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Abstract—Traffic engineering with traffic prediction is a
promising approach to accommodate time-varying traffic without
frequent route changes. In this approach, the routes are decided
so as to avoid congestion on the basis of the predicted traffic.
However, if the range of variation including temporal traffic
changes within the next control interval is not appropriately
decided, the route cannot accommodate the shorter-term vari-
ation and congestion still occurs. To solve this problem, we
propose a prediction procedure to consider the short-term and
longer-term future traffic demands. Our method predicts the
longer-term traffic variation from the monitored traffic data. We
then take account of the short-term traffic variation in order to
accommodate prediction uncertainty incurred by temporal traffic
changes and prediction errors. We use the standard deviation
to estimate the range of short-term fluctuation. Through the
simulation using actual traffic traces on a backbone network
of Internet2, we show that traffic engineering using the traffic
information predicted by our method can set up routes that
accommodate traffic variation for several or more hours with
efficient load balancing. As a result, we can reduce the required
bandwidth by 18.9% using SARIMA with trend component
compared with that of the existing traffic engineering methods.

Index Terms—Traffic Engineering, Traffic Prediction, Data
Mining, Trend Component, SARIMA Model, ARIMA Model

I. INTRODUCTION

IN recent years, time variation of Internet traffic has in-
creased due to wide deployments of streaming and/or cloud

services. Backbone networks are expected to accommodate
such time-varying traffic without congestion. So far, backbone
networks have addressed this problem by preparing redundant
link capacity by considering not only average traffic but also
traffic surges [1,2]. However, such an approach requires overly
large capacity in accordance with the level of traffic change
increases and causes low bandwidth utilization. For the last
dozen years, the literature has reported that average link
utilization of backbone networks has been very low, such as
17–29% in Google backbone [3], less than 50% in Sprint
backbone [4], and 20% utilization is targeted in Internet2 [5].
This not only causes the waste of the bandwidth due to poor
utilization of the network resource but also incurs unnecessary
energy consumption. Henceforth, the traffic congestion must
be avoided with limited resources, which will definitely reduce
the over-provisioning cost and power consumption.

Adaptive traffic engineering is a promising approach for
accommodating time-varying traffic by appropriately setting
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up the Origin–Destination (OD) routes [6–10]. In such traffic
engineering methods, a control server periodically measures
the traffic load in the network (typically every hour) and
dynamically changes the routes so as to minimize the network
congestion. However, traffic engineering using the measured
traffic only mitigates the observed congestion and never avoids
the future congestion. The currently congested links are re-
solved by changing routes at the next control epoch. By
making the control interval shorter (say, in a unit of minutes),
the control server may respond quickly to such traffic changes.
However, it obviously causes the heavy load at the control
server and affects the performance of the upper-layer protocol
TCP due to frequent route changes. Such routing oscillation
degrades the throughput of TCP sessions because of packet
reordering and changes of RTT [11]. Our solution here is
to execute traffic engineering by predicting the future traffic
changes. That is, the control server should set up routes by
considering the future traffic demands, not past ones. More
exactly, the control server predicts the traffic variation in
the next control cycle and then determines routes that can
accommodate the predicted traffic without causing congestion
in the next control cycle. For deciding the traffic variation,
we again have the “time-scale” problem: if we want to have
stable operation, we need set up a larger control cycle, but in
that case, we cannot react to the temporal changes of traffic
variation within the control interval. The shorter control cycle
has exactly the same problem described above.

So far, various prediction methods have been studied on the
basis of traffic predictive models such as ARMA, ARIMA [12,
13], ARCH [14], GARCH [15], and Neural Network [16–18].
However, to the best of our knowledge, existing prediction
methods do not solve the above problem because they can
predict the traffic variation accurately only for its target time
scale. For example, the method proposed by Guang et al. [17]
targets prediction in time scale of several hours. Therefore,
it cannot obtain information about shorter-term variations
because they are removed as noise before the prediction.
On the other hand, a prediction method targeting a small
time scale such as milliseconds or minutes [12, 14, 15, 19] is
only effective for very near future prediction because of the
significant degradation of prediction accuracy in the far future.

