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Abstract—Hierarchical traffic control is a promising approach
for improving scalability in the face of network size. In this
scheme, multiple controllers are introduced in a network, and
these hierarchically decide operations. At the bottom layer,
controllers decide specific operations in a small area, while
controllers at the upper layer decide inter-area operations using
abstracted information from the lower layers. These controllers
depend mutually on controllers in other layers, which may
cause control oscillations, disturbing the appropriate network
state. The common way to handle such oscillations is to set
the control interval of the upper layer to a large value. This
approach, however, causes another problem: the delay of upper-
level operations relative to environmental changes. To solve this
problem, we introduce the concept of model predictive control
(MPC) to hierarchical network control. In this method, each
controller gradually changes operations based on the predicted
future network state. By predicting the behavior of other con-
trollers in the upper/lower layers, the controller can smoothly
shift to the suitable operations. Furthermore, the impact of
prediction error can be reduced by avoiding significant changes
in operations. In this paper, we develop MPC-based hierarchical
network control for effective hierarchical traffic engineering (TE).
Through extensive simulation, we show that the MPC-based
hierarchical TE can avoid congestion even in cases where the
existing TE method of setting long control intervals for the upper
layer cannot accommodate dynamically changing traffic owing to
operational delay.

Index Terms—Model Predictive Control, Traffic Engineering,
Topology Aggregation, Traffic Prediction

I. INTRODUCTION

THE hierarchical control scheme is a promising approach
to improving the scalability of network controls [1–6]. In

this scheme, a network is divided hierarchically into multiple
areas; the area in the lowest layer includes only a small
number of nodes and links, and the area in the upper layer is
constructed of multiple areas of the lower layer. One control
server is deployed in each area, and each control server
monitors the state of its corresponding area by collecting
detailed information about the area from nodes within the area
or about the aggregated information from the controllers of
the lower layer. Then, each control server decides on control
actions for the corresponding area. By doing so, effective
network control can be achieved without a controller that
considers detailed information from the whole network.
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Of course, there are several challenging problems in such
hierarchical network control. One difficult problem is how to
avoid the oscillation of operations. When the control server
at the upper layer changes operations across the lower areas,
the network states in the lower areas may change in a way
that the control server at the lower layer does not expect.
For example, consider a control server at the upper layer
reallocating network resources at area A to another area B
which requires more resources. Owing to this reallocation, the
network resources at area A become smaller than expected by
the controller of area A. On the other hand, the operations
in lower areas change the state of those areas and stimulate
operation changes at the upper layers. For example, when
the area A is congested, the control server of the upper
area considers that area A requires more resources. However,
congestion may be mitigated by the control server of area A.
In this case, the resources reallocated without knowledge of
the behavior of the controller in area A are not necessary,
and are again reallocated to other areas which are regarded
as areas requiring more resources. Such interaction between
layers occurs repeatedly, and global operation oscillates.

The common way to handle such unexpected oscillation
in hierarchical network control is to set the control interval
of the upper layer to a large value [7, 8]. By doing so,
the control servers of the lower layers change operations
with sufficient time before the upper layer changes inter-
area operations. However, a large control interval increases
the time required to respond to environmental changes; if all
resources are used up in a certain area, the lack of resources
cannot be mitigated until the control server of the upper layer
reallocates inter-area resources. This tendency of large and/or
frequent environmental changes is remarkable because of wide
deployment of, e.g., content distribution networks (CDNs),
user mobility, and so on.

To solve the above problem in existing hierarchical network
control, we propose a hierarchical network control method
with a new mechanism to avoid control oscillation without
setting a large control interval. Our method is based on model
predictive control (MPC) [9, 10], which changes the input
adequately based on predictions so as to maintain system
output near a target value. According to the concept of MPC,
each control server predicts the traffic changes caused by
the behavior of other control servers and then decides its
own operations. By predicting the behavior of other control
servers, the control servers are expected to smoothly shift to
appropriate operations. Although operations may still oscillate
if the controller changes operations based on an inaccurate
prediction, MPC can effectively avoid the impact of pre-
diction error by restricting large changes in its operation
so as not to affect the other controllers, and by correcting
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predictions with newly observed information at the next time
slot. Therefore, MPC-based hierarchical control is capable of
handling environmental changes without oscillations, which
is the main subject of the current paper. To develop an
effective MPC-based hierarchical control method, we utilize
the idea of hierarchical traffic engineering (TE) [3, 5, 6]. In
hierarchical TE, each control server changes the routes of the
flows within its area to avoid congestion. We then apply MPC
to the hierarchical TE, which we call hierarchical MP-TE.
Through simulation of MP-TE, we show that our MPC scheme
significantly absorbs the impact of interaction among layers
without setting a large control interval at the upper layer.

We have already applied MPC to TE in the case where
a central server controls the whole network [11, 12]. Our
previous work showed that MPC-based TE follows the chang-
ing traffic even when prediction error occurs. However, in
hierarchical TE, interaction between layers occurs, which is
not considered in our previous work, causing route oscillation.
To avoid route oscillation, in MPC-based hierarchical TE, (1)
each controller predicts not only its own traffic variation but
also the behavior of other controllers, and (2) avoids significant
route changes which have large impact on other controllers.
Through simulation, we demonstrate that such control avoids
route oscillation with a short control interval, and that hierar-
chical MP-TE can accommodate changing traffic, which the
existing hierarchical TE cannot accommodate. Additionally,
we investigate the appropriate control policy for controllers at
each layer based on the role of the layer in hierarchical TE.
As a result, we find differences in appropriate control policies
between the upper and lower layers: the controller at the upper
layer should change routes more gradually while the control
policy of the lower layer does not have a significant impact.

The rest of this paper is organized as follows. Section II
surveys related work. Section III explains the overview of hi-
erarchical network control. Section IV explains the framework
of MPC-based hierarchical network control. In Section V, we
propose a new hierarchical TE method called hierarchical MP-
TE based on an MPC-based hierarchical network framework.
Section VI evaluates hierarchical MP-TE. Section VII presents
our concluding remarks.

