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Abstract—Attacks against websites are increasing rapidly with
the expansion of web services. More and more diversified web
services make it difficult to prevent such attacks due to many
known vulnerabilities in websites. To overcome this problem, it
is necessary to collect latest attacks using decoy web honeypots
and to implement countermeasures against malicious threats.
Web honeypots collect not only malicious accesses by attackers
but also benign accesses such as those by web search crawlers.
Thus, it is essential to develop a means of identifying malicious
accesses automatically from mixed collected data including both
malicious and benign accesses. In this study, we have focused
on detection of crawlers whose accesses has been increasing
rapidly. A related study proposed a crawler detection scheme
in which crawlers are identified based on the features of well-
known crawlers such as Google crawlers. However, the diversity
of crawler accesses has been increasing rapidly, and adapting to
that diversity is a challenging task. Therefore, we have adapted
AntTree, a bio-inspired clustering scheme that has high scalability
and adaptability, for crawler detection. Through our evaluations
using data collected in a real network, we show that AntTree can
detect crawlers more precisely than a conventional scheme.

Index Terms—Intrusion detection, web-based attacks, ant-based
clustering, feature vector

I. INTRODUCTION

Web-based attacks on web servers that provide web services
are increasing rapidly as the Internet becomes an increas-
ingly important infrastructure and web services become more
widespread. Moreover, cyber-terrorism targeting governments,
corporations, and other large organizations is increasing, which
is becoming a serious problem. However, it is difficult to detect
all vulnerabilities in web servers, which can be targets of
web-based attacks, due to the rapid growth in the diversity of
web services. In other words, detecting attacks using known
vulnerabilities is insufficient for preventing all web-based
attacks. Therefore, we must collect and analyze information
on web-based attacks in order to detect unknown attacks.

To collect web-based attack information, systems called web
honeypots, which collect and monitor web attacks targeting
web servers, are deployed [1], [2]. There are two types of web
honeypots: low interaction and high interaction [3]. Low in-
teraction honeypots emulate vulnerable OSs and applications,
whereas high interaction honeypots accommodate actual OS
applications. High interaction web honeypots can actually be
under attacks, and are therefore used to collect and analyze
a variety of web-based attacks [1], [2]. In this paper, the

honeypots referred to are high interaction web honeypots.
Honeypots monitor not only malicious accesses but also

normal accesses such as crawler accesses by search engines.
Therefore, we need to identify the malicious accesses from a
large number of collected accesses. Researchers and engineers
usually identify malicious accesses manually in most cases,
but this is becoming difficult due to the rapid increase in
traffic. Therefore, a method to identify malicious accesses
automatically is necessary. A related study proposed a method
of detecting web attacks that involves first identifying accesses
by crawlers and then assuming the others to be malicious
accesses [1]. In this scheme of crawler classification, the
authors first identify accesses by well-known crawlers such
as Google and then identify similar accesses as accesses by
other crawlers. However, as web services become increasingly
diverse, accesses by web crawlers that browse web pages for
web service indexing are also becoming diverse. This leads
to more difficulty in detecting crawlers using only known
information. Consequently, adapting to such diverse accesses
is a challenging task for crawler classification.

In this study, we adopted a bio-inspired clustering scheme
for the crawler classification. Natural organisms behave in-
dividually and autonomously using only local information,
and as a result, a global pattern or behavior emerges at a
macroscopic level. Therefore, such mechanisms are advanta-
geous for classifying a lot of data and for detecting unknown
malicious threats. Because of these advantages, bio-inspired
clustering schemes have been studied by many researchers [4].
In this paper, we use AntTree [5], [6], an ant-based clustering
scheme, for crawler classification because ants are typical
social insects, and application of models based on their be-
havior is a major research theme. AntTree was inspired by
the behavior exhibited by ants in which they form chains with
each other to construct a tree structure. In our application,
a tree structure enables us to easily interpret and analyze
individual clusters of nodes (data). Moreover, AntTree, of
course, retains high scalability and adaptability, which are
inherent characteristics of bio-inspired mechanisms. We show
that AntTree can identify crawlers more precisely than a
conventional scheme [1] can through an evaluation done using
communication logs collected in a real network.