In this paper, we propose a traffic prediction procedure
intended for application to traffic engineering by separating the
short-term (non-periodical or temporal) and longer-term (hour
or day) variations. We directly predict the longer-term varia-
tion as existing methods and estimate the short-term variation
instead of predicting it. We then obtain the range of traffic
variation including short-term variation during the next several
hours, which is used as a basis for calculating the necessary
capacities of each route in the next control interval. That is, our
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key contribution here is that we investigate how to handle the
prediction uncertainty in order to apply our method to traffic
engineering. As described before, the prediction uncertainty
stems from two factors (prediction error for periodical pattern
and noisy short-term variation), and we take account of such
prediction uncertainty in determining the necessary resources
for each route. In this paper, we focus on the results of traffic
engineering instead of the accuracy of prediction, because
prediction methods with small error are not always suited to
traffic engineering. Even when mean prediction error is low,
congestion cannot be avoided by traffic engineering using the
predicted traffic if the temporal increase of the traffic causing
congestion is not predicted. On the other hand, a prediction
method responsive to the traffic increase that may cause the
congestion can avoid congestion even if the method’s mean
prediction error is large. Therefore, we evaluate our prediction
procedure by investigating the influence of prediction method
on traffic engineering performance.

In our earlier work [20], we only compared the effectiveness
of traffic engineering using predicted traffic with observation-
based traffic engineering. This paper also investigates details
of the impact of traffic prediction on traffic engineering. We
first investigate the impact of two parameters in our prediction
procedure having a large impact on traffic engineering, the
confidence level of prediction errors and the confidence level
of short-term variation. We find that the confidence level of
the short-term variation should be set to a large value, while
a small confidence level for prediction errors is generally
sufficient.

We then investigate the impact of considering periodicity,
and find that even prediction without considering periodicity
is sufficient if the control period is a few hours, while traffic
prediction considering periodicity improves the worst-link
utilization achieved by traffic engineering if the control period
is larger than 24 hours.

The rest of this paper is organized as follows. Section II
surveys related work of traffic prediction and traffic engi-
neering. Section III introduces the traffic engineering method
using the predicted traffic. Section IV describes the prediction
procedure. Section V presents an evaluation of our prediction
procedure. Section VI mentions the conclusion and future
work.

II. RELATED WORK

A. traffic engineering
There is a large body of literature regarding TE [6–10]. The

most of existing traffic engineering methods are observation-
based approach in which the control server collects the current
traffic information and then sets the routes so as to accom-
modate the observed traffic. However, such observation-based
method may not be able to accommodate the future traffic
because the traffic pattern will change from the observed
pattern.

One approach to handling such uncertainty of the future
traffic is to allocate sufficient resources to accommodate worst-
case traffic patterns. For example, a static routing method
called oblivious routing [21–23] sets a fixed route to accom-
modate worst-case traffic. Instead of observing current traffic,

this method tries to accommodate all possible traffic patterns
by minimizing the maximum link load. Wang et al. proposed a
robust traffic engineering method by introducing the oblivious
routing concept [6]. Their method considers the convex hull of
a set of historical traffic patterns, namely the set of arbitrary
weighted average of observed traffic. It handles uncertain
future traffic dynamics by optimizing routes for this convex
hull under constraints where the worst-case performance is
not degraded. However, the approach requires large resources
to accommodate worst-case traffic.

To accommodate the future traffic variation with a small
resources, it is important to know the future traffic. Thus, our
traffic engineering approach uses the prediction of time series
of traffic to decide the routes.

B. traffic prediction

The predictability of Internet traffic has received signifi-
cant interest in various domains, such as capacity planning,
anomaly detection, admission control, and traffic engineering.
The prediction methods of the network traffic have been
studied for various time scales such as milliseconds, seconds or
minutes order [12,14,15,19], daily [16–18], and even monthly
variation [13].

The prediction based traffic engineering requires the traffic
prediction for the control period. The control period may be a
few hours or more. Thus, the traffic prediction should follow
the daily variation. On the other hand, the traffic variation
during the control period includes the temporal changes, which
should also be considered by the traffic engineering so as to
avoid the congestion.

Some of existing prediction methods focus on the daily
traffic variation [16–18]. However, they exclude the short-term
variation, which is also important for the traffic engineering.
For instance, the method in [17] eliminates the values which is
too far from average traffic value, and then removes the white
noise from the data by Fourier analysis before inputting the
data to the prediction process. If these eliminated data is not
considered in traffic engineering, the calculated routes cannot
accommodate the temporal traffic change and may cause the
congestion.

