Evaluation of the degree correlation’s impact on information diffusion in
modular networks

Shu Ishikura, Daichi Kominamt, and Masayuki Murata

tGraduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
tGraduate School of Economics, Osaka University
1-7 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
Email: {s-ishikura,murat@@®ist.osaka-u.ac.jpgd-kominami@econ.osaka-u.ac.jp

Abstract—The human brain can handle a wide varietythe other hand, in a network with low assortativity (dis-
of tasks adaptively. In the human brain, anatomical corassortative mixing), nodes thatfidir much from their de-
nections make a characteristic network that has high topgree are preferentially connected each oth&enerally,
logical dficiency and robustness while minimizimgring  an assortative-mixing network is robust against selective
cost. These advantages have been obtained in the prmde failure and accelerates the spreading of information
cess of brain growth and evolution. The human brain neggenerated from high-degree nodes [6Brain networks
work has some topological features as seen in complex nshhow modular structure, where densely connected groups
works, such as small-world properties, hierarchical modwsf nodes construct modules and they are sparsely connected
larity, distinctive degree correlation. However, these topowith each other, and each module presents assortative mix-
logical features are little known to what contributes to braimng [5]. However, in previous research, the degree correla-
itself. In this paper, we focus on the hierarchical modution between modules has not been considered.
lar structure and the degree correlatiortted human brain ~ We focus on the network with modular structure and ex-
network. We show what the benefits of these topologicadmine the impact of degree correlation within and between
properties are in terms of informationfidision. We also modules in terms of robustness and information spreding.
discuss the application of them into information networksFor this purpose, we make networks that haedént as-

sortativity and analyze them through some metrics: (1) the
) average hop length, (2) robustness against selective node
1. Introduction failure, in which the highly connected nodes are selec-

. . tively removed, (3) the edge betweenness centrality [7], and
The human brain can tackle a large variety of tasks ada ) ved (3) 9 W ity [7]

. . . ~“(4) each node’s importance on informatioffdsion [8, 9].
tively [1,2]. Recently, due to the advances in neuroimagin ) P [8,9]

: X .9 First, we focus on a single-module network and reveal
tech_nlques, the human brain can be analyzed by much f'%re basic properties of an assortative network. Then, we
spatial resolution. Then, a structural network of the brai '

, : thrget at a connected two-module networdthough we
represented by the anatomical connections among the

X ; ; . %’alyze various networks with respect to degree distribu-
gion of interest has been studieguch brain networks are tions, in this paper we show the result of the undirected

fou_nd to ha\{e. h'gh. f[opologlcal feciency and robustness scale-free (SF) network due to space limitations.
while minimizing wiring cost [3,4]. These advantagase
considered to havbeenobtainedin the process ofiuman
growth and evolution [3]. 2. Method

The brain network has the topological features seen in
complexnetworks—suclas small-world properties and hi- The assortativity of a network is proposed by Newman
erarchical modular structure [2, BJthough small-world ~as the assortativity cdiécient [7]. The assortativity coef-
properties of brain networkare known to leado their ficientis calculated from the remaining degree distribution
communication ficiency [3, 5], their topological advan- (k) defined by
tages brought by the hierarchical modularity are unre-
vealed. Opinions aredivided: it brings about communi- K = (k+1)p(k+1) )
cation dficiency, robustness, maintaining dynamical activ- % ip()
ity, and adaptive evolution [2, 5]t is significant to reveal
how these topological properties contribute to the function The remaining degree distribution is related to the de-
of brain networks for understanding the human brain angree distributionp(k), which describes the probability that
for its technological application. the degree of a randomly chosen nodk.ighe remaining

In this paper, taking the modular structure into accountjegree means the number of edges leaving the vertex other
we focus on the distinctive degree correlation of brain nethan the one we arrived along. That is, this is less than
works, calledassortativity Assortativityrepresents the de- node’s degree by one. Giveyfk), joint probability distri-
gree correlations between connected ndéés If a net- bution q(j, k) can be introduced, which means the proba-
work shows high assortativity (assortative mixing), nodebility that two endpoints of a randomly chosen edge have
with similar degree tend to be connected each otl@@m. remaining degrek and j, respectively. Then, assortativity



codficientr is defined as following. that has 100 nodes and 295 edgegerated by BA model,

