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Abstract—Self-organization has potential for high scalability,
adaptability, flexibility, and robustness, which are vital features
for realizing future networks. Convergence of self-organizing
control, however, is comparatively slow in some practical appli-
cations. It is therefore important to enhance convergence of self-
organizing controls without sacrificing the above advantages.
Controlled self-organization is one key idea for that, which
introduces an external controller into self-organizing systems
to guide them to a desired state. We previously designed an
external controller that provided the optimal input for fast
convergence, however, it suffered from scalability issues. In
this paper, we propose a hierarchical control system where a
network is partitioned into some sub-networks, sub-controllers
manage respective sub-networks, and the top-level deals with
the global network stability. The proposed system achieves fast
convergence speed with low computational and communication
cost.

Keywords-Controlled self-organization, hierarchical control,
potential-based routing, fast convergence

I. INTRODUCTION

Self-organization is a natural phenomenon in distributed
systems [1]. In a self-organizing system, a global behavior
or pattern emerges from local interactions among compo-
nents in a bottom-up manner. For future large-scale and
complex networks, many researchers focus on the idea
of controlled (guided, managed) self-organization, where
the self-organizing system is controlled through some con-
straints while retaining strengths of self-organization such
as scalability, adaptability, robustness and flexibility [2].

We previously introduced an external controller having
an optimal feedback mechanism to self-organizing systems
in [3] for controlling self-organization to converge faster.
The external controller collects information regarding the
network such as node states and the network topology via
a partial set of nodes directly monitored by the controller,
estimates system dynamics using a mathematical model
that describes the network dynamics, and then determines
optimal control inputs based on robust control theory [4]. We
showed that the mechanism improves the convergence speed

of self-organization in [3]. However, especially in large-scale
networks, it is difficult for “one” centralized controller to
collect detailed network information and calculate optimal
feedback inputs. Doing so requires considerable costs and,
even worse, loses the scalability of self-organizing systems.

In this paper, we propose a hierarchical optimal feed-
back mechanism to control self-organizing network systems
without losing the scalability of self-organization. With our
proposal, a network is partitioned into several sub-networks,
which are controlled in a hierarchical manner by two types
of controllers, a top-level central-controller and several sub-
controllers. Each sub-controller monitors a different sub-
network, i.e., only a part of the entire network, and provides
an optimal feedback input to the sub-network so that fast
convergence can be achieved. Then, communication cost
for collecting the network information would be reduced.
In detail, given Nsub nodes in a sub-network, the sub-
controller corresponding to the sub-network needs O(Nsub

2)
for calculating an optimal feedback input to the sub-network.
The computational cost of each sub-controller is much
smaller than O(N2) of the external controller proposed
in [3] where N (> Nsub) is the number of nodes in the
entire network. Therefore, owing to sub-network partition-
ing, self-organizing systems can be controlled with light-
weight cost even if the network size is large. By contrast,
if each sub-controller determines an optimal input selfishly,
interactions among sub-networks may cause network in-
stability. So, the role of a central controller is to guide
sub-networks to achieve the identical global optimality. A
central controller collects information from sub-controllers,
estimates degrees of interactions among sub-networks and
then returns feedback inputs to sub-controllers. Note that,
given the information of the network topology, we need the
computation cost O(N2) for designing the central controller,
whereas that for designing the external controller in [3] is
O(N3).

We consider potential-based routing, which is a self-



Sensor node Sink node Traffic

Figure 1. Potential-based routing

organizing routing mechanism as well as in [3]. We in-
troduce the hierarchical optimal feedback mechanism to it
and show the fast convergence speed after environmental
changes. The optimality of our feedback mechanism is
analytically guaranteed in synchronous systems, but not in
asynchronous systems. Then, we assume a wireless sensor
network, where nodes behave asynchronously, to show the
practicality of our proposal. Through computer simulation,
we show that our hierarchical optimal feedback mechanism
can enhance the convergence speed of self-organizing sys-
tems at fairly low cost.

