipment failures [39–42].

Since network traffic always changes or fluctuates, network operators usually put some extra capac-

ity on links. The simplest capacity planning uses passive measurements of link utilization statistics

and applies rules of thumb, such as upgrading links when they reach 50 percent average utiliza-

tion, or some other target utilization. As a result, the links are always over-provisioned relative to
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the offered average load, but network operators expect that the capacity will be sufficiently over-

provisioned for the peak load, and thus expect that congestion will not occur. A more sophisticated

capacity planning approach has been investigated in many literatures. For example, Refs [41, 42]

consider a spare capacity allocation under single linkfailures. Given information of topology and

traffic demand matrix, the authors try to minimize capacity with consideration of single linkfailures.

Capacitydesigned by these approach can always satisfyrequiredquality under the situation they

considered. However, since,changes in traffic demandis becoming difficult to predict, there is a

possibility that the quality largely deterioratewhen an unexpected change occurs. Therefore, under

the situation that changes in traffic demandbecoming difficult to predict, a methodology to plan

capacity with less deteriorated quality even when unexpected change occurs should be considered.

To approach to this problem, we learn from a mechanism of biological system which is robust-

ness to environmental changes. It is known that living things survives from environmental changes

by repeatedly adapting and/or evolving themselves for a long while, many researches in biological

field investigate the mystery of mechanisms which let the biological system be robust. In a recent

study, Whitacre et al. [9] point out that the biological system has a characteristic, called “degen-

eracy” where a component of the system is not intended to serve for a sole specific function, but

serve for various kinds of functions. A diverse of components forms a function, and thereby makes

a system be survivable against component failures. In an engineering system, components would

be used for a specific function. What the optimal in engineering context means that roles of system

resource are fully specialized by their governed objective function and constraints. Otherwise it

will not be an optimal. In contrast, the components of biological system behave various kinds of

different roles, which enable biological system survivable.

Inspired from the behavior of biological system as mentioned above, in this chapter, we develop

a capacity planning methodology which can follow various kinds of environmental changes with
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less additional capacity. Our basic idea is to assign additional capacity on each link such that the

capacity can work for more sever environmental changes as well as single link failures. More

specifically, we increase the diversity of available capacity on restoration path under single link

failures. Although the diversity of available capacity does not contribute for the case of single

link failure, we expect the additional capacity would be needed to deal with severe environmental

changes and expect that lessadditionalcapacity is required as like in the biological system. To

quantify the diversity of available capacity under the single link failures, we define the mutual

information between load on a link and available capacity along a restoration path for the failure of

the link. The detail is explained in Sec. 4.2. In Sec. 4.3, we investigate network with its capacity

on restoration paths assigned randomly, and show that the amount of additional capacity needed to

cover environmental changes can be saved when capacity is assigned diversely. In Sec. 4.4, we

investigate networks with different mutual information, and show that capacity with low mutual

information can save more. Conclusion and future workaresummarized in Sec. 4.5.

4.2 Mutual Information of Link Failure Preparation Ratio and Link
Load

We use mutual information as a metric. Generally, mutual information yields the amount of infor-

mation that can obtain about one random variableX by observing another variableY . It is used to

quantify correlation between the two variables. In this chapter, we interpretY as roles, andX as

components. In detail, we use load on a link forY , andX is capacity placed on a restoration path

when the link fails. In Sec. 4.2.1, we explain the definitions ofX andY in detail. In Sec. 4.2.2, we

show that process of discretization forX andY . Note that we do not useX andY explained in

Sec. 4.2.1 directly for calculating mutual information. This is becauseX andY are continuous val-

ues. Instead of it, discretized value ofX andY are used for calculation. Therefore, for simplicity,

we discretize them. In Sec. 4.2.2, we show the process of discretization.
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4.2.1 Definition of Variables Used for Mutual Information

As for the mutual information measurement, we use load on a link forY , and capacity placed on

a restoration path when the link fails forX. We could consider more simple definition forX,

such as consideringX as capacity on a link. However, such definition is not sufficient to place the

capacity diversely because the definition is used for accommodating traffic in an ordinary situation.