One simple approach to consider these removed variation
is to use the short-term prediction method [12, 14, 15, 18, 19].
However, the short-term prediction method causes a large
prediction error when it is used to predict the traffic during
the control period, which may be a few hours or more. To
predict the daily variation with a small time granularity, a
number of iterations of one-step ahead prediction is required,
which causes inaccurate prediction for the distant future due
to the accumulation of errors. For instance, in [18], the
error of the iterative prediction with 5 minutes of granularity
monotonically increases as the prediction target becomes long.

Therefore, in this paper, we clarify how to handle the long-
term and short-term variation for the prediction based traffic
engineering. In our approach, we decompose the traffic varia-
tion into long-term and short-term variation. Then, in addition
to the prediction of the long-term variation, we also estimate
the range of the short-term variation. Finally, we obtain the
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predicted upper bound of traffic variation by summing the
predicted long-term variation and estimated range of the short-
term variation.

In addition, we evaluate the prediction method combined
with the traffic engineering. Though most of the existing
work on the traffic prediction discuss their prediction accuracy
by comparing the predicted values with the actual values.
However, prediction errors of some flows may have only a
small impact on the performance on the traffic engineering,
while other flows may have a large impact; the large flows
affect the link utilization significantly than the small flows and
may be required to be predicted accurately. Therefore, in this
paper, we discuss the suitable prediction method considering
the results of the traffic engineering using the predicted traffic.

III. TRAFFIC ENGINEERING WITH TRAFFIC PREDICTION

In this paper, we deploy a central control server that controls
the network. The central control server observes and predicts
the traffic rate and calculates routes on the basis of the
predicted traffic.

The control server observes the traffic rate at each flow in
fixed intervals (e.g. 10 minutes, 30 minutes, or one hour) called
time slots. The observed traffic rates of all flows in the t-th time
slot are represented as a vector. We denote this vector as xt.
The aggregation of a number of flows is useful for reducing the
observing cost and prediction time. In this paper, we aggregate
the flow as OD flow that traverses from the ingress Point-
of-Presence (PoP) router to the egress PoP router. This flow
grain is sufficient to decide the routing in a backbone network,
and the existing observation based traffic engineering methods
often use OD flow [6, 7].

Using the observed traffic rates until the t-th time slot, the
control server predicts the future traffic rates in the next f
time slots. The prediction of future traffic is formulated as

x̂t+1..t+f = F (xt−h+1..t) , (1)

where xa..b = (xa,xa+1, · · · ,xb) is a matrix in which each
column corresponds to each vector, x̂k is the predicted traffic
in the k-th time slot, f is the number of time slots where the
traffic rate is predicted, h is the length of observed time slots
used in the prediction, and F is a prediction function defined
by a prediction method.

In traffic engineering, the control server calculates the routes
so as to avoid congestion for f time slots. We define these f
time slots as the control period. In this paper, we consider the
case in which the control period is 3–24 hours. The calculated
routes are represented as a matrix A called routing matrix.
The (i, j)-element ai,j in the routing matrix A represents the
ratio of the traffic over the OD flow j mapped onto the link
i. Corresponding to the routing matrix, the predicted traffic
mapped onto each link in the control period is represented as

ŷt+1..t+f = Ax̂t+1..t+f , (2)

where ŷk is the vector indicating the predicted traffic on all
links in the k-th time slot. Traffic engineering is the process
to adjust A so as to control ŷt+1..t+f in some desirable way.

In traffic engineering, the most widely used metric of con-
gestion is maximum link utilization [6, 7], i.e. the utilization

of the most congested link. In this paper, we use a simple
optimization approach that minimizes the maximum utilization
among all links for all time slots within the control period,
though there may be a more sophisticated approach using
the predicted traffic. Using this simple approach, we can
clarify the impact of the prediction on the traffic engineering
performance by simply observing the achieved maximum
link utilization. If the traffic engineering method using the
traffic information predicted by a method keeps the small
link utilization for a long time, the prediction method is
suitable for the traffic engineering intended to stabilize traffic
accommodation.

