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Abstract—The human brain can handle a wide variety
of tasks adaptively. In the human brain, anatomical con-
nections make a characteristic network that has high topo-
logical efficiency and robustness while minimizingwiring
cost. These advantages have been obtained in the pro-
cess of brain growth and evolution. The human brain net-
work has some topological features as seen in complex net-
works, such as small-world properties, hierarchical modu-
larity, distinctive degree correlation. However, these topo-
logical features are little known to what contributes to brain
itself. In this paper, we focus on the hierarchical modu-
lar structure and the degree correlation ofthe human brain
network. We show what the benefits of these topological
properties are in terms of information diffusion. We also
discuss the application of them into information networks.

1. Introduction

The human brain can tackle a large variety of tasks adap-
tively [1,2]. Recently, due to the advances in neuroimaging
techniques, the human brain can be analyzed by much finer
spatial resolution. Then, a structural network of the brain
represented by the anatomical connections among the re-
gion of interest has been studied.Such brain networks are
found to have high topological efficiency and robustness
while minimizingwiring cost [3, 4]. These advantagesare
considered to havebeenobtainedin the process ofhuman
growth and evolution [3].

The brain network has the topological features seen in
complexnetworks–suchas small-world properties and hi-
erarchical modular structure [2, 3].Although small-world
properties of brain networksare known to leadto their
communication efficiency [3, 5], their topological advan-
tages brought by the hierarchical modularity are unre-
vealed. Opinions aredivided: it brings about communi-
cation efficiency, robustness, maintaining dynamical activ-
ity, and adaptive evolution [2, 5].It is significant to reveal
how these topological properties contribute to the function
of brain networks for understanding the human brain and
for its technological application.

In this paper, taking the modular structure into account,
we focus on the distinctive degree correlation of brain net-
works, calledassortativity. Assortativityrepresents the de-
gree correlations between connected nodes[6]. If a net-
work shows high assortativity (assortative mixing), nodes
with similar degree tend to be connected each other.On

the other hand, in a network with low assortativity (dis-
assortative mixing), nodes that differ much from their de-
gree are preferentially connected each other.Generally,
an assortative-mixing network is robust against selective
node failure and accelerates the spreading of information
generated from high-degree nodes [6].Brain networks
show modular structure, where densely connected groups
of nodes construct modules and they are sparsely connected
with each other, and each module presents assortative mix-
ing [5]. However, in previous research, the degree correla-
tion between modules has not been considered.

We focus on the network with modular structure and ex-
amine the impact of degree correlation within and between
modules in terms of robustness and information spreding.
For this purpose, we make networks that have different as-
sortativity and analyze them through some metrics: (1) the
average hop length, (2) robustness against selective node
failure, in which the highly connected nodes are selec-
tively removed, (3) the edge betweenness centrality [7], and
(4) each node’s importance on information diffusion [8,9].

First, we focus on a single-module network and reveal
the basic properties of an assortative network. Then, we
target at a connected two-module network.Although we
analyze various networks with respect to degree distribu-
tions, in this paper we show the result of the undirected
scale-free (SF) network due to space limitations.

2. Method

The assortativity of a network is proposed by Newman
as the assortativity coefficient [7]. The assortativity coef-
ficient is calculated from the remaining degree distribution
q(k) defined by

q(k) =
(k+ 1)p(k+ 1)∑

j jp( j)
. (1)

The remaining degree distribution is related to the de-
gree distributionp(k), which describes the probability that
the degree of a randomly chosen node isk. The remaining
degree means the number of edges leaving the vertex other
than the one we arrived along. That is, this is less than
node’s degree by one. Givenq(k), joint probability distri-
bution q( j, k) can be introduced, which means the proba-
bility that two endpoints of a randomly chosen edge have
remaining degreek and j, respectively. Then, assortativity



coefficientr is defined as following.

r =
1
σ2

q

[∑
j,k

jkq( j, k) −
(∑

j

jq( j)
)2]
, (2)

whereσq is the standard deviation of the remaining degree
distribution q(k). The range of values thatr can take is
[−1, 1]. It takes positive value when the network is assor-
tative. On the contrary, it takes negative value when the
network is disassortative.