1 5 where a node has at least 3 edgHsen the initial value of
1 ika(i. K) — ( . ) } 2 is —0.12._ When we try tp rewire the edges of this network,
(rg Z Jhe(1. k) Zjl Ja(1) @ assortativity varies within a range e0.67 < r < 0.58.

r =

jk
Figure 1 shows that asbecomes larger, the average hop

whereo is the standard deviation of the remaining degre : .
ditiuton(k). The fango of values f1acan take s ohcl1C'€228% Note et he average hop ength rancly
[_.1’ 1]. It takes positive yalue when th_e network is assOly increase in the average hop length often means perfor-
tative. On the contrary, it takes negative value when thr%ance degradation
network is disassortative. '
Here, we define the degree correlation of the edges be- |
tween modules. As can be seen in the studies on multiplex i
networks and interdependent networks [10], degree corre- 7
lations between networks are often evaluated as well as a
single-module network. In this paper, we follow them, that
is, we calculate the inter-module degree correlation by usg s g
ing the remaining degrees of endpoint nodes of the edges
between modules. P

T
f

erage

To construct networks with ffierent assortativity, we re- 3 i
peatedly rewire two edges of the original SF network by thez B4 R A
following way. First, we randomly choose two edges that 2
do not share the same endpoint. Then, two pair of nodes are ;
rewired so that approaches the desired value. For exam-
ple, to raise assortativity, two nodes whose degree is higher ;3 o6 04 02 o 02 04 06
than the others are wired. Note that this rewiring method Assortativity
changes assortativity without changing the degree dlstrlbq:igure 1: Average hop length in a single-module network

tion.
As for the assortativity of connections between modules,
we connect two networks by the following wiring method. To clarify the reason why the average hop length in-
First, in each network, four highest-degree nodes and fogfeases, we show the topology whose assortative is the
lowest-degree nodes are selected. To make connectionsh@hest in Figure 2. In this topology, almost all of nodes
networks with assortative mixing, edges connect two nodggith the same degree are connected with each other and
that belong to respective module and have a similar degrefiake a cluster. And clusters are concatenated in order of
By contrast, to connect modules for disassortative mixinglegree. Generally, a chain-like topology has a longer av-
edges connect two nodes that have a dissimilar degree. erage hop length (unlike the small-world topology), and

Metrics for our evaluation are (1) the average hop lengthherefore, a highly assortative topology has a longer aver-
(2) robustness on selective node failure, (3) the edge bgge hop length.

tweenness centrality, and (4) each node’s importance on
information difusion. Robustness is evaluated by the giant 4-degree nodes
component size when some nodes are removed. Note that-gegree nodes
removed node is selected from the highest degree nodes in
the remaining network. The edge betweenness centrality is
defined as the number of the shortest paths that go through
an edge in a network. We use the SIR model to model the
diffusion of information. In this model, each node is either
susceptible (S), infected (1), or recovered (R). An infected
node passes diseases to neighbor nodes with probahility
and recovers itself with probability. Consequently, all in-
fected nodes will be recovered. This means, the network is
composed of susceptible nodes amdecovered nodes at
the end. The rate of recovered nodes in the network shows
the scale of epidemic. By setting each node as the infected

node at the initial step, we use this scalg 4s each node’s 8 or more-degree nodes
importance on information dusion. Figure 2: Topology with the maximum assortativity
3. Results

Figure 3 shows the giant component size of networks
with different assortativity when nodes are removed in de-
scending order of degree. A decrease tendency of giant

In this subsection, we investigate a single network (oneomponent size depends on the assortativity. As stated
module) with various assortativity. We use a SF networkbove, an assortative topology has some clusters that are

3.1. Single-module network



of information difusion.