The optimization problem is formulated as the following
linear programming problem:

minimize:U (3)

subject to:∀s, d,
∑

p(l)=s

As,d(l) = 1 (4)

∀s, d,
∑

f(l)=d

As,d(l) = 1 (5)

∀s, d, n,
∑

p(l)=n

As,d(l) =
∑

f(l)=n

As,d(l) (6)

∀l, k ∈ [t+ 1, t+ f ],
∑
s,d

As,d(l)x̂s,d
k

C(l)
< U, (7)

where U is the maximum link utilization, As,d(l) is the ratio
of traffic from s to d routed over the link l, and p(l) and f(l)
are the start and end nodes of the link l, respectively, x̂s,d

k is
the predicted traffic rate of the flow from s to d at the k-th time
slot and C(l) is the capacity of the link l. x̂s,d

k and C(l) are
given in this problem, and As,d(l) and U are the variables to be
obtained. Eqs. (4–6) are the constraints for flow conservation.
Eq. (7) ensures that U is the maximum link utilization of all the
links for all the time slots within the given control period. By
solving the above problem, we obtain routing matrix A, which
is used for the control period [t+1, t+f ], and is not changed
before t + f + 1. Setting f to a large value avoids frequent
route changes, but to do so the traffic prediction should be
response to traffic variation occurring in the control period [t+
1, t+f ]; if the predicted traffic cannot respond to the temporal
traffic variation that occurs in some time slots, congestion may
occur. In Section IV we therefore discuss a traffic prediction
procedure that considers traffic variation in each time slot.

To map the routing matrix A to actual network, we assume
the paths between an OD pair of routers are determined by
MPLS Label Switched Paths (LSPs). According to the link-
based routing determined by A, the control server can calculate
the path-based routing, i.e. defining the link set used by each
LSP and split ratio among the LSPs. Each PoP router splits
traffic among the LSPs corresponding to an OD flow using the
hashing method described by Anwar et al. [8]. In this method,
each fine-grain flow (e.g TCP flow) is routed to only one LSP
to avoid the packet reordering that degrades TCP throughput.
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Fig. 1. Prediction process

IV. TRAFFIC PREDICTION PROCESS

A. Overview

In the network, traffic variation has a daily pattern in longer-
term (hour or day) variation, and the traffic changes every
few hours. The traffic prediction needs to follow longer-term
variation so that the traffic engineering calculates the routes
suitable for the next few hours. However, the actual traffic
variation includes noisy variation (short-term variation), and
the longer-term tendency is polluted. Such polluted data cause
a large prediction error. Therefore, we use preprocessing that
extracts the daily periodical variation excluding the noisy
variation to improve the prediction accuracy.

On the other hand, the short-term traffic variation excluded
by the preprocessing may cause the congestion. The short-term
traffic variation is hard to predict, but it can be considered
as a noisy fluctuation whose mean and variance are stable
if the preprocessing extracts the longer-term traffic variation
accurately. Thus, we consider the short-term traffic variation
by calculating the variance of the traffic variation excluded
by the preprocessing. Then, by adding the confidence interval
of the calculated variance to the predicted longer-term traffic
variation, we avoid the underprediction caused by the short-
term traffic variation.

Moreover, we also consider the confidence interval of the
prediction error to avoid the impact of the prediction error
on the traffic engineering. The confidence interval causes
the overprediction. However, the overprediction has a smaller
impact than the underprediction. This is because the underpre-
diction causes the lack of allocated resources and congestion
while the overprediction does not affect the communication
performance until the overpredicted flow blocks resources to
be allocated to other flows.

Our approach is summarized in Fig. 1. First, we extract the
longer-term variation from the actual traffic variation by the
preprocessing. Second, we predict the future traffic variation
using the extracted variation and estimate the variance of ex-
cluded variation. Finally, we obtain the upper bound of traffic
variation summing up the predicted upper bound of longer-
term variation and the confidence interval of the excluded
variation. The obtained upper bound is used as input of the
traffic engineering.

B. Prediction Preprocessing

In the preprocessing, we extract the daily periodical vari-
ation from the observed traffic. The object of preprocessing
is to filter out the short-term traffic variation that is hard to
predict. This increases the accuracy of the prediction of the
longer-term traffic variation.

In this paper, we investigate the following preprocessing
methods: the lowpass filter, the trend component, and the
envelope. The rest of this subsection details the preprocessing
methods.

1) Lowpass Filter: One approach to extract the longer-term
variation of the traffic variation is to use the lowpass filter,
which extracts the longer-term variation using the Fourier
transform.