Here, we define the degree correlation of the edges be-
tween modules. As can be seen in the studies on multiplex
networks and interdependent networks [10], degree corre-
lations between networks are often evaluated as well as a
single-module network. In this paper, we follow them, that
is, we calculate the inter-module degree correlation by us-
ing the remaining degrees of endpoint nodes of the edges
between modules.

To construct networks with different assortativity, we re-
peatedly rewire two edges of the original SF network by the
following way. First, we randomly choose two edges that
do not share the same endpoint. Then, two pair of nodes are
rewired so thatr approaches the desired value. For exam-
ple, to raise assortativity, two nodes whose degree is higher
than the others are wired. Note that this rewiring method
changes assortativity without changing the degree distribu-
tion.

As for the assortativity of connections between modules,
we connect two networks by the following wiring method.
First, in each network, four highest-degree nodes and four
lowest-degree nodes are selected. To make connections of
networks with assortative mixing, edges connect two nodes
that belong to respective module and have a similar degree.
By contrast, to connect modules for disassortative mixing,
edges connect two nodes that have a dissimilar degree.

Metrics for our evaluation are (1) the average hop length,
(2) robustness on selective node failure, (3) the edge be-
tweenness centrality, and (4) each node’s importance on
information diffusion. Robustness is evaluated by the giant
component size when some nodes are removed. Note that a
removed node is selected from the highest degree nodes in
the remaining network. The edge betweenness centrality is
defined as the number of the shortest paths that go through
an edge in a network. We use the SIR model to model the
diffusion of information. In this model, each node is either
susceptible (S), infected (I), or recovered (R). An infected
node passes diseases to neighbor nodes with probabilityβ,
and recovers itself with probabilityγ. Consequently, all in-
fected nodes will be recovered. This means, the network is
composed of susceptible nodes and/or recovered nodes at
the end. The rate of recovered nodes in the network shows
the scale of epidemic. By setting each node as the infected
node at the initial step, we use this scale (E) as each node’s
importance on information diffusion.

3. Results

3.1. Single-module network

In this subsection, we investigate a single network (one
module) with various assortativity. We use a SF network

that has 100 nodes and 295 edgesgenerated by BA model,
where a node has at least 3 edges.Then the initial value ofr
is −0.12. When we try to rewire the edges of this network,
assortativity varies within a range of−0.67≤ r ≤ 0.58.

Figure 1 shows that asr becomes larger, the average hop
length increases. Note that the average hop length rapidly
increases within a range ofr ≥ 0.5. In network systems,
an increase in the average hop length often means perfor-
mance degradation.
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Figure 1: Average hop length in a single-module network

To clarify the reason why the average hop length in-
creases, we show the topology whose assortative is the
highest in Figure 2. In this topology, almost all of nodes
with the same degree are connected with each other and
make a cluster. And clusters are concatenated in order of
degree. Generally, a chain-like topology has a longer av-
erage hop length (unlike the small-world topology), and
therefore, a highly assortative topology has a longer aver-
age hop length.

Figure 2: Topology with the maximum assortativity

Figure 3 shows the giant component size of networks
with different assortativity when nodes are removed in de-
scending order of degree. A decrease tendency of giant
component size depends on the assortativity. As stated
above, an assortative topology has some clusters that are
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Figure 3: Giant component size in a single-module network

connected with each other like a chain. In our selective
node-failure scenario, node failure occurs from the high-
degree side of this chain. Therefore, nodes which have a
lower degree remain to be connected with each other. This
is because an assortative topology is robust against selec-
tive node failure. Meanwhile, a topology with higher as-
sortativity has a smaller number of edges between clusters,
which decreases robustness. In other words, a rise in assor-
tativity increases the ratio of the number of edges within
clusters to the number of edges between clusters.
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Figure 4: Information-diffusion efficiency in a single-
module network

Each node’s importance on information diffusion is
shown in Figure 4. We evaluate two networks having the
same average hop length but different assortativity. In the
figure, x-axis shows nodes arranged in the increasing order
of E. Figure 4 shows that an assortative topology less dif-
fuses information than a disassortative topology does. In
the SIR model, the probability that a node diffuses infor-
mation to other nodes depends on the number of neighbor
nodes. Since low degree nodes have a low probability of
diffusing information, low degree nodes is unlikely to dif-
fuse information to the whole network. In an assortative
network, low degree nodes have few connections to high
degree nodes, which lets the network have low efficiency

of information diffusion.