II. RELATED WORK

A. Hierarchical Network Control

Hierarchical network control [1–4] is a promising approach
for controlling large networks without a large control over-
head and attendant computational complexity. In hierarchical
network control, the network is hierarchically divided into
multiple areas. A controller is deployed in each area of each
layer. Each controller collects local information and calcu-
lates optimal operations within its area. Since each controller
manages a relatively small network, large overhead for the
controller is avoided.

One of the most representative cases of hierarchical network
control is hierarchical routing [6, 7] in which each controller
calculates routes so as to achieve a desired communication
performance. For instance, Lui et al. proposed a hierarchical
routing method that determines the route for each connection

request so that the required bandwidth and delay are satisfied.
In this method, the upper layer first calculates the inter-
area routes based on the aggregated information about the
bandwidth and delay within each area. Then, each area of the
lower layers determines the inner-area routes with the actual
delay and bandwidth observed within the local area.

The most challenging problem in hierarchical network con-
trol is oscillation due to interference between layers. The
common way to handle oscillation is to set the control interval
of the upper layer to a large value [7,13]. For instance, Chang
et al. used multiple policies for updating routing information
to avoid route oscillation [7], which directly sets a long
update time or introduces a threshold so that the controller
does not update information unless the network state exceeds
the threshold. Such methods, however, delay upper layer
operations since the upper layer does not change routes unless
the routing information is updated. To solve this problem,
we propose a hierarchical network control method based on
MPC that can avoid oscillations without setting a large control
interval.

B. MPC and Its Application in Network Control

MPC is a method of system control based on predictions
of system dynamics [9,10]. MPC effectively handles environ-
mental changes by combining the feedback and feedforward
controls, whose detail is given in Subsection IV-A. Since sys-
tems often encounter dynamic changes in real environments,
MPC is expected to be applied in various applications such
as chemical plant controls, transportation controls, network
controls, etc.

In our previous work [11], we proposed a non-hierarchical
TE method based on MPC called MP-TE. In this method, the
central control server behaves as an MPC controller that inputs
routes to the network such that the link load is kept lower
than a desired level. Furthermore, we developed a TE method
called SMP-TE [12] to improve the robustness of MP-TE to
prediction errors. In SMP-TE, the control server considers not
only the expected value of future traffic but also its probability
distribution in order to guarantee that the risk of congestion
occurrence is less than a predefined probability.

In hierarchical TE, interaction among layers, which was not
considered in our previous work on MPC-based TE, causes
route oscillation and disturbs the controllers in accommodating
traffic. Therefore, in this paper, we newly propose an MPC-
based hierarchical TE method that considers interaction be-
tween layers. To avoid route oscillation caused by interaction
between layers, each controller in hierarchical MP-TE predicts
the behavior of other controllers and avoids significant route
changes in order to avoid significantly affecting other con-
trollers. Through simulation, we demonstrate the effectiveness
of hierarchical MP-TE in handling interactions compared
with the existing hierarchical TE, which sets a long control
interval at the upper layer. In addition, we examine appropriate
parameters for hierarchical MP-TE according to the role of
each layer.
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III. HIERARCHICAL NETWORK CONTROL

In hierarchical network control, the network is divided
hierarchically into areas; the areas of the lowest layer are con-
structed of a small number of nodes, and the areas of the upper
layer are constructed of multiple areas from the lower layer.
Hereafter, we call the set of hierarchically divided networks
the hierarchical network. A control server deployed in each
area of each layer optimizes network operations within the area
based on locally collected information about the network state.
Thus, the observation overhead and computational complexity
of each control server are kept small even when the network
size becomes large. In the rest of this section, we describe
the control methodology and problems of hierarchical network
control.

We introduce three vectors; z(k) is a vector indicating the
state of the network at time step k, X(k) is a vector indicating
the observed information, and u(k) is a vector indicating the
input from the controller. The observed information X(k)
reflects the network state z(k).

X(k) = g(z(k)), (1)

where g() is a function mapping the network state to the
observed information. The input from the controller changes
the state of the network. That is,

z(k) = f(z(k − 1),u(k)) + ϵ(k), (2)

where f() is a function indicating the network state after the
input u(k), and ϵ(k) is a vector indicating the disturbance. In
network control, the controller observes X(k), estimates the
state of the network ẑ(k) = g−1(X(k)), and sets the input
u(k) so as to set z(k) into an appropriate state. As the network
becomes large, the sizes of X(k), z(k), and u(k) become
large, causing high observation overhead and computational
cost for the controller if one controller controls the whole
network.

In hierarchical network control, the network is divided
hierarchically into areas, and a control server is deployed in
each area. The control server in the area a of the lowest layer
observes the local information X1;a(k), which reflects the
network state within the area a, z1;a(k), which is a subset of
the network state z(k). The control server calculates the input
u1;a(k), which is a subset of u(k) and has an impact only on
z1;a(k). u1;a(k + 1) is determined so as to set z1;a(k + 1)
into an appropriate state.

In the upper layer m, the control server for area b collects
the aggregated information Xm;b(k) from the areas of the
lower layers. Xm;b(k) reflects the network state within area
b, zm;b(k), which includes the network states in the multiple
areas of the lower layers and the network states that are not
maintained by any area of the lower layers. The control server
sets the input um;a(k), which has impact on the network state
of the different lower layer areas but has an impact only on
zm;a(k) at the layer m. um;a(k) is set so as to set zm;b(k)
into an appropriate state.