100 T
r.original ——
r:0.58
5 \ o — 3.2. Two-module network
r:0
2 \ fs03 In this subsection, we investigate the network consisting
2 6 ' of two same modules between which 8 edges eXiston-
°g; \ struct the two-module network, we use the modules con-
E \ structed in the previous subsection 3.1 so that-All3
= % and DM= -0.3.
.S
© \ \ Table 1: Average hop length in two-module network
20
. edges within a module
. \\ assortativity AM DM
0 20 40 60 80 100 AM | 3.80 3.34
Number of failure nodes edges between modulesDM 3.98 3.53

Figure 3: Giant component size in a single-module network

connected with each other like a chain. In our selective 12Ple 1 shows that high assortativity of edges between
node-failure scenario, node failure occurs from the highfodules shortens the average hop length contrary to the re-

degree side of this chain. Therefore, nodes which haveS4lt Of a single network. This is because edges between
lower degree remain to be connected with each other. THRodules little change the overall structure of a network.

is because an assortative topology is robust against sel&€om this perspective, assortativity of inter-module edges
is completely diferent from assortativity of intra-module

tive node failure. Meanwhile, a topology with higher as- L=y A ! )
sortativity has a smaller number of edges between clustefI9€s. Itis intuitive that the mositective edge connection
etween modules in terms of the hop count is to link hub

which decreases robustness. In other words, arise in as
tativity increases the ratio of the number of edges withiff®des because many shortest paths go through hub nodes

clusters to the number of edges between clusters. in the modules. Therefore, assortative edges between mod-
ules tend to shorten the average hop length.
Figure 5 shows that high assortativity of inter-module

1 . X o
oS connections enhances robustness. This is a natural result
. o from our selective node-failure scenario. Because all edges
g 08 between modules in case of disassortative connections at-
5 _— tach to higher degree nodes, selective node failures soon re-
@ 06 move such nodes (namely, edges between modules), which
(=} . .
% L results in fragmentation.
o
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Figure 4: Information-dtusion dficiency in a single-
module network

Giant component size

50

Each node’s importance on informationffdsion is
shown in Figure 4. We evaluate two networks having the 0
same average hop length buffdrent assortativity. In the 0 50 100 150 200
figure, x-axis shows nodes arranged in the increasing order Number of failure node
of &. Figure 4 shows that an assortative topology less difFigure 5: Giant component size in a two-module network
fuses information than a disassortative topology does. In
the SIR model, the probability that a nodefdses infor-
mation to other nodes depends on the number of neighborFigure 6 represents the edge betweenness centrality of
nodes. Since low degree nodes have a low probability ¢fiter-module edges. The edge betweenness centrality can
diffusing information, low degree nodes is unlikely to dif-be considered as communication loads on edges. Accord-
fuse information to the whole network. In an assortativéngly, Figure 6 shows that disassortative edges between
network, low degree nodes have few connections to higiiodules can distribute communication loads. When mod-

degree nodes, which lets the network have Idiiceency ules are connected assortatively, edges between high de-
gree nodes have a significant influence on communication




efficiency of the whole network. Owing to this, commu-and information spreading. On the assortativity of a sin-
nication loads are concentrated on such edges. On thke module, we revealed that an assortative module has a
other hand, when modules are connected disassortativdlyng average hop length, high robustness, and low infor-
communication loads are distributed over all inter-modulesiation difusion dficiency. As for the assortativity of inter-
edges because all inter-module edges connect a high degneadule, we revealed that assortative edges between mod-

node and a low degree node.

3500

HnaAM,ﬁmrAM A
intra AM, inter DM
3000 - intra DM, inter AM --------

> intra DM, inter DM
£
£ 2500 -
@ 2000
[}
c
=
3 1500
2
[
Qo
2 1000
=]
L

500

0

1 2 3 4 5 6 7 )

Edge
Figure 6: Edge betweenness centrality

4. Discussion

ules shortens the average hop length, enhances robustness
and do not distribute communication loads inter-modules.
Applying our results to the design of the topology in infor-
mation networks is our future work.
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