The remainder of this paper is as follows. We introduce
related work in Section II and explain AntTree in Sec-



tion III. Then, we propose a crawler classification scheme
using AntTree in Section IV, and in Section V, we explain
our evaluation of our proposed scheme using communication
logs collected in a real network. Finally, we conclude the paper
and briefly discuss future work in Section VI.

II. RELATED WORK

In this section, we introduce previous studies about web-
based attacks and bio-inspired clustering.

A. Web Attack Detection

There are two kinds of methods to detect web attacks:
signature detection, which uses signatures from known mali-
cious threats, and anomaly detection, which detects unknown
malicious threats by collecting and analyzing web attacks. The
rapid expansion in the number of web applications makes
it difficult to detect all vulnerabilities in the applications.
Therefore, it is necessary to collect and analyze accesses
in order to detect unknown attacks. One method achieves
that purpose by capturing traffic on the PCs and servers
of users [7], [8], and another method collects web attacks
by utilizing honeypots [9]. The former method enables us
to detect malicious accesses precisely, but there are some
problems in implementing this kind of method. For example,
traffic captures invade the user’s privacy and reduce the service
quality. Therefore, the latter one is more appropriate, and we
focus on it in this paper.

B. Bio-inspired Clustering

Swarms of certain animals such as ants, birds, and fish seem
to behave intelligently at a macroscopic level, although each
component behaves individually and autonomously based only
on local information and simple rules. Because of their high
scalability, adaptability, robustness, and flexibility, bio-inspired
mechanisms are applied in various fields such as industry,
chemistry, and economics. Such mechanisms are also applied
to clustering schemes. Typical examples include clustering
schemes based on particle swarm optimization (PSO) [10] and
ant colony optimization (ACO) [11]. Such bio-inspired clus-
tering schemes are suitable for web attack detection because
of the following three reasons:

1) for classifying large volumes of data with a low com-
putation cost,

2) for detecting unknown malicious threats,
3) for adapting to dynamically changing traffic (including

normal and malicious traffic).

III. ANTTREE

In this section, we explain AntTree [5], [6], which we
adopt to detect accesses by crawlers. AntTree is an ant-
based clustering scheme that was inspired by the coordinated
behavior exhibited by ants in which they form chains with each
other to construct a tree structure. This coordinated behavior is
shown in swarms of Linepithema humile (Argentine ants) and
Oecophylla longinoda (weaver ants). Oecophylla longinoda
ants construct the tree structure in order to make a bridge
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Fig. 1. AntTree

across an open space, e.g., between leaves or branches, and to
build their nest with leaves [12].

A. Overview

AntTree is a clustering scheme in which data that imitate
ants chain with other data according to their similarity to
construct a tree structure.

In AntTree, one piece of data corresponds to a mobile agent
called an ant. These ants chain together to construct a tree
structure as shown in Fig. 1. At first, all ants are mobile and
exist in the root of the tree, which is called the support. Then,
the ants start to move away from the support one by one.
When an ant starts to move away from the support, it moves
among ants that are already connected to the tree (nodes),
comparing itself with its neighbor nodes. If the current node
is the most similar to the ant within its neighbor nodes, the ant
stops moving and becomes a descendant node of the current
node. When the ant is connected to the tree, the following ant
starts to move away from the support. Note that in this paper,
neighbors refers to the nodes where the ant currently exists as
well as its parent/descendant nodes.

In this scheme, the similarity between ants ai and aj (i, j ∈
[1, · · · , N ], where N is the number of ants) is shown
by Sim(ai, aj) (∈ [0, 1]). Ant ai has similarity thresh-
old TSim(ai) and dissimilarity threshold TDissim(ai). When
comparing itself with ant aj , ant ai assumes that it is sim-
ilar to aj if Sim(ai, aj) ≥ TSim(ai) is satisfied. On the
other hand, ant ai assumes that it is not similar to aj if
Sim(ai, aj) < TDissim(ai) is satisfied. Thresholds TSim(ai)
and TDissim(ai) are updated while ant ai moves around the
tree, and they finally converge to the values that are proper
for exploring similar nodes.

B. Algorithm

In this subsection, we explain the behavior of ants in detail.
At first, the tree only consists of the support, and all ants

exist on it. Then, the first ant starts to move and becomes a



descendant node of the support. While the first ant is connected
to the support, the next ant starts to move away from the
support.