Therefore, we use a spare capacity, which is assigned for accommodating traffic under equipment

failure situation, forX.

X is defined as

X = {Xu,v|u, v ∈ N}, (4.1)

whereXu,v means spare capacity of end node pair(u, v), N describes the node set of the network.

Xu,v is defined as

Xu,v = {zu,v(e)|e ∈ Ru,v}, (4.2)

wherezu,v(e) is capacity on a restoration path when linke fails. Ru,v indicates a set of links

where(u, v) uses under no link failure situation. Note that we use shortest path with equal hop path

splitting [37] for calculating the links that(u, v) uses.

zu,v(e) is defined as

wu,v(e)

t(u, v)
, (4.3)

wherewu,v(e) indicates the capacity which is available for(u, v) after e fails. t(u, v) indicates

the traffic demand between(u, v). Hereafter, we call this value preparation ratio. We have two

exceptions for definingzu,v(e). When(u, v) is unreachable after linke fails, we definezu,v(e) as

0. Whent(u, v) is 0 and ifwu,v(e) is 0, we definezu,v(e) as 1. This is because the spare capacity
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Figure 4.1: Example ofX andY in the toy network

is as same as the traffic demand.

Y is defined as

Y = {Y u,v|u, v ∈ N}. (4.4)
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whereY u,v means a set of load of links on the path used by(u, v) for no link failure situation.

Y u,v is defined as

Y u,v = {l(e)|e ∈ Ru,v}, (4.5)

wherel(e) indicates the load of linke.

Examples ofX andY are shown in Fig.4.1. Numbers in the figure show link capacity. In this

example, traffic is only occurring between(a, f) and(b, g), and the traffic demand between them is

2 and 1, respectively.

4.2.2 Discretization of Variables

In this section, we show how we discretizedX andY . We express the former as̄X, and the latter

asȲ .

zu,v,∗(e), an element of̄X, is defined as

zu,v,∗(e) = ⌈zu,v(e)/CX⌉, (4.6)

whereCX is discretization interval of̄X. Note that, whenzu,v(e) is∞, then we regard it as a same

value for calculation.

l∗(e), an element of̄Y , is defined as

l∗(e) = ⌈l(e)/CY⌉, (4.7)

whereCY is discretization interval of̄Y . Through out this chapter, we setCX as 0.5, and setCY as

5 since the order of mutual information and entropy do not change when comparing two networks.

UsingX̄ andȲ , we define the mutual information measurement as:

Ic(X̄, Ȳ ) = Hc(X̄)−Hc(X̄|Ȳ ), (4.8)
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whereHc(X̄) is entropy ofX̄, andHc(X̄|Ȳ ) is entropy ofX̄ conditioned onȲ . Note that the

lower bound ofIc(X̄, Ȳ ) is 0, and the upper bound ofIc(X̄, Ȳ ) is Hc(X̄) orHc(Ȳ ).

4.3 Entropy and Evolvability

As we explained in the previous section, the upper bound of mutual information depends on en-

tropy. Therefore, before investigating the relationship between mutual information and additional

capacity needed to deal with new environment, we investigate the relationship between entropy and

additional capacity. To do this, we use networks having different entropy, and evaluate the addi-

tional capacity. SinceY do not related to capacity, we only consider entropy ofX. We explain the

process of how we generated the networks in Sec. 4.3.1. The evaluation is explained in Sec. 4.3.2.

4.3.1 Networks Used for Evaluation

For comparison, we consider a highly engineered network. We call it N-ENG. N-ENG designs the

capacity, enough to accommodate traffic when single link failures occur. Entropy of this network is

low. Note that, however, it is not the lowest because elements ofX are not all1.0. This is because

elements ofX depends on topology. Let N-ENG beN I(GI , CI), whereN(G,C) indicates a

network with topologyG with its capacity designed asC. Also, let V indicates a set of nodes

of G, andE indicates a set of links ofG. For N-ENG,CI is designed to accommodate traffic

occurring under no link failure situation, and also under every single link failure situations when

traffic demand isT I .