The oscillation of operations is one of the important prob-
lems in hierarchical control. In hierarchical control, each
control sever determines its input independently. For example,
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Fig. 1. Overview of MPC.

the control server at the lowest layer determines u1;a(k + 1)
so that z1;a(k + 1) achieves an appropriate state. However,
z1;a(k + 1) is also affected by the input of the upper layer
u2;b(k+1), which is determined independently by the control
server at the upper layer. As a result, z1;a(k+1) deviates from
the state expected by the controller of the lowest layer, and
the controller must change the input. Similarly, the input of
the lower layer u1;a(k + 1) causes deviation of z2;b(k + 1)
from the status expected by the controller of the upper layer,
and the controller of the upper layer also changes the input
u2;b(k + 1).

The typical approach to handling control oscillation is
setting a long control interval at the upper layer. We denote
sm as the control interval of the layer m. The controller
of the layer m observes the network state every sm time
steps by averaging the fine-grained observation as X̄m;a

(k) =
1
sm

∑ksm−1
i=(k−1)sm

Xm;a(i). By doing so, the operations of the
lower layers converge before the operations of the upper layer
change. This method, however, requires a long time to conduct
appropriate operations because the long control interval delays
the operations of the upper layer.

IV. HIERARCHICAL NETWORK CONTROL BASED ON MPC

We introduce the concept of MPC into hierarchical network
control to solve the above mentioned problems. In this section,
we first explain MPC, and then propose hierarchical network
control based on MPC.

A. Model Predictive Control

First, we briefly explain the concept of MPC. MPC is a
method of system control that has been studied in recent
years [9,10] based on predictions of system dynamics. Figure 1
shows an overview of MPC. An MPC controller sets an input
so as to maintain system performance close to an operator-
specified target. Unlike traditional system control, the MPC
controller predicts how the output changes in order to calculate
inputs for the predictive horizon over time steps [t+1, t+h],
where h is the distance to the predictive horizon. We denote the
input and output at the time step k by u(k) and v(k), respec-
tively. The MPC controller calculates u(k)(k ∈ [t+ 1, t+ h])
so as to keep v(k) close to the target value rv(k). In other
words, the MPC controller minimizes an objective function
J1 =

∑t+h
k=t+1 ∥v(k) − rv(k)∥2, where ∥ · ∥ represents the

Euclidean norm:

(u(t+ 1), · · · , u(t+ h)) = arg min
(u(t+1),··· ,u(t+h))

J1. (3)

To calculate the optimal input, future outputs v(t +
1), · · · , v(t + h) must be predicted from inputs u(t +
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1), · · · , u(t + h). The future output under a given input is
calculated by a system model that represents the system dy-
namics. In system control, a system model is often represented
by a mathematical formula, the state-space representation,
described as

z(k) = ϕ(k, z(k − 1), u(k)) (4)
v(k) = ψ(k, z(k), u(k)), (5)

where z(k) is the state of the system at the time step k, and
ϕ, ψ are functions that respectively map the current state and
input onto the next state and output.

Modeling the system by a mathematical formula, however,
may entail modeling errors, such as the use of ϕ, ψ, that do not
accurately represent actual system dynamics. If the controller
directly calculates the input based on such an inaccurate
prediction, the controller changes the input unnecessarily. This
unnecessary change in input causes destabilization of the
system. The MPC controller therefore restricts the amount
of allowed change to inputs, which mitigates the influence
of prediction errors. We denote the amount of change in the
input at the time step k by ∆u(k) = u(k) − u(k − 1),
and the aggregated amount of change during the predictive
horizon by J2 =

∑t+h
k=t+1 ∥∆u(k)∥2. Instead of the input

values determined by Eq. (3), the controller calculates the
input values by solving the following optimization problem:

(u(t+ 1), · · · , u(t+ h)) = arg min
(u(t+1),··· ,u(t+h))

(1− w)J1 + wJ2(6)

where 0 ≤ w ≤ 1 is a parameter for weighting the two
objective functions J1 and J2.

Though the controller calculates the input value during [t+
1, t+h], the controller actually implements only the first of the
calculated inputs u(t+1). Then, the MPC controller observes
the output and corrects the prediction by using the output value
as feedback. After prediction correction, the MPC controller
recalculates the input value for the next time slot with the
corrected prediction.

B. Applying MPC to Hierarchical Network Control

In this subsection, we propose hierarchical network control
based on the MPC. In this method, each control server
performs as an MPC controller that determines the local
operations within its area. In the area a at the layer m, the
input values are local operations um;a(k) and the output is
the local network state zm;a(k).

To estimate how the network states change, the control
server should predict the behavior of the operations of other
controllers. Since the behavior of other controllers is reflected
in the local observations, the control server predicts how the
future values of Xm;a(k) will be changed by the impact of
other controllers. Using the predicted values X̂

m;a
(k), the

controller calculates the future states ẑm;a(k) for deciding the
input.

As mentioned in Section III, in hierarchical network control,
the interaction of operations among layers causes control
oscillation. The origin of the oscillation is that each control

server calculates its own operations with uncertainty regarding
the behaviors of other controllers. Thus, absorbing the impact
of the prediction error in the behaviors of other controllers is
critical in avoiding control oscillation.

In MPC, the controller overcomes the uncertainty of the
prediction by avoiding significant changes in the input value.
In addition, avoiding significant changes in the input value ab-
sorbs the interaction between layers. Therefore, in similar way
as in Section IV-A, the control server minimizes the objective
functions J1 and J2, which are determined as follows:

J1=
t+h∑

k=t+1

∥ẑm;a(k)− rz(k)∥2 (7)

J2=
t+h∑

k=t+1

∥∆um;a(k)∥2 (8)

where rz(k) is the target value of zm;a(k) and ∆um;a(k) =
um;a(k)−um;a(k−1). That is, the control server decides the
future operations according to:

(um;a(t+ 1),· · ·,um;a(t+ h))=arg min
(um;a(t+1),···,um;a(t+h))

(1− w)J1+wJ2.(9)

The control server actually implements only the first of the
calculated inputs um;a(t + 1). Then, the control server ob-
serves Xm;a(t + 1) and corrects the prediction X̂

m;a
(t +

2), · · · , X̂
m;a

(t+ h+ 1). After the prediction correction, the
control server recalculates the operations for the next time
step.