The following ant ai first compares itself with the descen-
dant nodes of the support. If there are similar nodes to ant ai,
i.e., there are nodes aj that satisfy Sim(ai, aj) ≥ TSim(ai),
within the descendant nodes of the support, ai moves to the
descendant node that is most similar to ai. In contrast, if all
descendant nodes are not similar to ant ai, i.e., Sim(ai, aj) <
TDissim(ai) is satisfied for all descendant nodes aj , ai be-
comes a new descendant node of the support and stops moving.
When ant ai is connected to the support, the next ant starts to
move. Note that the maximum number of descendant nodes of
each node (including the support) is limited to l. Therefore, if
the support already has l descendant nodes, ant ai decreases its
similarity threshold TSim(ai) by using (1), which is explained
later, and moves to the descendant node whose similarity
to ai is the highest. Otherwise, ant ai updates its similarity
threshold TSim(ai) and dissimilarity threshold TDissim(ai) by
using (1) and (2) and then moves to the descendant node whose
similarity to ai is highest.

TSim(ai)← TSim(ai)× α1, (1)
TDissim(ai)← TDissim(ai) + α2. (2)

In the case where ant ai compares itself with ant aj , ai is
likely to be classified in other clusters if similarity thresh-
old TSim(ai) is high and dissimilarity threshold TDissim(ai)
is high. On the other hand, ants are likely to be classified in
the same cluster if both TSim(ai) and TDissim(ai) are low.
At first, TSim(ai) is initialized to 1 and TDissim(ai) to 0.
Ants update these thresholds while moving around the tree,
and the ants finally obtain the proper values. α1 and α2 are
parameters that determine the decrease amount of TSim(ai)
and the increase amount of TDissim(ai), respectively, on their
updates. With higher α1 and α2, ants can find similar or
dissimilar nodes faster, which increases the clustering speed
but reduces the accuracy of detection.

When ant ai arrives at nodes apos except for the support,
ai first compares itself with apos. If ant ai is similar to
node apos, i.e., Sim(ai, a

pos) ≥ TSim(ai) is satisfied, ai then
compares itself with neighbor nodes of node apos. If none of
the neighbor nodes are similar to ant ai, i.e., Sim(ai, aj) <
TDissim(ai) is satisfied for all neighbor nodes aj , ai becomes
a new descendant node of node apos and stops moving. If
node apos already has l descendant nodes, ant ai randomly
moves to a neighbor node. In contrast, if there are nodes aj
that do not satisfy Sim(ai, aj) < TDissim(ai), ant ai updates
TSim(ai) and TDissim(ai) by (1), (2) and then randomly
moves to a neighbor node.

If ant ai arrives at nodes apos and Sim(ai, a
pos) ≥

TSim(ai) is not satisfied, ai randomly moves to a neighbor
node.

IV. CRAWLER CLASSIFICATION USING ANTTREE

In this section, we explain how to classify crawlers using
AntTree.
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Fig. 2. Cluster interpretation for AntTree (h = 2)

A. Similarity

In AntTree, the similarity Sim(ai, aj) between ants ai
and aj is a metric used by moving ants for exploring and
constructing a tree structure as explained in Section III. As
in [5], we define Sim(ai, aj) by (3) using the Euclidean
distance d(ai, aj) between ants ai and aj .

Sim(ai, aj) = 1− d(ai, aj). (3)

The higher similarity Sim(ai, aj) is, the more similar ants ai
and aj are. When an ant (a datum) has M features
{vi1 , · · · , viM }, d(ai, aj) is given by

d(ai, aj) =

√√√√ 1

M

M∑
k=1

(vik − vjk)
2. (4)

The feature vector we designed for classifying crawlers is
explained in Subsection V-C.

B. Cluster interpretation

We assume that a cluster corresponds to a subtree whose
root is an h depth node of the tree constructed by AntTree.
Figure 2 shows an example of cluster interpretation of AntTree
with h = 2.

Each cluster is classified according to which type of data
is a majority in the cluster. For example, if the number of
crawler nodes is larger than other nodes within a cluster, the
cluster is classified to the Crawler cluster, as shown in Fig. 2.
If the number of crawler nodes are equal to that of non-crawler
nodes in a cluster, the cluster is classified to the type of the
root node of the cluster.