To compare with N-ENG, we generate networks with higher entropy. Different from N-ENG,

there is no generating method in engineered way for such networks. However, since the objective

here is to show additional capacity needed to deal with environmental changes, we simply generate

such networks by letting the elements ofX be heterogeneous. To do this, we use N-ENG as an

initial network, and add capacity randomly. LetNp(Gp, Cp) be the network before the capacity
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addition, and letNn(Gn, Cn) be the network after the capacity addition. With settingN I(GI , CI)

as the firstNp(Gp, Cp), we repeat the following process.

1. Select an edgee∗ from Gp.

2. Select an end node pair(u∗, v∗) from end node pairs usinge∗ under no link failure situation,

{(u, v)|e∗ ∈ Ru,v}.

3. Calculate linksE∗ on restoration paths of(u∗, v∗) when linke∗ fails.

4. Add one unit of capacity on every link inE∗, and let it beCn.

As for N I(GI , CI), we use a topology with 15 nodes and 28 links asGI. It is generated by

BA model [22], then randomly rewired by keeping the degree distribution to be the same [30]. The

reason why we generated it this way is because networks generated by such way can capture the

properties of evolvable network topology explained in our previous work [18]. The properties are

topological diversity and degree distribution heterogeneity. In the simulation,T I was set to follow

log-normal distributionLN(1, 0.52).

We chose the network generated by repeating 100 times of such process. This network has

enough capacity since the randomly added capacity is more than the capacity placed at original

network. We call this network N-HH. To confirm the entropy of N-HH is high, we show the entropy

of networks generated during the process in Fig. 4.2. X-axis is repeated times, and y-axis is the

entropy. From the figure, we can see entropy rapidly becoming high at early stage. However,

the increasing speed gets lower as entropy increases. Next, we show the mutual information of

these networks in Fig. 4.3. X-axis is entropy, and y-axis is mutual information. We can see the

mutual information is also becoming higher. For comparison purpose, we generate a network whose

entropy is the middle of N-ENG and N-HH. We call this network N-MH. It is generated by repeating

the process 17 times.
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Figure 4.3: Entropy and mutual information of networks obtained during capacity exchanging pro-
cess

Table 4.1 shows the value of entropy, conditional entropy, mutual information of the three net-

works withHc(Ȳ ). We can see from the table thatHc(Ȳ ) in every networks are the same, and
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Table 4.1: Entropy, conditional entropy and mutual information of selected networks

Hc(X) Hc(X|Y ) I(X;Y ) Hc(Y )

N-ENG 4.12639 3.75713 0.369262 1.4875
N-MH 5.70286 5.14024 0.562614 1.4875
N-HH 6.91122 6.15229 0.75893 1.4875

smaller thanHc(X̄).

We also show the distribution ofX andY for each network. Since a value of entropy do not

correspond to a single distribution, we clarify show the distribution ofX andY for each of N-HH,

N-MH and N-ENG in Fig.4.4. Note that the values ofX andY showed in the figure are after

discretization, which arēX andȲ . We can see from the figure that N-ENG has the most frequent

combination of(X̄, Ȳ ). However, the frequency decreases in N-MH, and decreases even more in

N-HH. The variation ofX̄ becomes more in N-MH than in N-ENG, and also more in N-HH than

in N-MH.

4.3.2 Evolvability Evaluation

We evaluate the difference of additional capacity with networks with different entropy. To evaluate

under the same cost, we order the total capacity of all of networks. Then, we calculate the capacity

needed to add to deal with environmental changes. The total amount of capacity is set to the

maximum total capacity among N-HH, N-MH and N-ENG. We ordered the total capacity simply as

follow: let D(N) be the total amount of link capacity of an evaluation networkN , and letDmax be

the maximum total capacity among all the evaluation networks, thenc∗(N,e), the new link capacity

of a link e in networkN , is

c∗(N,e) = c(N,e) ∗
Dmax

D(N)
(4.9)
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Figure 4.4: Distribution ofX andY in selected networks

wherec(N,e) indicates the original link capacity of edgee in networkN . We use N-HHI , N-MHI

and N-ENGI to indicate networks after their capacity ordered. Capacity added for ordering can

be consider as simple provisioning for constant traffic growth. Therefore, comparing N-ENGI and