II. POTENTIAL-BASED ROUTING

Potential-based routing is a self-organizing routing mech-
anism being active in the fields of wireless sensor net-
works, mobile ad-hoc networks, and information centric
networks [5], [6]. Here we assume that potential-based
routing is used in wireless sensor networks. In potential-
based routing, each node has a scalar value called its
potential, and data packets are forwarded to a neighbor
whose potential is smaller than the forwarder’s. In wireless
sensor networks, data packets are generally sent to a sink
node, and the fewer hops from the sink node a node is, the
lower the potential value assigned to the node. The simple
forwarding rule “forward data to a neighboring node with
lower potential” can therefore result in data packet collection
toward sink nodes, as illustrated in Fig. 1. Potential-based
routing has high scalability because each node uses only
local information for calculating potentials and a local rule
for forwarding data. Furthermore, it can achieve the load
balancing and consequently the network lifetime improve-
ment by calculating potential using information such as flow
rates, queue length, or remaining energy.

A. Potential Field Construction

Sheikhattar and Kalantari [6] focused on the convergence
of potential-based routing and achieved enhancement of
the potential convergence speed. They proposed a potential
calculation method based not only on current potentials but
also on last potentials to accelerate potential convergence.
Node n’s potential at time t, θn(t), is calculated by (1).

θn(t+ 1) =(α+ 1)θn(t)− αθn(t− 1)

+ βσn

 ∑
k∈Nb(n)

{θk(t)− θn(t)}+ fn(t)

 ,

(1)

where Nb(n) is a set of node n’s neighbors, and α is
a parameter that determines weights of current and last
potential values when calculating the next potential. Larger
α means that the weight of the last potential value is larger
and therefore the system becomes less subject to current
noise, though the convergence speed is slower. Parameter β
determines the influence amount of neighbor node potentials.
σn is defined as 1/|Nb(n)|, and fn(t) corresponds to the
flow rate of node n at time t. If fn(t) is a positive value it
means the data generation rate of node n, whereas if fn(t)
is negative it means the rate of data packets delivered to
node n. For sink node n, fn(t) corresponds to targeted flow
rate and given by the network manager. If the flow conser-
vation constraint is upheld, that is,

∑
n∈{1, ··· , N} fn(t) = 0,

a potential field is constructed so that actual rates of data
packets delivered to nodes satisfy given flow rates, i.e., all
gradients, which are potential differences between next hop
nodes, correspond the appropriate flow rates.

The convergence speed based on (1) is faster than simple
Jacobi iterations (such as our previous work [5]), but still
takes a long time to converge due to its calculation being
based only on local information.

B. Routing
If a node has a data packet, it forwards it according to

potential values of itself and its neighbors. In our potential-
based routing, when a sensor node generates or receives a
data packet, it probabilistically selects a next node that is
assigned a lower potential value than itself, and the packet
eventually arrives at a sink node. Specifically, a next-hop
node is selected proportionally with potential values, that is,
the probability pi→j(t) that sensor node i selects a neighbor
node j as the next-hop node for a data packet at time t is
given by

pi→j(t) =

{
θi(t)−θj(t)∑

k∈Nl(i)
{θi(t)−θk(t)} , if j ∈ Nl(i)

0, otherwise
,

where Nl(i) is the set of node i’s neighbor nodes that are
assigned lower potential values than node i.

III. POTENTIAL-BASED ROUTING
WITH HIERARCHICAL OPTIMAL FEEDBACK

In this section, we describe a model of the network dy-
namics and explain our hierarchical optimal control scheme.

A. Overview
Proposed hierarchical optimal feedback is shown in Fig. 2

where there are three layers, i.e., a layer of physical nodes,
one of sub-controllers and one of a central controller. A
network is partitioned into several sub-networks and each
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Figure 2. Potential-based routing with a hierarchical optimal control
scheme, where sub-controllers monitor/control their own area, and the
central controller collects potential values from sub-controllers and provide
feedback inputs to them periodically.

sub-network is connected to a sub-controller via a part of
nodes that belong to the sub-network. We assume that each
sub-network has at least one sink node and a sub-controller
is connected to a sink node.