V. HIERARCHICAL MP-TE

In this section, we propose a new hierarchical TE method
based on the MPC-based hierarchical network control frame-
work introduced in Section IV. In this section, we first
formulate hierarchical TE; then we propose a new TE method.

A. Hierarchical TE

In hierarchical TE, multiple controllers are deployed in a
hierarchy of areas to calculate routes within the areas. In the
upper layer, the control server calculates routes of the flows
between areas of the lower layers using the aggregated network
topology. The control server at the lower layer calculates the
specific routes of the flows within the area. In this subsection,
we formulate hierarchical TE.

1) Construction of the Hierarchical Network:
First, we describe the construction of the hierarchical net-

work, which is conducted by area partitioning and topology
aggregation.

a) Area Partitioning: Area partitioning divides the net-
work into multiple areas so that each area includes the
connected subnetwork of the original network. Similarly to
[1, 5, 6], we assume that the network is divided so that any
nodes are included in one of the areas, and no nodes are
included in multiple areas. Thus, the set of links within area
a includes the set of links {(i, j) ∈ E|i; j ∈ Va}, where E is
the set of all links of the original network, and Va is the set of
nodes included in area a. In this link set, the links connecting
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Fig. 2. The hierarchical network model.

nodes within different areas are not included in any areas, and
are included in the upper layer.

Although we can use any area-partitioning strategy, e.g., [1],
we manually divide the network into areas in the evaluation.

b) Topology Aggregation: Given area partitioning, the
control server of the upper layer maintains the aggregated
network topology instead of the original network topology
so as to avoid large calculation time. Topology aggregation
replaces each area of the lower layer with the set of a small
number of nodes and links connecting them. There are many
methods of aggregating topology information [5,13], and there
is a trade-off between information accuracy and topology
complexity.

In this paper, we use full-mesh topology to aggregate so
as to maintain accurate information regarding the nodes at
the borders of the areas. By using full-mesh topology, the
abstracted topology of an area includes the set of nodes at
the border and the set of links between all pairs of nodes at
the border. Hereafter, we call the links generated by topology
aggregation the virtual links. Figure 2 shows an example of the
hierarchical network. In this network, the upper layer includes
the virtual links and the physical links between different areas.

2) Traffic Engineering in Each Area: After deploying a
control server at each area, each control server periodically
1) collects information on the traffic rates and link capacities
within its area, and 2) calculates routes based on observations
and configures network devices within its area.

a) Collection of Information:
The control server at area a of layer m collects the

locally observable variables Xm;a(k). In hierarchical traffic
engineering, Xm;a(k) includes the traffic rates xm;a(k) and
the residual link capacities Cm;a(k) within the area.

The traffic rates xm;a(k) form a vector whose element
xm;a
i;j (k) is the traffic rate from nodes i to j. Each node

monitors traffic rates per source and destination address pair.
The control server collects the traffic rates monitored by each
node and calculates the sums of traffic rates for the flows from
one node to another within the area.

The residual link capacities Cm;a(k) form a vector whose
element Cm;a

i (k) is the residual capacity of the link i, which
represents how much additional traffic can be accommodated
at link i. If the residual capacity is negative, then the link is
overloaded and the controller should move traffic on that link

to other links.
As mentioned in section V-A1, there are two types of links,

i.e., physical and virtual. Since the physical link capacity
is constant until the upgrade of link capacities, the actual
capacity cl of the physical link l is known by each control
server. Thus, the residual capacity of the physical link l is
represented by using only the local variables in

Cm;a
l (k) = cl − ym;a

l (k) (10)

where ym;a
l is the traffic load on link l at area a of layer m.

On the other hand, the residual capacity of the virtual link
depends on the network state of the lower layer. In this paper,
the residual capacity of the virtual link is set to the total
residual capacity of all available paths between both ends of
the virtual link. That is, the capacity of the link l is set by

Cm;a
l (k) =

∑
p∈P (i)

min
i∈L(p)

(Cm−1;b
i (k)− ym−1;b

i (k)) (11)

where area b is the area in which the virtual link l is
constructed, P (i) is the set of paths in the inner-area whose
starting and ending nodes are the same as those of virtual
link i, and L(p) is the set of links included in path p. In
this equation, minl∈L(p)(C

m−1;b
l (k)−ym−1;b

l (k)) denotes the
residual capacity of path p, which is equal to the residual
capacity of the bottleneck link on the path, and the residual
virtual link capacity sums the residual capacity for all available
paths.

b) Route Calculation:
The control server calculates routes within the area based

on the observed information xm;a(k) and Cm;a(k). Here, the
control variables um;a(k) include the routing matrix Rm,a(k),
whose element Rm;a

i;j (k) indicates the fraction of traffic on the
flow j that traverses the available path i. We also define the
appropriate network state as the state in which no congestion
occurs in the area. Thus, the control server adjusts Rm,a(k)
so as to accommodate traffic without congestion.

To achieve traffic accommodation, we introduce a metric
called excess traffic. The excess traffic ζm;a

l (k) on the link l
is defined by

ζm;a
l (k) = [∆ym;a

l (k)− Cm;a
l (k)]+ (12)

where ∆ym;a
l (k) = ym;a

l (k) − ym;a
l (k − 1) is the additional

traffic on the link l caused by the route change at time step k,
and [x]+ equals x when x ≥ 0 and equals 0 otherwise. When
ζm;a
l (k) is zero, the additional traffic of link l falls under the

residual capacity, meaning that congestion is avoided at link l.
Therefore, the control server adjusts the routes Rm;a(k) so that
ζm;a
l (k) are minimized for all links. We also define ζm;a(k)

as a vector whose element is ζm;a
l (k).