N-HHI means comparing a network designed optimally with large provisioning for constant traffic

growth and a network designed with high diversity but with less provisioning.
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To show a network with its capacity assigned diversely can deal with environmental changes

with less additional capacity, we evaluate additional capacity needed to deal with changes in traffic

demand after single link failure. This is, for example, the case when traffic changes after a disaster.

We sett∗(u, v), the changed traffic demand between an end node pair(u, v), as:

t∗(u, v) = tI(u, v) + k, (4.10)

wheretI(u, v) indicates the traffic demand between(u, v) in T I , andk is a random number follow-

ing log-normal distributionLN(µ, σ2).

We explain the evaluation metric we used. With the changed traffic demandT ∗ = {t∗(u, v)},

we calculate additional capacity.F e′ , the capacity needed to add when linke′ fails, is

F e′ =
∑

(ce
′

(G,e) − c∗(G,e)), (4.11)

wherece
′

(G,e) is capacity needed on linke when linke′ fails in G. In the simulation, we calculate

F e′ for everye′ in G. We compare the maximum value among the obtainedF e′ . This is because,

as we explained in Sec. 4.1, our objective is to develop a capacity planning methodology which can

follow various kinds of environmental changes with less additional capacity.

We evaluate the additional capacity against traffic demand growth by settingσ as0.5 andµ

as 0.5, 1, 2, 3, 4. Figure 4.5(a) shows the results. Since the result depends on random number

generator, we run the simulation for100 times with different seeds. The results show the maximum

value ofF e′ among100 times for everye′ in G. From the result, we can see that N-HHI needs

the largest additional capacity whenµ is small, such as0.5 and1, while additional capacity of N-

HHI becomes lower compared to that of N-ENGI whenµ is large, such as3 and4. This indicates

that additional capacity needed to cover traffic when traffic changes occur depends on the increase

amount of traffic. N-ENG needs the fewest when traffic increases a little, while N-HHI becomes

the fewest as traffic increases.
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(b) Amount of additional capacity whenσ changes

Figure 4.5: Amount of additional capacity when traffic changes

Table 4.2: Networks needing less additional capacity with different scale of traffic changes

µ
0.5 1 2 3 4

0.5 N-ENGI N-MHI N-ENGI N-MHI N-HHI

1 N-MHI N-MHI N-MHI N-MHI N-HHI

σ 2 N-HHI N-MHI N-MHI N-MHI N-HHI

3 N-HHI N-HHI N-HHI N-HHI N-HHI

4 N-HHI N-HHI N-HHI N-HH I N-HHI

We evaluate the additional capacity against traffic demand fluctuation by settingµ as0.5 and

σ as0.5, 1, 2, 3, 4. Figure 4.5(b) shows the results. The result also shows the maximum value of

additional capacity among100 times of simulation. From the result, we can see that N-HHI needs

the largest additional capacity whenσ is small, such as0.5 and1, while additional capacity becomes

lower compared to N-ENGI whenσ is large. This indicates that additional capacity needed to deal

with traffic changes also depends on the size of traffic variation. N-ENGI needs the fewest when

traffic changes small, while N-HHI becomes the fewest as traffic changes large.

To search for more patterns of traffic changes, we show the results whenµ is 0.5, 1, 2, 3, 4 and
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σ is 0.5, 1, 2, 3, 4 respectively. From Tab. 4.2, we can see that N-ENGI requires smallest capacity

when (µ, σ) is (0.5, 0.5) as expected. Whenµ or σ becomes larger, for example, whenµ is 1 to

3 or whenσ is 1 to 2, N-MHI is the best. Whenµ andσ are large, N-HHI becomes the best.