A sub-controller monitors information of its correspond-
ing sub-network, in particular potential values of a partial
set of nodes, which we call observable nodes, in the sub-
network. The sub-controller then returns suitable control
inputs to a partial set of nodes, which we call controllable
nodes, in the sub-network, for accelerating convergence of
the potential distribution of the sub-network toward the
target potential distribution. In this paper, target potentials
are estimates of converged potential values derived from
collected information, specified in Subsection III-B. When
receiving control inputs from the sub-controller, controllable
nodes calculate their potential, which changes potential
amounts over the entire network through local interactions
among nodes ((2) in Subsection III-B). Note that we assume
that sub-controllers and sink nodes are power-supplied so
that these sink nodes can have a directly reliable connection
with sensor nodes and sub-controllers at all times. There-
fore, in our proposal, sub-controllers monitor sub-network
information and provide control inputs via them.

The role of a central controller is to estimate interactions
among sub-networks and to provide feedback inputs to sub-
controllers so that the whole network reaches the identical
targeted state. For that purpose, the central controller collects
the network information from sub-controllers, i.e., potential
values of a partial set of nodes, and then returns suitable
feedback inputs to them. Without the central controller, that
is, ignoring interactions among sub-networks, not only the
global optimality of potential distribution is not guaranteed,
but also network instability may be caused because each

sub-controller cannot directly observe any information of
sub-networks except for its corresponding one.

Each node updates its potential value in a self-organizing
manner as mentioned in Section II with and without control
feedback. Therefore, our control method can enhance the
convergence speed of potentials retaining advantages of self-
organizing systems. Moreover, if the central controller or
a sub-controller fails, each node behaves individually and
automatically so that potential convergence can be achieved
eventually.

In our proposal, the area over which each sub-controller
monitors potential values is limited to a partial set of nodes
in its corresponding sub-network to reduce the communica-
tion costs. Of course, the sub-controllers cannot directly get
node potentials outside the area, but the central controller
estimates them by utilizing the potential dynamics model,
which describes potential changes. Note that information
of the sub-network topology is needed for designing the
sub-controller, as is flow rates of nodes in the sub-network
for calculating target potential values. Such information is
difficult to estimate, but is reported to the sub-controllers
only when it changes because we assume that changing
frequencies of the network topology and flow rates are much
lower than those of potentials. This assumption is feasible
because the potential convergence is generally achieved as a
result of the iterative behavior (nodes’ potential updates and
the controller’s feedback) so that frequencies of potential
updates and controls need to be much higher than those of
changes the network topology and flow rates.

B. Dynamics of Sub-Networks
Let the dynamics of potentials be given by a deterministic

discrete-time model. In our proposal, each potential is up-
dated as well as in [6], but controllable nodes additionally
receive feedback inputs by each sub-controller. Node n
updates its potential at time t by (2).

θn(t+ 1) = (α+ 1)θn(t)− αθn(t− 1)

+ βσn

 ∑
k∈Nb(n)

{θk(t)− θn(t)}+ fn

+ ηn(t), (2)

where ηn represents a feedback input received from the
sub-controller. If node n does not receive any feedback
input directly from the sub-controller, then ηn(t) = 0.
Sub-controllers collect and estimate the node potentials of
each sub-network, and provide to the sub-network feedback
inputs u(t) = [η1(t) η2(t) · · · ηNctrl

(t)]
T (where Nctrl

denotes the number of nodes that receive feedback from the
controller), as described later. Node potentials can converge
faster than in the non-control scheme described by (1)
where each node updates its potential based only on local
interactions with neighbors. In [6], σn is set to 1/|Nb(n)|,
but this value may lead to oscillation of potentials in some
situations since (4) has no solution (after-mentioned). In
this paper we therefore set σn to the constant value σ



(0 < σ < 1) for all n (∈ {1, 2, · · · , N}).
Then, we describe potential dynamics of sub-

networks. We define S as a set of sub-networks.
Sub-network i (∈ S) includes N i nodes. Potential
values of nodes in sub-network i are described as a
vector Θi(t) =

[
θi1(t)

T θi2(t)
T · · · θiNi(t)T

]T
using

θn(t) = [θn(t) θn(t+ 1)]
T . The potential dynamics of

sub-network i is given by (3) using flow matrix F i and
control inputs ui.

Θi(t+ 1) = AiΘi(t) +
∑

j∈S−{i}

Ai,jΘj(t)

+
(
βσF i + ui(t)

)
⊗M0, (3)

where Ai,Ai,j are matrices that describe interactions within
sub-network i, and between sub-network i and j, respec-
tively 1.