To determine the appropriate routes, the control server has
to calculate the value ζm;a

l (k) from local observation values
xm;a(k),Cm;a(k) and local routes Rm,a(k). According to the
definition of ζm;a

l (k) in Eq. (12), the controller has to estimate
how the link load ym;a

l (k) changes by setting the local routes
Rm,a(k). The control server calculates the link load based on
the following relation between link and flow traffic:

ym;a(k) = Gm;a ·Rm;a(k) · xm;a(k) (13)
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where ym;a(k) is a vector whose elements represent the link
load ym;a

l (k), and Gm;a is a matrix whose element Gm;a
i;j is 1

if the available path j traverses the link i and 0 otherwise.
At the time step t, the control server does not know the

actual traffic rates and virtual link capacity at the next time
step. Thus, the control sever uses the observation values
xm;a(t) and Cm;a

l (t) instead of the actual values at t + 1 to
estimate the excess traffic ζm;a

l (t+1). As a result, the routes at
time step t+1 are determined as the solution of the following
optimization problem:

minimize:
∣∣∣∣∣∣ζ̂m;a

(t+ 1)
∣∣∣∣∣∣2 (14)

subject to:ym;a(t+ 1) = Gm;a·Rm;a(t+ 1)·xm;a(t)(15)
∀l, ζm;a

l (t+1)=[∆ym;a
l (t+1)−Cm;a

l (t)]+ (16)
∀f, p,Rm;a

p;f (l) ∈ [0, 1] (17)

∀f,
∑

p∈℘m;a(f)

Rm;a
p;f (t+ 1) = 1 (18)

where ℘m;a(f) is the set of available paths of flow f and
Nm;a

L , Nm;a
P are the numbers of links and paths, respec-

tively. Here, xm;a(t), Gm;a, Cm;a
l (t) are given variables and

Rm;a(t+ 1),ym;a(t+ 1), ζm;a(t+ 1) are the variables to be
optimized. Eq. (15) represents the relation between the traffic
rates of the flows and links. Eq. (16) is the definition of ζ.
Eqs. (17) and (18) mean that all traffic on each flow is allocated
to some available paths.

Since the observation values xm;a(t) and Cm;a
l (t) are dif-

ferent from the actual state of the next time slot, the controller
sometimes sets inappropriate routes, causing an oscillation of
routes. The common method to avoid routing oscillation is to
set a long control interval at the upper layer. However, setting a
long control interval induces delay in response to the changing
network state.

B. Hierarchical MP-TE

In this subsection, we show the hierarchical TE method
called hierarchical MP-TE, which is based on the MPC
methodology. Similarly to the simple hierarchical TE men-
tioned in Section V-A, the network is divided into multiple
areas, and multiple control server are deployed in the areas.
The control server observes the traffic rates of flows and
residual link capacities in a similar way to V-A2a. Based on
the observed values, the control server predicts future traffic
rates and residual link capacities. Then, the control server
calculates routes using the prediction, and implements the
routes in the network. In the rest of this subsection, we explain
the prediction and route calculation processes, which contain
the main difference from the simple hierarchical TE method.

1) Prediction: Based on previously observed values, each
control server predicts future traffic rates and residual link
capacities. Although the controller can adopt any prediction
model, e.g., ARIMA [14, 15], ARCH [16], GARCH [17], or
neural networks [18, 19], we use a simple prediction method
in this evaluation.

The prediction we use in evaluation is determined as fol-
lows. First, the control server at area a of layer m finds
a best-fit straight line l(k) = ak + b that minimizes the

sum of squared distances from the previously observed traffic
xm;a(t− τ), xm;a(t− τ +1), · · · , xm;a(t)(τ ≤ 1), denoted as∑s

k=0(x
m;a(t − τ + k) − l(t − τ + k))2. The control server

then obtains the future traffic rate as x̂m;a(t+k) = l(t+k). In
a similar way, the control server predicts the future residual
capacity Ĉm;a(t + k). Even if traffic changes linearly, this
prediction method cannot predict future traffic and residual
capacity accurately because the traffic rates and residual ca-
pacities maintained by each controller are affected by the route
changes other layers. Using this simple prediction method,
we show that hierarchical MP-TE works well even with an
inaccurate prediction method. In the evaluation, we set τ = 1.

2) Route Calculation: After the prediction of traffic rates of
flows and residual link capacities, the control server calculates
routes using predicted values. As mentioned in Section V-A2b,
observable variables Xm;a(k) = (xm;a(k),Cm;a(k)), control
variables um;a(k) = Rm;a(k), and the appropriate network
state is defined as ζm;a(k) = 0. Then, according to Sec-
tion IV-B, the control server calculates the routes by solving
the following optimization problem:

minimize:

t+h∑
k=t+1

1− w

Nm;a
L

∣∣∣∣∣
∣∣∣∣∣ ζ̂

m;a
(k)

Zm;a

∣∣∣∣∣
∣∣∣∣∣
2

+
w

Nm,a
P

∥∆Rm;a(k)∥2
(19)

subject to:∀k, ŷm;a(k) = Gm;a ·Rm;a(k) · x̂m;a(k) (20)

∀k, l, ζ̂m;a
l (k) = [∆ŷm;a

l (k)− Ĉm;a
l (k)]+ (21)

∀k, f, p,Rm;a
p;f (l) ∈ [0, 1] (22)

∀k, f,
∑

p∈℘m;a(f)

Rm;a
p;f (k) = 1 (23)

where ŷm;a(k), Ĉm;a
l (k), ζ̂

m;a
(k) are the predicted values

of link load, residual link capacity, and excess traffic, re-
spectively. Zm;a = maxl,k[{Gm;a · Rm;a(t) · ∆x̂m;a(k)}l −
Cm;a

l (k)]+ is the maximum excess traffic if the current routes
Rm;a(t) are used during the predictive horizon. Eq. (19)
is the objective function, which is the weighted summation
of excess traffic ζm;a(k) and the amount of route change
∆Rm;a(k). To clarify the effect of the weighting parameter
w, we normalize the objective function by dividing ζ̂

m;a
(k)

by Zm;a and dividing the excess traffic on links and route
changes on paths by Nm;a

L and Nm;a
P , respectively.