This indicates that, when traffic demand does not change or changes a little, the network with low

entropy requires the fewest. However, as traffic demand changes greatly, the network with high

entropy requires the fewest capacity. Therefore, under the difficulty of traffic prediction in the

future, capacity should be designed with high entropy.

4.4 Mutual Information and Evolvability

In this section, we show the relationship between mutual information and additional capacity needed

to deal with environmental changes. To do this, we use networks with different capacity, and

compare the additional capacity. We explain the process of how we generated the networks in

Sec. 4.4.1. In Sec. 4.4.2, we show the additional capacity.

4.4.1 Networks Used for Evaluation

In Sec. 4.3, we showed that N-HH requires less capacity when environment changes greatly. There-

fore, we generate networks with same entropy with N-HH, but with different mutual information

for the evaluation.

For comparison purpose, we generate a network with higher mutual information than N-HH.

The mutual information of a networks is high when whose elements ofX with the sameY are less

heterogeneous. We introduce a proportionality coefficientζ in the generation method to generate a

network having same entropy with N-HH. This is because, when we design to let each element of

X proportional to the corresponding element ofY , entropy of the network is too high. When cal-

culated capacity cannot accommodate traffic when a single link failure occurs, we design network

to accommodate the traffic. We generate the network as follow:
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Figure 4.6: Mutual information and entropy against parameterζ

1. Design capacity to accommodate traffic occurring under no link failure situation.

2. Design capacity to accommodate traffic occurring under linke failure situation.

(a) Change traffic demand of end node pairs{(u, v)|e ∈ Ru,v} as follow. Usingl(e) and

tI(u, v), t∗∗(u, v), the changed traffic demand between(u, v), is:

t∗∗(u, v) = ζ ∗ l(e) ∗ tI(u, v), (4.12)

whereζ is a designing parameter as explained above. However, whent∗∗(u, v) is lower

than 1, network cannot accommodate traffic occurring in a single link failure situation.

Because it is not realistic to designing capacity lower than what is expected in the de-

signing period, we changet∗∗(u, v) to 1 if it is lower than1.

(b) Using the changed traffic demand, design capacity for accommodating traffic under link

e failure situation.
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Figure 4.7: Amount of additional capacity against multi-link failure

3. Repeat (2) until capacity for every link failure is designed.

Figure 4.6 shows entropy and mutual information of networks with differentζ. A network

generated by settingζ to 0.001 is as same as N-ENG. This is because all the traffic demand is

setting to1 for every single link failures. From Fig. 4.6, we can see that, asζ increases, the mutual

information increases. Since, whenζ is 0.3, entropy of the network is as same as N-HH, we use this

network for comparison. Hereafter, we call this network N-HH-HI. Note that mutual information

of N-HH-HI is 0.21227 higher than that of N-HH.

4.4.2 Evolvability Evaluation

We evaluate additional capacity needed to deal with environmental changes with networks with

different mutual information. To evaluate with the same cost, we order the total capacity of all the

evaluation networks first. Then, we calculate the additional capacity.

To evaluate with the same cost, we order the total capacity N-HH and N-HH-HI to let them be
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even. The method we used is as same as what we used in Sec. 4.3.2. N-HHII and N-HH-HIII

indicates networks after ordered respectively. Traffic demand is set to what we considered in the

designing period. The evaluation metric we used is also same as Sec. 4.3.2.

Figure 4.7 shows the worst case among all the patterns ofm link failure. We can see from the

result that the worst additional capacity is 0 in N-HH-HI when under single link failure situation,

while the order changes from five links failures. On the other hand, N-HH needs more additional

capacity until four-link link failures. However, N-HH becomes less than N-HH-HI for more severe

failure. This means when little number of links fails, a large amount of capacity is needed to add in

network with high mutual information, while less amount of capacity is needed when large number

of links fails.