V. EVALUATION AND DISCUSSION

A. Overview

Here, we discuss the evaluation of crawler classification
using AntTree using communication logs collected in a real
network. Communication logs of accesses by Google are
easy to identify because Google opens the information of its
crawlers to the public. Therefore, we first identify the Google



TABLE I CONNECTION LOGS COLLECTED BY HONEYPOTS

Label Number
Google 8,276,246
Crawler 1,502,254

Non-crawler 11,547,739
Other 710,708
Total 22,036,947

crawlers and then classify communication logs of accesses by
other crawlers. We explain the data set and the feature vector
in Subsections V-B and V-C, respectively.

In this evaluation, we compared the crawler classification
using AntTree with the conventional scheme proposed in [1].
In the conventional scheme, crawlers are classified in accor-
dance with the features of well-known crawlers. In this evalua-
tion, we used Google as well-known crawlers because Google
crawlers are easy to identify using public information. Then,
we classified communication logs with other crawlers using
the features of Google crawlers. We used RandomForest [13]
as the classification algorithm to evaluate the conventional
scheme.

Note that we used a program written in C++ for the
evaluation of AntTree, and RapidMiner 5 for the evaluation
of the conventional scheme.

B. Data Set

We used HTTP communication logs collected in a real
network for our evaluation. These logs were collected by
37 honeypots [14] from August 29, 2013 to January 14,
2014. Each log included information of request packets that
honeypots receive and the responses of honeypots to these
request packets. We attached the following labels to about
220.3 million logs collected by honeypots.

• Google (about 8.2 million): Communication logs of ac-
cesses by Google crawlers are labeled Google. Google
logs are classified in accordance with source IP addresses
and UserAgents, which Google opens to the public.

• Crawler (about 1.5 million): Communication logs with
crawlers other than Google are labeled Crawler. Crawler
logs are classified in accordance with source IP addresses
and UserAgents that researchers and engineers detect by
manually analyzing communication logs. Some examples
of the detected crawlers include Baidu, Bing, and Mi-
crosoft.

• Non-crawler (about 11 million): Communication logs
with others are labeled Non-crawler. Non-crawler logs
include malicious logs.

• Other (about 0.71 millions): Other logs correspond to
communication logs that are not categorized to either of
the aforementioned labels. Most Other logs lack informa-
tion for their analysis. Therefore, we did not use Other
logs in the evaluation.

We used 3,004,508 communication logs including
1,502,254 Crawler logs and 1,502,254 Non-crawler logs
as the test data set for this evaluation. Note that we sampled
and used only 1,502,254 Non-crawler logs out of all of

TABLE II NUMBER OF FEATURES

Feature Number
Request 89

Response 37
Total 126

the Non-crawler logs. In order to evaluate the performance
regardless of the access distribution over time, we sampled
Non-crawler logs randomly.

In the crawler detection scheme [1], the authors firstly
identify well-known crawlers in accordance with source IP ad-
dresses and UserAgent, and then identify other accesses having
similar features to well-known crawlers as other crawlers. To
quantitatively compare the crawler classification using AntTree
with that of the conventional scheme [1], we classified crawlers
as follows in the evaluation of the conventional scheme.

1) We used Google as the well-known crawlers and ran-
domly sampled 1,502,254 Google logs. Then, we used
3,004,508 logs including 1,502,254 Google logs and
1,502,254 Non-crawler logs as the learning data set.

2) We produced the classification model using the learning
data set with RandomForest. In the evaluation of the
conventional scheme, we used the same feature vector
as that of AntTree explained in Subsection V-C.

3) We classified the test data set in accordance with the
classification model. That is, we classified Crawler logs
in accordance with the features of Google logs.

C. Feature Vector

We designed a feature vector and used it for crawler
classification. There are two types of features: information on
request packets and responses to those request packets.

• Request packets:
Information on HTTP request packets that the honeypots
received. Specifically, we use the following information
for the crawler classification.

– Request information: the request URL, the commu-
nication method (GET, POST, etc.)

– Packet header: the UserAgent, the referer, the
source/destination port number, the communication
protocol (HTTP or HTTPS)

– Packet body: the body length
• Responses to request packets:

Information on responses of honeypots to request pack-
ets. In detail, we use the following information for the
classification.