Although the above optimization problem is not defined
when Zm;a = 0, this case is not critical for TE because the
current routes Rm;a(t) minimize both ζm;a(k) and ∆Rm;a(k)
when Zm;a = 0. Therefore, in this paper we calculate
the routes using the above optimization problem only when
Zm;a ̸= 0.

VI. EVALUATION

In this section, we evaluate MP-TE by simulation to verify
how well the MPC concept performs in a hierarchical control
scheme. At first, we use stationary traffic to demonstrate that
hierarchical MP-TE can avoid routing oscillations by absorb-
ing the interactions between layers even with a short control
time interval. Second, we demonstrate the behavior of MP-TE
under dynamic traffic with unpredictable fluctuations, which
is a more realistic situation encountered in actual networks.
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area

node

Fig. 3. Lattice topology with 64 nodes.

A. Evaluation in the Stationary Traffic Case

We first use stationary traffic to evaluate routing conver-
gence with interactions between layers. Our interest here is
whether hierarchical MP-TE achieves routing convergence
by avoiding significant route changes and whether the short
control interval helps in achieving quick responses to traffic
changes. To clarify these questions, we compare hierarchical
MP-TE with simple hierarchical TE and vary the control
interval of the upper layer.

1) Simulation Environment:
a) Network Topology: In the following evaluation, we

use the lattice topology shown in Figure 3. The network
contains 64 nodes, and all links have the same link capacity of
2×109 units. We divide the network into four areas as shown
in the figure.

b) Traffic: To investigate the interaction between layers,
we generate traffic so that congestion cannot be solved by
route changes at the lowest layer. We generate a traffic pattern
such that traffic in an area increases linearly from 1.0 × 107

to 7.0 × 107 during the time steps 6–10 while the traffic in
other areas does not change. The traffic pattern is shown in
Figure 4. In this situation, an area becomes congested without
the control of the upper layer.

Similarly, we also generate a traffic pattern such that traffic
between a certain pair of areas increases from 1.0 × 107 to
3.0×107 during the time steps 6–10 while other traffic does not
change. In this situation, the links between the areas become
congested.

c) Routing Calculation: The routes in MP-TE are de-
termined as a solution of the optimization problem (19)–
(23). In a similar way to [11], the optimization problem
is equally transformed as a convex quadratic programming
problem which can be solved by common solvers. We use
the CPLEX [20], which is an optimization problem solver.
We run CPLEX on computers equipped with four Intel Xeon
Processors, each having 10 cores and 30 MB of cache memory.

d) Comparison Method: For comparison, we use a basic
hierarchical TE method without the MPC concept described
in Section V-A, which we call simple TE. To avoid routing
oscillations, a long control interval is set at the upper layer,
and the averaged observation value is used to decide the
routes. Comparing with this method, we verify the effect of
MPC: that each controller handles interactions between layers
by predicting the behavior of other controllers and avoiding
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Fig. 4. Time series of traffic causing inner-area congestion.

drastic route changes.
e) Metrics: We use the maximum link load maxl y

m;a
l (t)

as the metric to evaluate hierarchical TE. If the maximum link
load is lower than the targeted capacity, the calculated routes
accommodate all traffic under the targeted capacity. On the
other hand, |∆Rm;a

i;j (t)| is used to check whether or not the
routing has converged.

2) Results:
Figure 5 shows results with increasing inner-area traffic for

the cases of MP-TE and simple TE. In the figure, “MP-TE” in-
dicates the result of MP-TE with parameters (h = 3, w = 0.6),
“simple TE” means the result of simple TE, and “predictive
TE” denotes the result of simple TE using the predicted
value instead of the observed value. Predictive TE is also
a special case of MP-TE with parameters (h = 1, w = 0)
in which the controller determines the routes with predicted
information for the next time step without restricting route
changes. In each case for the TE methods, we show the time
series for maximum link load maxl y

m;a
l (t) and average values

for the route change |∆Rm;a(t)| in the upper and lower layers.
The horizontal dotted line in the figure denotes the targeted
capacity. In the figure, s represents the control interval at the
upper layer. In MP-TE, we also change the control interval
at the upper layer in a similar way to the simple TE method.
Although we show only the result of MP-TE with parameters
(h = 3, w = 0.6) here, a detailed discussion of parameter
setting for MP-TE is given in Section VI-B. Additionally,
Figure 6 shows results with increasing inter-area traffic.

In both cases of increasing inner- and inter-area traffic, MP-
TE (h = 3, w = 0.6) quickly achieves route convergence and
traffic accommodation with s = 1 while simple TE with s = 1
consistently causes congestion. In simple TE with s = 1, the
controllers at both upper and lower layers set inappropriate
routes because a route change at a layer causes unexpected
changes of the network state at other layers. Repeating the
wrong route changes, simple TE with s = 1 causes route
oscillation. On the other hand, each control server in MP-TE
avoids significant route changes at each time step, absorbing
the impact from route changes at other layers and avoiding
route change impacts on other layers. Thus, route oscillation
is avoided without setting a longer control interval at the upper
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Fig. 5. Time series for maximum link load and average route changes with increasing inner-area traffic.
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Fig. 6. Time series for maximum link load and average route changes with increasing inter-area traffic.

layer.
Routing convergence is also achieved by simple TE with

s = 5. By setting a long control interval at the upper layer,
the control server at the lower layer temporarily completes
the route changes while operations at the upper layer are
unchanged. Thus, route oscillation is avoided by setting a long
control interval at the upper layer.