Under these dynamics, potentials Θi consequently con-
verge to Θ̄i, which is given by a solution of

(Ai − I2Ni×2Ni)Θ̄i +
∑

j∈S−{i}

Ai,jΘ̄j

= −βσF i ⊗M0. (4)

In the evaluation of Section IV, we use Θ̄ =[
Θ̄1T · · · Θ̄|S|T ]T as a target potential distribution.

C. Optimal Control of Sub-networks by sub-controllers
We next explain the sub-controller dynamics. For all i (∈

S), sub-network i is connected to sub-controller i, and sub-
controller i directly monitors potentials Y i of observable
nodes in sub-network i. Y i(t) is a 2N i

obs-dim vector, which
is given by Y i(t) = CiXi(t) 2 using Xi(t) = Θ̄−Θi(t)
where N i

obs is the number of observable nodes. Note that Y i

shows how different potentials of observable nodes are from
their target values. Then, sub-controller i estimates Xi(t)
from observable information Y i. X̃i(t) is 2N i-dim vector

1Ai, Ai,j are given by
Ai = INi×Ni ⊗A1 + (Li

intra −Gi)⊗A0,

Ai,j =Li,j
inter ⊗A0,

where (N i×N i)-matrix Li
intra corresponds to the adjacent matrix of sub-

network i. Li,j
inter is a (N i×Nj )-matrix, which describes links connecting

between subnetwork i and j. The element li,jinter(n,m) ∈ {0, 1} of
Li,j

inter is 1, if and only if there is a link between node n of sub-network i
and node m of sub-network j. (N i × N i)-matrix Gi describes degrees
of nodes that belongs to sub-network i, and the element gi(n, n) of Gi

corresponds to the number of links one of whose edges is node n. IN×N

is the identity matrix of N ×N . A1, A0 and M0 are given by

A1 =

[
0 1
−α α+ 1

]
, A0 =

[
0 0
0 βσ

]
, M0 =

[
0
1

]
.

2An (2N i
obs × 2N i)-matrix Ci determines observable nodes. The

element ci(n,m) ∈ {0, 1} of Ci is 1 if and only if sub-controller i
monitors the potential value of node m as the n-th element of Y i. If
more nodes are monitored by sub-controller i, i.e., Ci is denser, it can
estimates potential values of nodes in sub-network i more precisely while
the communication overhead for collecting information of observable nodes
becomes much larger.

and given by (5) and (6) 3.
X̃i(t+ 1) = AiX̃i(t) +Biui(t)

+Qi
(
Y i(t)− Ỹ i(t)

)
+Zi(t), (5)

Ỹ i(t) = CiX̃i(t). (6)
where Zi means interactions among sub-networks. Sub-
controller i receives Zi from the central controller and
calculates a feedback input that accelerates the convergence
speed of potentials, which we explain in Subsection III-D.
If X̃i(t) is close to 0, potentials are estimated to be close
to their targets. Then, the feedback input ui(t) is calculated
according to (7) 4.

ui(t) = −V iX̃i(t), (7)

D. Estimation of Interactions among Sub-networks
by the Central Controller

1) Design of Central Controller: Here, we explain how
the central controller estimates interactions among sub-
networks. The central controller collects potential informa-
tion w(t) from sub-controllers for estimating interactions
among sub-networks. w(t) is a 2Nobs-dim vector, with Nobs

being the number of nodes whose potentials are collected
by the central controller, and given by w(t) = WX(t) 5.
Note that observable nodes for the sub-controllers and nodes
whose potential information is collected by the central
controller are not necessary the same, i.e., w(t) does not
need to be equal to

[
Y 1(t)T Y 2(t)T · · · Y |S|(t)T

]T
.

Then, the central controller estimates strengths Z(t) of
interactions among sub-networks by (9) and (10) 6 [7].

3We need to select Qi which satisfies “Ai − QiCi is stable,” so that
potentials converge. The matrix Bi is given by

Bi = Ei ⊗
[

0 0
0 1

]
.