4.5 Summary

We showed that a capacity planning methodology enhancing the diversity in capacity assignment

can adapt to large environmental changes with less amount of equipment. Our basic approach is to

assign additional capacity on each link such that the capacity can work for more severe environmen-

tal changes as well as single link failures. More specifically, we increased the diversity of available

capacity on restoration path under single link failures. To quantify the diversity of available ca-

pacity under the single link failures, we first defined the mutual information between capacity on a

restoration path of a link and load on the link which was failed. Then, we investigated network with

its capacity on restoration paths assigned randomly, and showed that capacity assigned diversely

can save additional capacity against environmental changes. We also investigated networks with

different mutual information, and showed that capacity with low mutual information can decrease

total amount of additional capacity against environmental changes.
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Conclusion

As the Internet becomes a social infrastructure, it is important to design the Internet that has adapt-

ability against environmental changes. In this thesis, we investigated a network design method

which has a capability of following various kinds of environmental changes with less amount of

equipment is necessary.

Starting with our research background and overview of our studies in Chap. 1, we first in-

troduced a mutual information to quantify the degree of specialization in a topological sense. In

Chap. 2, we quantified the topological diversity by the mutual information between degrees of two

nodes that are connected. From calculating the mutual information of router-level topologies and a

BA topology, we found that the mutual information of router-level topologies are higher than that

of the BA topology. The reason of high mutual information in the router-level topologies is partly

explained by the following fact. Since router-level topologies are designed under the physical and

technological constraints such as the number of switching ports and/or maximum switching capac-

ity of routers, there are some restrictions when constructing the network, leading to high correlation

in degrees of two connected nodes. We also enumerated topologies with different mutual informa-

tion, and then showed that topology with high mutual information is less diverse, and have more

regularity than the one with low mutual information.
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In Chap. 3, we proposed a network design approach to enhance topological diversity, by which

the network can easily adaptable to deal with new environments without requiring a lot of additional

equipment. Essentially, in our approach, a new node is connected to existing nodes to minimize the

mutual information of the topology. We then evaluated the total cost, which is defined by the total

amount of equipment needed for accommodating traffic in two cases; in an ordinary situation where

the traffic is increased gradually, and in the situation where node failure takes place. Our results

showed that a thousand-node network evolved by our design approach reduces the total cost of

equipment by 15% comparing to a thousand-node network evolved by an ad hoc design method.

We also found that, when severe failures occur, the network designed by our design approach can

effectively utilize already attached capacity compared to that by the ad-hoc design method. We

revealed the trade-off relationship between topological diversity and physical distance, and revealed

that our design method can suppress a large amount of total link capacity with a little increase in

physical distance of links.

In Chap. 4, we next considered diversity of link capacity in addition to the topological diversity.

For that purpose, we extended the definition of mutual information by considering load of the link

and the available capacity after a failure of the link. Then, a network with low mutual information

is obtained by repeatedly exchanging a small amount of capacity between links. Although the di-

versity of available capacity does not contribute for the case of single link failure, we expected the

additional capacity will work for severe environmental changes and expected that less capacity is

required as in the case of the topological diversity. Using a 15-node topology with 28 links, we ex-

amined the effectiveness of the capacity planning with low mutual information. Our results showed

that the total amount of capacity is decreased when two or more links are failed simultaneously and

is decreased by 20% at a seven-link failure.

Through the work presented in this thesis, we showed that diversities in information networks
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are key to adapt various kinds of environmental changes with less amount of equipment, and our

design method that strengthens the topological diversity and diversity in capacity can adapt various

environmental changes with less amount of equipments.

Several problems are left for future research. First, the calculation time of the proposed design

approach should be improved. The calculation complexity of our design method isO(n2 ∗ d2),

wheren is the number of nodes andd is degree, there is a scalability problem of our approach.

However, because the purpose is to higher topological diversity, strict minimization may be not

needed. Approximate solution can be considered in the future work. Second, analytical investiga-

tion is required to provide more clear discussion of evolvability of our approach to several other

unexpected environmental changes. Lastly, we have considered topological diversity and diversity

of link capacity here, but diversity at the processing capacity of routers is another important factor

to design an information network. We believe that a diversity in router’s processing capability may

help to obtain an evolvable network, which is remained for our future research topics.
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