However, the amount of traffic exceeding the targeted ca-
pacity in simple TE (s = 5) is larger than that of MP-TE,
especially before a route change is conducted in the upper
layer. This is because the routes change in simple TE (s = 5)
delays the changing traffic for two reasons: control delay at the
upper layer and observed information delay at the lower layer.
Since congestion cannot be solved only by inner-area routing
in this simulation, congestion continues until the routes change
at the upper layer. On the other hand, in MP-TE (s = 1), the
controller at the upper layer gradually changes routes from
early time steps to reduce area congestion. In addition, simple
TE delays changing the routes even in the lower layer because
the controller calculates routes based on the observed value at
the previous time step. Thus, the amount of excess traffic in
simple TE (s = 5) is even larger than that of MP-TE(s = 5)
when the traffic is first increasing where both methods do not
change routes at the upper layer.

Although using the prediction value is effective for follow-
ing traffic changes, simple predictive TE does not achieve
routing convergence even when setting a long control interval
at the upper layer. This is because the impact of the prediction
error becomes large when the route changes are not restricted.
When the controller of the upper layer overestimates the

capacity of the area a and moves traffic from area b to area a,
congestion occurs in area a. By observing changes in virtual
link capacities, the controller of the upper layer predicts that
the area a will be badly congested in the future even if the
current congestion is small. Then, the control server at the
upper layer moves traffic from area a to area b based largely
on the underestimation of the capacity of area a. Repeating the
above process, route oscillation occurs. Since the prediction is
conducted at each control interval, the impact of the prediction
error cannot be mitigated by setting a long control interval.
Thus, setting a long control interval at the upper layer is not
always effective in prediction-based control, and introducing
a restriction of route changes is required to avoid oscillation
in prediction-based control.

B. Evaluation in a Dynamic Traffic Case

In the above evaluation, we investigated the behavior of MP-
TE with only stationary traffic. Such traffic can be predicted
accurately even with a simple prediction method, although
prediction error certainly occurs owing to control interac-
tions between layers. In an actual network, traffic changes
dynamically with a certain tendency and noisy fluctuation. In
this situation, the predicted traffic always includes prediction
errors owing to unpredictable fluctuations, and such inaccurate
predictions may impact the performance of hierarchical MP-
TE. Therefore, we verify the impact of unpredictable traffic
changes on MP-TE by simulation. In addition, we investigate
appropriate parameter values in MP-TE considering the role
of each layer in hierarchical TE.
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TABLE I
σ VALUES AND STANDARD DEVIATIONS OF PREDICTION ERROR.

σ Standard deviation of prediction error
0 3.4× 105

3.9× 105 9.9× 105

7.8× 105 1.9× 106

1.2× 106 2.7× 106

1.6× 106 3.6× 106

1.9× 106 4.5× 106

2.3× 106 5.3× 106

1) Simulation Environment: The simulation environment is
almost the same as that mentioned in subsection VI-A1, the
main difference being the traffic pattern. In this simulation,
we generate traffic which includes cyclic variation and noisy
variation as [21]. The traffic rate from node i to node j at time
step k is given as

xi,j(k) = µ

(
1 + sin

(
2π

T
k + θi,j

))
+W (k) (24)

where µ is the mean value of traffic, T is the cycle length
of cyclic variation, θi,j is the phase, and W (k) is the noisy
fluctuation, which follows the zero-mean Gaussian distribution
N(0, σ2). We set µ = 7× 106, T = 24 and randomly change
θi,j such that the maximum difference |θi,j − θi′,j′ | is 3 time
steps.

In the simulation we change σ values from 0 to 2.3× 106

in order to verify the impact of unpredictable traffic on MP-
TE. Table I lists the σ values we use and the standard
deviation of one-step-ahead prediction error caused when
applying the simple prediction method to the generated traffic.
As expected, the prediction error also becomes large when the
noisy fluctuation becomes large. When σ = 2.3 × 106, the
standard deviation of prediction error is 5.3 × 106, which is
about 76 % of average traffic. Since the actual error of one-
step-ahead prediction is about 30% [22], our simulation covers
the case where prediction error is much larger than the error
actually expected.

2) Results: Figures 7–10 show the results of MP-TE.
Figs. 7 and 8 show the cases of σ = 0 and σ = 2.3 × 106,
respectively, with various weights of route changes. In these
figures, we change the value of w at lower and upper layers
separately. We denote the value of w at the lower layer as wl

and that of the upper layer as wu.
Similarly, Figs. 9 and 10 show the cases of σ = 0, 2.3×106

with various lengths of predictive horizon. In these figures, we
change the value of h at the lower layer (denoted as hl) and
the upper layer (denoted as hu) separately.

In addition, we show the result of simple TE in Figure 11
setting various control intervals at the upper layer. The figure
shows that the maximum link load largely exceeds the targeted
capacity around the peak time of all three cycles for any s.
The reason for this is different for small and large s. When s
is small, the interaction between the layers cannot be avoided
since the length of the interval is not sufficient to complete
the route change at the lower layer. Therefore, the interaction
between layers causes routing oscillation and disturbs the
controller in setting appropriate routes. When s is large, a
route change at the upper layer simply delays the dynamically
changing traffic. Moreover, the control server cannot grasp
the congestion situation correctly since the averaged traffic

rates and virtual link capacities become inappropriate when s
becomes large. Thus, simple TE causes large excess traffic for
any s.