By using the Fourier transform, the time series of the traffic
data can be represented as

xk=

h−1∑
n=0

fn exp

(
2πi

nk

h

)
, (8)

where fn is Fourier coefficient corresponding the frequency
n/h and i is the imaginary unit. Eq. (8) also includes high
frequency variations such as noise. To reduce these noisy
variations, the lowpass filter removes the terms with large n
and extracts the longer-term variation as

lk=

L∑
n=0

fn exp

(
2πi

nk

h

)
, (9)

where L is the threshold to remove the high frequency
variations. In this paper, we set L so as to remove the variation
of frequency higher than the daily variation, i.e. the lowpass
filter extracts the daily pattern of traffic variation.

2) Trend Component: In the second approach, we extract
the longer-term variation by using a time series model. One
approach to model the longer-term variation is the trend
model [24]. We call the traffic variation extracted by using the
trend model trend component. The trend component includes
the daily traffic variation and longer-term traffic variation. The
trend model is denoted as

xk=tk + ϵk (10)
∆tk=∆tk−1 + wk, (11)

where xk is the traffic rate of a flow in the k-th time slot, tk
is the trend component, ∆tk = tk − tk−1, ϵk

i.i.d.∼ N(0, θ2) is
the noise of observation, and wk

i.i.d.∼ N(0, λ2) is the noise in
the trend component.

Eq. (10) indicates that the original data are composed of the
trend component and the noise, and Eq. (11) indicates that the
trend component is perturbed by Gaussian noise.

At the first step to calculate the trend component, the
variances θ2 and λ2 are found by the Maximum Likelihood
Estimation (MLE). Then, the trend component ti(i = t −
h + 1, · · · , t) is determined by the conditional expectation
E [ti|xt−h+1..t] with the probability of transition in Eqs. (10)
and (11).

In terms of extracting the daily variation, the trend compo-
nent approach is the same as the lowpass filter. However, the
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trend component extracts the main tendency of the traffic vari-
ation, while the lowpass filter extracts the targeted frequency
component. Therefore, the trend component also extracts the
variation mismatched to the frequency component when the
variation can be taken as the main tendency.

3) Envelope: Extracting the variation of traffic upper
bounds may be useful to predict the bandwidth required to
accommodate the short-term traffic variation. In the third
approach, we extract the upper bound variation by tracing the
peak value in the fixed time interval. We divide the observed
values xt−h+1, · · · , xt into l = h

τ intervals, where τ denotes
the length of the intervals. The set of the time slots in the k-th
interval is denoted as

Ik={(k − 1)τ + t− h+ 1, · · · , kτ + t− h} . (12)

We set the interval length τ to 12 hours considering the daily
variation.

The peak value in Ik is represented by xpk
, where pk

represents the peak time slot denoted as

pk=arg max
j∈Ik

xj . (13)

In this paper, we extract the envelope by connecting the
peak values xp1 , · · · , xpl

and the latest value xpl+1
= xt with

lines. By including the latest value xt, the prediction can reflect
the latest data. We simply perform the linear interpretation for
points between xpk−1

and xpk
, and each point is interpreted

as

xj=xpk
+

xpk+1
− xpk

pk+1 − pk
(j − pk) (14)

j=pk, pk + 1, · · · , pk+1, k = 1, · · · , l.

C. Prediction
The traffic prediction is performed on the basis of the

prediction model after each preprocessing. To predict the
traffic, many prediction models have been proposed. Though
our prediction process is not limited by a certain prediction
model, we use two traffic prediction models (ARIMA and
SARIMA) as examples to discuss the effect of considering
the periodicity of traffic variation. The model-based prediction
learns the model parameters from inputted data and then
predicts the future values on the basis of the obtained model.
The rest of this section gives an overview of prediction with
the ARIMA and SARIMA models.

1) Prediction models:
a) ARMA model: Before describing the ARIMA and

SARIMA models, we briefly explain the ARMA model, which
is the base model for the ARIMA and SARIMA models.