3.2. Two-module network

In this subsection, we investigate the network consisting
of two same modules between which 8 edges exist.To con-
struct the two-module network, we use the modules con-
structed in the previous subsection 3.1 so that AM= 0.3
and DM= −0.3.

Table 1: Average hop length in two-module network

assortativity edges within a module
AM DM

edges between modulesAM 3.80 3.34
DM 3.98 3.53

Table 1 shows that high assortativity of edges between
modules shortens the average hop length contrary to the re-
sult of a single network. This is because edges between
modules little change the overall structure of a network.
From this perspective, assortativity of inter-module edges
is completely different from assortativity of intra-module
edges. It is intuitive that the most effective edge connection
between modules in terms of the hop count is to link hub
nodes because many shortest paths go through hub nodes
in the modules. Therefore, assortative edges between mod-
ules tend to shorten the average hop length.

Figure 5 shows that high assortativity of inter-module
connections enhances robustness. This is a natural result
from our selective node-failure scenario. Because all edges
between modules in case of disassortative connections at-
tach to higher degree nodes, selective node failures soon re-
move such nodes (namely, edges between modules), which
results in fragmentation.
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Figure 5: Giant component size in a two-module network

Figure 6 represents the edge betweenness centrality of
inter-module edges. The edge betweenness centrality can
be considered as communication loads on edges. Accord-
ingly, Figure 6 shows that disassortative edges between
modules can distribute communication loads. When mod-
ules are connected assortatively, edges between high de-
gree nodes have a significant influence on communication



efficiency of the whole network. Owing to this, commu-
nication loads are concentrated on such edges. On the
other hand, when modules are connected disassortatively,
communication loads are distributed over all inter-modules
edges because all inter-module edges connect a high degree
node and a low degree node.
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Figure 6: Edge betweenness centrality

4. Discussion

On the assortativity of a single-module network, we re-
vealed that an assortative module has a long average hop
length, high robustness, and low information diffusion effi-
ciency. Also, as for the average hop length and robustness,
excessively high assortativity gives a bad influence on the
network. As for information diffusion, an assortative net-
work has lower performance than a disassortative network,
however, from another perspective, assortative network is
robust against the spreading of harmful information, e.g.,
virus infections. Indeed, we analyzed the module of the
brain network which is provided in [11]. Then, average
assoratativity of modules is 0.23, which is not excessively
high. From our results, it probably means that the mod-
ule in brain networks adjust assortativity for the efficiency
and robustness. Additionally, although it is just our specu-
lation, this non-efficiency of information diffusion prevents
unnecessary information diffusion. a node in brain network
do not diffuse information to indifferent nodes.

Then, we discuss about inter-module assortativity. We
revealed the following facts. An assortative edge between
modules shortens the average hop length and enhances
robustness. A disassortative edge between modules dis-
tributes communication loads of inter-module edges. How-
ever in both cases, there are several defects. So we should
derive a way to connect modules. For example, in the case
of connecting modules assortatively, we can adjust link ca-
pacity for communication loads.

5. Conclusion

In this paper, we examined the impact of degree corre-
lation within and between modules in terms of robustness

and information spreading. On the assortativity of a sin-
gle module, we revealed that an assortative module has a
long average hop length, high robustness, and low infor-
mation diffusion efficiency. As for the assortativity of inter-
module, we revealed that assortative edges between mod-
ules shortens the average hop length, enhances robustness
and do not distribute communication loads inter-modules.
Applying our results to the design of the topology in infor-
mation networks is our future work.
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