The (N i × N i
ctrl)-matrix Ei specifies the controllable node of sub-

network i, that is, the element ei(n,m) ∈ {0, 1} of Ei is 1 if and only if
node n receives the m-th element of ui(t) as control input ηn(t). With the
larger number of controllable nodes, i.e., with denser Ei, the influence of
the optimal control is larger so that the convergence speed should be faster
although significant properties originating from self-organization such as
scalability and adaptability could be lost with too many controllable nodes.

4V i is the optimal gain matrix that minimizes the quadratic cost
function Hi(ui) =

∑∞
n=1

(
||X̃i(n)||+ r||ui(n)||

)
for the system. r

is a parameter that regulates the trade-off between the convergence speed
and stability of potentials. With lower r, the convergence speed of potentials
is faster but potentials change more largely at one time because the sub-
controller is allowed to provide larger ui(t).

5X(t) describes the potential dynamics of all nodes and X(t) is
defined as

[
X1(t)T X2(t)T · · · X|S|(t)T

]T
. The dynamics of the

entire network is given by
X(t+ 1) = AX(t) +Bu(t), (8)

where

A =


A1 A1,2 · · · A1,|S|

A2,1 A2 · · · A2,|S|

: :

A|S|,1 A|S|,2 · · · A|S|

 , B =


B1

B2

:

B|S|

 .

W is a (2Nobs × 2N)-matrix that determines nodes whose potential are
collected by the central controller in the same manner as Ci.

6J , K, O and T are given by



ψ(t+ 1) = Jψ(t) +Ku(t) +Ow(t), (9)
Z(t) = Tψ(t), (10)

where 2N -dim vector ψ is describes an estimation model
for the central controller, with which the central controller
estimates the interactions among sub-networks, and Z(t),
which corresponds to

[
Z1(t)T Z2(t)T · · · Z|S|(t)T

]T
, is

provided to each sub-controller by the central controller.
2) Model Reduction for Central Controller: With the

estimation model described by (9) and (10), which has
2N state variables, strength Z(t) are calculated with O(N2).
In other words, the computational cost is extremely large in
large-scale networks. In our proposal, therefore, the central
controller uses a reduced-order model 7 which has less state
variables for estimating interactions among sub-networks
with a smaller computational cost. In the reduced-order
model, the estimation model is expressed as an (h × 1)-
vector ψr(t) whose elements are linear transformations of
the original model ψ(t), and the reduced-order model is
given by (11) and (12).

ψr(t+ 1) = Jrψr(t) +Kru(t) +Orw(t), (11)
Zr(t) = Trψr(t). (12)

Here, 2N -dim vector Zr(t) corresponds to feedback
inputs provided to sub-controllers by the central controller
with the reduced-order model. We need to choose matrices
Jr, Kr, Or and Tr of compatible dimensions such that
Zr(t) ≈ Z(t) for all input u(t), w(t).

A reduced-order model can be described with a constant
number h of state variables and the computational cost can
be reduced using it. With a reduced-order model, feedback
inputs Zr(t) are calculated with O(h2). In general, a model
that has more state variables allows the controller estimate
more correctly, but the computational cost is larger. In
contrast, the computational cost is smaller but the estimation
error can be larger in a model that has fewer state variables.
Therefore, h needs to be properly determined in accordance
with the requirements or system properties.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the convergence speed of
potentials comparing our proposal with the non-control

J = A−QW , K = B, O = Q,

T =


0 A1,2 · · · A1,|S|

A2,1 0 · · · A2,|S|

: :

A|S|,1 A|S|,2 · · · 0

 .

Q is a (2N × 2Nobs)-matrix which satisfies “A−QW is stable.” 0 is a
zero matrix.

7Many researchers have studied a variety of methods to approximate a
model with a reduced-order model to control large, complex systems [8].
In our proposal, we approximate the original model based on a ‘balanced
realization’ that is highly compatible with the model expressed in the state
space representation [4], [8]. In model reduction, a reduced-order model
needs to have the same response characteristics as the original model for
the accurate estimation of potentials. Here, response characteristics mean
the effectiveness of inputs to the system.

scheme proposed in [6] to show that hierarchical optimal
feedback enhances the convergence.