– Response type: StatusCodes (200, 404, etc.) defined
in RFC 2616

– Response information: text types (HTML, CSS, etc.)
and character encodings (UTF-8, ISO-8859-1, etc.)
of content included in response packets if the hon-
eypots send them

All features are normalized and described by real values
in [0, 1] for equalizing the weights of features. Feature vij of



TABLE III PARAMETER SETTINGS OF ANTTREE

Parameter Value
l 5
h 3
α1 0.95
α2 0.20

TABLE IV ANTTREE

Prediction RecallCrawler Non-crawler

Label Crawler 1,259,976 242,278 83.87%
Non-crawler 76,417 1,425,837 94.91%

Precision 94.28% 85.48%

TABLE V CONVENTIONAL SCHEME [1]

Prediction RecallCrawler Non-crawler

Label Crawler 1,241,437 260,817 82.64%
Non-crawler 105,952 1,396,302 92.95%

Precision 92.14% 84.26%

data i (i ∈ [1, · · · , N ], j ∈ [1, · · · ,M ]) is normalized by

vij −minn∈[1,··· ,N ] vnj

maxn∈[1,··· ,N ] vnj −minn∈[1,··· ,N ] vnj

.

As an example of features, we explain how to use request
URLs included in request packets as features.

1) We use the number of characters of the request URL as
a feature.

2) We separate the request URL into path and query parts.
The path part gives the location (path) of the requested
resource, and the query part specifies parameters. Then,
we use the following values as features.

• The number of levels of the path requested in the
path part and the average number of characters of
each level of the path.

• The number of parameters specified in the query
part, and the average number of characters of each
parameter.

3) We describe the request URL in the form of the reg-
ular expression [15] for converting text information to
numerical information. We use the types of character
strings (string, integer, hex, etc.) and the ratios of strings
of each type in the regular expression as features.

The number of features used in this evaluation is indicated in
Table II.

D. Results and Discussion

Here, we discuss our evaluation in which we compared the
crawler classification performance of AntTree and the conven-
tional scheme. In this evaluation, we used recall and precision
as evaluation metrics. The definitions of these metrics are as
follows.

• Recall: the fraction of data that are correctly classified
within data to which the same label is attached. Given

set LA of data with label A and set CA of data classified
to A, recall of A is calculated by

Recall =
|LA

∩
CA|

|LA|
.

• Precision: the fraction of data that are correctly classified
within data classified to the same category. Given LA and
CA, the precision of A is calculated by

Precision =
|LA

∩
CA|

|CA|
.

The results of the crawler classification using AntTree and
the conventional scheme are given in Tables IV and V, respec-
tively. In these tables, label corresponds to the label attached
to each log, as explained in Subsection V-B, and prediction
corresponds to the result of classification by AntTree or the
conventional scheme.

As shown in the Tables, the precision and recall of Crawler
and Non-crawler are higher with AntTree than with the con-
ventional scheme. This indicates that Crawler logs can be clas-
sified more precisely by using AntTree than the conventional
scheme. This is because it is difficult to identify all crawlers
according to the features of well-known crawlers (in this
evaluation, Google crawlers) due to the diversity of crawler
accesses. On the contrary, AntTree is effective for classifying
various accesses because similar logs are classified to the
same cluster in AntTree whether their features are known or
unknown.

Moreover, we found through this evaluation that AntTree
can classify data whose features are minor in the entire data set
although these minorities of features often make us to overlook
them. because each datum explores similar kinds of data using
only local information while moving over the tree. Therefore,
AntTree can detect new types of accesses from just a few
communication logs, which makes AntTree able to adapt to
dynamical changes of features of accesses. We will investigate
this point thoroughly in the future.

In conclusion, AntTree, a bio-inspired clustering scheme,
can classify crawlers more accurately than the conventional
scheme can and is suitable for classifying various accesses.

VI. CONCLUSION AND FUTURE WORK

Due to the rapid growth in the diversity of web services, it
is becoming increasingly difficult to classify a large number
of communication logs using only known features that are
detected manually. In this study, we adopted AntTree, an ant-
based clustering scheme, to achieve crawler classification that
can adapt to a diverse range of web services. Our evaluation
results indicated that AntTree can classify crawlers more
accurately than the conventional scheme.

As a future task, we will evaluate AntTree by considering
the changes in communication features. Meanwhile, statistical
information of communication logs, e.g., the intervals and
the distribution of packet arrivals, would be an important
cue for detecting crawlers and web-based attacks. Therefore,



we will use such statistical features for the classification of
communication logs.
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