On the other hand, MP-TE keeps excess traffic to nearly
zero with appropriate setting of parameters in Figs 7–10.
As mentioned in VI-A2, MP-TE can follow traffic changes
quickly with prediction and setting a small control inter-
val while routing oscillation is avoided by restricting route
changes. Thus, MP-TE quickly sets better routes by respond-
ing to the dynamically changing traffic. That is, MP-TE
outperforms the existing hierarchical TE approach, especially
with dynamically changing traffic. The rest of this subsection
discusses the impact of prediction error in MP-TE and how to
determine appropriate parameter values for MP-TE.

a) Impact of Unpredictable Traffic Fluctuation: First, we
discuss the impact of unpredictable traffic fluctuation. Com-
paring the cases of σ = 0 (Figs. 7 and 9) and σ = 2.3× 106

(Figs. 8 and 10), we cannot see a clear difference in the
behavior of MP-TE. This means that unpredictable traffic
fluctuation does not significantly affect the performance of
MP-TE. This is because the control server avoids setting routes
that are highly unsuitable even when significant prediction
error occurs, since the control server restricts route changes.
Moreover, prediction errors in the link loads, which are more
critical for the route calculation than the flow traffic rates,
are relatively small owing to the statistical multiplexing effect.
Since noisy fluctuations and prediction error in the generated
traffic are independent between the flows, the increasing and
decreasing noises cancel each other. Thus, the control server
calculates routes with relatively small prediction error even
with large fluctuations in the flows. As mentioned before, the
prediction error when σ = 2.3 × 106 is much larger than
realistic prediction error values, and the statistical multiplexing
effect is common in realistic networks [23]; hence, MP-TE
should work well even in actual situations. Although we
only show the cases of σ = 0, 2.3 × 106, we conducted the
simulation with other σ listed in Table I and did not observe
a clear difference among these cases.

b) Setting Appropriate Parameters: In this subsection,
we discuss parameter setting in MP-TE. First, we investigate
the appropriate value of w in hierarchical control. Figs. 7
and 8 show that significant congestion occurs when either
wu or wl are 0. This is because the control server significantly
changes the routes when w = 0 and causes control interference
between layers, disturbing appropriate routes. Thus, the idea
of MPC, which avoids significant changes, is necessary for
both layers to avoid the interference of other layers.

Moreover, Figs. 7 and 8 show that traffic exceeding the
targeted capacity is reduced by setting a large wu whereas
there is no certain difference among wl > 0. This is because
route changes in the upper layers have wider impact than those
in the lower layers. When a route change occurs in an upper
layer, the control at all areas of the lower layers is affected
by changes in the traffic pattern. On the other hand, a route
change in the lower layer only affects the residual capacity
on the virtual link in the upper layer. Thus, the upper layer
should avoid large route changes by setting large wu whereas
the performance of the lower layers is not very sensitive to
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Fig. 7. Time series of maximum link load and average route changes of MP-TE with various weights of route changes (h = 3, σ = 0).
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Fig. 8. Time series of maximum link load and average route changes of MP-TE with various weights of routes changes (h = 3, σ = 2.3× 106)
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(b) Route changes in the upper layer with changing
hu.
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(c) Route changes in the lower layer with changing
hu.
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(d) Maximum link load with changing hl.
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(e) Route changes in the upper layer with changing
hl.
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(f) Route changes in the lower layer with changing
hl.

Fig. 9. Time series of maximum link load and average route changes of MP-TE with various lengths of prediction (w = 0.8, σ = 0).
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(a) Maximum link load with changing hu.
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(b) Route changes in the upper layer with changing
hu.
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(c) Route changes in the lower layer with changing
hu.
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(d) Maximum link load with changing hl.
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(e) Route changes in the upper layer with changing
hl.
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(f) Route changes in the lower layer with changing
hl.

Fig. 10. Time series of maximum link load and average route changes of MP-TE with various lengths of prediction (w = 0.8, σ = 2.3× 106).
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(a) Maximum link load.
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(b) Route changes in the upper layer.
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(c) Route changes in the lower layer.

Fig. 11. Time series of maximum link load and average route changes of simple TE (σ = 0).

wl > 0.
Finally, we investigate the appropriate value of h in hier-

archical control. Figs. 9 and 10 show that worse congestion
occurs when either hu or hl are 1. This is because the control
server with h = 1 suddenly changes the routes just before
congestion occurs, and other control servers scarcely cooperate
with such sudden route changes. The sudden route change
causes unexpected changes in the information observed by
other control servers. Then the control servers wrongly set
routes with incorrect information, causing significant conges-
tion.

On the other hand, the control server with h > 1 gradually
changes routes in advance of the occurrence of congestion.
When a control server gradually changes routes, other control
servers can predict how the traffic rates and residual link
capacities will change in response to future route changes.
Thus, MP-TE with h > 1 achieves better collaboration
between the layers and keeps the congestion small.

Moreover, Figs. 9 and 10 show that setting large hu is more
effective in reducing excess traffic whereas there is no certain
difference among hl, similar to wu and wl. This is because
significant route changes should be avoided in the upper layer.
Setting a long predictive horizon enables the controller to
change routes more smoothly since the controller can begin the
route change earlier, before congestion actually occurs. Thus,
setting large hu reduces interference between controllers and
results in a quick shift to the appropriate network state. On
the other hand, route changes at the lower layer have a small
impact on the network state.

VII. CONCLUSION

Setting a long control interval at the upper layer is a
common approach for avoiding oscillations in hierarchical
network control. However, doing so requires a long time to
respond to environmental changes which cannot be solved by
only operations in the lower layers. To solve this problem, we
have proposed introducing the idea of MPC into hierarchical
network control. Utilizing the basic concept of hierarchical
TE, we have developed an MPC-based hierarchical network
control called hierarchical MP-TE which achieves routing con-
vergence while setting a short control period. In hierarchical
MP-TE, a network is divided hierarchically into multiple areas,
and multiple controllers are deployed to calculate routes in a

similar way to other hierarchical TE methods. To avoid route
oscillation, in hierarchical MP-TE each controller gradually
changes routes based on predicted traffic instead of setting a
long control interval. Through simulation, we demonstrated
that hierarchical MP-TE achieves routing convergence by
restricting route changes even when setting a short control
interval. We also showed that setting a short control interval
improves the convergence time of hierarchical routing. In
addition, considering a realistic situation, we evaluated MP-
TE under large prediction error and verified that MP-TE is
not sensitive to prediction errors. Moreover, we clarified the
appropriate parameter values to be set in MP-TE.

Future work will include a method to determine appropriate
partitioning of a given network. Furthermore, we will develop
a more sophisticated prediction method suitable to MP-TE.
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