In simulation experiment, for the network simulator we
use an event-driven packet-level simulator written in Visual
C++ that calls MATLAB functions dlqr to design the optimal
controller and balred to obtain a reduced-order model.

A. Simulation Settings
We evaluate changes of potentials and the number of data

packets delivered to each sink node after traffic changes.
The network model with 104 nodes (including 4 sink nodes)
is used for this evaluation. 4 sink nodes are directly con-
nected to 4 different sub-controllers, and sub-controllers are
connected to the central controller. The central controller
provides feedback inputs to sub-controllers at interval Tcc,
sub-controllers provide feedback inputs to each sink nodes
at interval Tpc, and, each node updates its potential value at
interval Tp. Typically, Tcc = Tpc = Tp for matching with
the potential dynamics described by (2) and (5). In this eval-
uation, we set Tcc, Tpc and Tp to 50 s. Each sub-controller
observes all nodes of the corresponding sub-network, and
the central controller collects potential information of nodes
within 2 hops from each sink node. In this evaluation, we
assume that controllers can collect the potential information
with no communication delay because the main target of this
evaluation is to reveal the performance and the property of
the hierarchical control scheme. The model order h of the
central controller is set to 20.

At the beginning of the simulation, potential values of all
nodes, including sensor nodes and sink nodes, are initialized
to 0. At 1,000 s data packets begin to be generated at
sensor nodes according to the Poisson process with their
flow rates. At 10,000 s from the beginning of the simulation,
data packet generation rates of sensor nodes are changed
in order to examine the convergence speeds of potentials
and traffic flows. Data packet generation rates are initially
set to be 0.0005 packets/s for sensor nodes in the half of
the network, and 0.0015 packets/s for sensor nodes in the
other half. After traffic changes at 10,000 s, data packet
generation rates are increased to 0.0015 packets/s for the
former half sensor nodes and decreased to 0.0005 packets/s
for the latter half nodes. The average data generation rate of
a node of 0.001 packets/s corresponds to f̄n = 1, so before
traffic changes the flow rate vector F =

[
f̄1 · · · f̄N

]T
is given by F = [0.5 · · · 0.5 1.5 · · · 1.5− 25 · · · − 25]

T .
Similarly, after the traffic changes, F is given by F =
[1.5 · · · 1.5 0.5 · · · 0.5− 25 · · · − 25]

T .
We evaluate the convergence speed of potentials and data

packets delivered to each sink node after traffic changes. To
measure the convergence speed of potentials, we define the
degree of the potential convergence ϵn(t) for each node that
is given by

ϵn(t) =
|θ̄n − θn(t)|

|θ̄n|
,
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Figure 3. Potential and traffic convergence

where θ̄n corresponds to the target potential value of node n.
We consider convergence to be achieved when ϵn(t) for
all nodes becomes sufficiently small. Convergence time is
defined as the minimum time taken by all sensor and sink
nodes to satisfy the condition

ϵn(t) < c, (13)

where c is a constant set to 0.2.
Parameters (α, β, σ, r) are set to (0.4, 0.2, 0.1, 10). Simu-

lation result presented below is averaged over 30 simulation
runs for each parameter setting.

B. Simulation Results
Figures 3(a) and 3(b) show the changes of potential values

of the non-control scheme and our proposal, respectively.
More exactly, these figures plot Θ̄−Θ(t) against time t. In
these figures, thick lines correspond to potential changes of
4 sink nodes, and thin lines correspond to those of sensor
nodes. Sink node potentials change more intensely than
those of sensor nodes because sink nodes receive feedback
inputs u directly from each sub-controller, whereas sensor
nodes are indirectly affected by them via sink nodes.

As shown in Figs. 3(a) and 3(b), our proposal can enhance
the convergence speed of potentials, as compared with the
case of the non-control scheme. It takes 36,084 s for the

potential convergence with the non-control scheme, while
it takes 11,551 s with our proposal, although Figs. 3(a)
and 3(b) show potential changes only within 10,000–
30,000 s. As a result, potential convergence is accelerated
by about 3.12 times due to our proposal. With the previous
method [3], the convergence times is 10,453 s in average,
which is approximately as short as our proposal, although
the result is not shown in this paper. That indicates that the
central controller precisely estimates degrees of interactions
among sub-networks, and therefore, each sub-controller cor-
rectly estimates the potential dynamics of its corresponding
sub-network and then returns control inputs for faster con-
vergence of potentials although the sub-controller does not
directly monitor any information of the other sub-networks.
It is note that even if any controller fails, whole network can
achieve convergence as long as nodes ignore feedback inputs
such as Fig. 3(a) when self-organized control is properly
designed. This means our proposal does not detract the
robustness originated in self-organization.

From the point of view of the computational cost, the
computational cost O(N i2) of sub-controllers for estimating
the potential dynamics and calculating control inputs is
much smaller than the computational cost O(N2) in [3]
where only one controller monitors the potential dynamics



of all nodes and then calculates control inputs for the entire
network. Moreover, given the information of the network
topology, the central controller is designed with the compu-
tation cost O(N2) as described in Subsection III-D, which
is smaller than the computational cost O(N3) needed for
designing the external controller proposed in [3]. Therefore,
our proposal can enhance the convergence speed of poten-
tials with the low computational cost even in large-scale
networks, and, consequently, the hierarchical optimal feed-
back mechanism is more scalable than the non-hierarchical
mechanism.

Figures 3(c) and 3(d) show the average number of data
packets delivered to each sink node every 1,000 s. In each
case, the number of data packets delivered to each sink
node becomes disproportionate after the traffic changes at
10,000 s. Then sink nodes gradually become able to receive
data packets equally because potentials are updated to adapt
to the current flow rates. We can prove that the traffic conver-
gence is also accelerated by hierarchical optimal feedback.
This is because the potential convergence speed is enhanced
by the hierarchical optimal feedback mechanism.

One problem we can find is that our proposal reduces the
average number of data packets delivered to each sink node
immediately after traffic changes. This problem originates
from the optimal feedback mechanism (the same problem
occurs in the previous mechanism [3]). In details, some sink
nodes temporarily have the largest potential values within
their communication ranges according to the control inputs,
so data packets cannot arrive at sink nodes. Therefore, data
packet would drop when the controller makes large changes
to the potentials, while contributing to the faster convergence
speed of potentials. However, the data packet drops are
immediately reduced and the traffic finally converges faster
than the non-control scheme because of the faster potential
convergence. Note that in an actual situation data packets
may be retransmitted instantly. Here, we evaluate only the
case where data packets are never retransmitted because the
main purpose of this paper is to reveal the upper limit of
convergence speed of self-organizing systems.

In this evaluation, we show that our proposal enhanced
the convergence speed of potentials with the much lower
computational cost than the previous scheme [3]. That means
that self-organization can be controlled for faster conver-
gence while retaining the scalability which is an inherent
and significant characteristic of self-organizing systems by
introducing the hierarchical optimal feedback mechanism.

V. CONCLUSION AND FUTURE WORK

We propose and evaluate potential-based routing with
hierarchical optimal feedback, where two types of con-
trollers, i.e., a central controller and sub-controllers, control
the system in a hierarchical manner for faster convergence.
Simulation result shows that the hierarchical feedback mech-
anism enhances the convergence speed of potentials without

spoiling the scalability of self-organizing systems.
On the contrary, our proposal remains some challenging

tasks. The communication delays for collecting the potential
information are not considered in the evaluation of Sec-
tion IV. Moreover, the optimal control improves the conver-
gence speed of potentials but causes potential fluctuations
as shown by simulation results. These fluctuations lead to
data packet drops because sink nodes temporally have the
highest potentials among their neighbors. There are trade-
off between the improvement of the potential convergence
speed and potential fluctuations. Furthermore, the potential
convergence is achieved as a result of the iterative behavior,
i.e., the controller’s optimal feedback and nodes’ potential
updates, so that potential cannot converge if environmental
changes occur more frequently than the iterative behavior.
We will investigate these points thoroughly in the future.

For future work, we will investigate controlled self-
organization on interdependent networks, where several dif-
ferent networks interact with each other. Completely isolated
networks rarely exist in the real world and networks are
typically interconnected to the others like transportation net-
works, power grids and the Internet. Therefore, we need to
consider influences of interactions among several networks
for understanding and managing networks.
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