The ARMA model represents data at each time slot using
the previous data and errors as

xn=

p∑
i=1

aixn−i +

q∑
i=0

biϵn−i + c (15)

b0=1,

where p and q respectively denote the numbers of past data
and errors on which the current data depends. ai and bi are
the coefficients, ϵi is the error at the i-th time slot and c is a
constant.

b) ARIMA model: The ARIMA model is an extension of
the ARMA model so as to model the non-stationary data, such
as the data whose mean value fluctuates over time. To apply the
ARMA model to such data, the non-stationarity is removed.
When the variation of the mean has a linear characteristic,
the differenced data ∆xn = xn − xn−1 exclude the variation
of the mean. In this manner, d times differencing operation
∆d can remove the mean variation following a polynomial of
degree d. In the ARIMA model, ARMA model in Eq. (15) is
applied to the differenced data ∆dxn.

c) SARIMA model: The SARIMA model is a general-
ization of the ARIMA model. Considering the periodicity, the
SARIMA model applies a periodical differencing to the data
as ∆sxn = xn − xn−s, where s is a period length. After
the D times of the periodical differencing ∆D

s xn are applied,
the differencing method in the ARIMA model is also applied.
Therefore, differenced data are finally denoted as ∆d∆D

s xn.
Considering the daily periodicity and the weekday/weekend
difference, we set s to the weekly length.

The differenced data are fitted to the following model, which
expands the ARMA model by adding the data and errors in
previous periods as

xn=

p∑
i=1

aixn−i +

q∑
i=0

biϵn−i + c

+
P∑

j=1

Aj

p∑
i=1

aixn−sj−i+

Q∑
j=1

Bj

q∑
i=0

biϵn−sj−i (16)

b0=1,

where P and Q denote the numbers of previous periods for
depended data and errors, respectively. Ai and Bi are the
coefficients that indicate how the previous i-th period affects
the current time slot.

2) Model Fitting: An ARIMA or SARIMA model is fitted
to the data by the following steps.

First, the differencing parameter is determined by differenc-
ing the data until the data become stationary. A stationarity test
is performed by examining whether the data follow a non-
stationary process xt = xt−1 + ϵ called unit root process.
We use the KPSS test [25] for determining d. The KPSS test
examines the null hypothesis ϵ = 0, which means the data are
stationary. For determining D in the SARIMA model, we use
the Canova-Hansen test [26]. The Canova-Hansen test applies
the null hypothesis test to the Fourier coefficients variation of
each period.

Second, the coefficients and the number of the terms in a
model are determined. To determine the number of the terms
in a model, we determine the coefficients by the MLE for each
case of the number of terms. Then, we determine the model
by selecting the model with the highest goodness among the
models calculated by the MLE. The goodness of a model is
defined by the Akaike Information Criterion (AIC) [27], which
is defined by

AIC = −2 logL+ 2k, (17)

where L is the maximized likelihood with the MLE and k is
the number of parameters. k = p+q+P +Q in the SARIMA
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model, and k = p+ q in the ARIMA model. A model with a
large number of parameters can fit the data well but may fit
the incidental variation such as noise. By penalizing k, AIC
can select the best model while avoiding overfitting the data.
To search for the model with the highest goodness, we use the
method proposed by Hyndman et al. [28]. In this method, the
model with the highest goodness is searched for by changing
p, q, P and Q by one until no new model can improve AIC.

3) Prediction with Fitted Model: After the fitting of a
model, the future traffic is predicted in accordance with the
obtained model. The predicted traffic in the next k-th time
slot is calculated as following conditional expectation of xt+k

given the previous observation values:

x̄t+k = E[xt+k|xt−h+1..t]. (18)

According to the prediction model (15 or 16), the traffic rate
of the next one time slot is directly calculated with observa-
tion values. The next two or more time slots are iteratively
predicted by using the former predicted value instead of the
observation value.

4) Confidence Interval: The model-based prediction can
calculate the confidence interval for the prediction error. The
upper confidence bound for the prediction can be calculated
by x̄t+k + ασ̂t+k, where x̄t+k is the predicted traffic rate
at the next k-th time slot, α is a parameter indicating the
considered confidence level, and σ̂t+k =

√
V [xt+k|xt−h+1..t]

is the estimated standard deviation of prediction error where
V [xt+k|xt−h+1..t] is the conditional variance of predicted
value given the observed values.

D. Range of Excluded Variation

The traffic variation excluded by the preprocessing should
also be considered because it may cause the congestion. In
this paper, we consider the excluded traffic variation by using
the standard deviation of the excluded traffic variation. The
standard deviation is calculated as

σ =

√√√√ 1

h

t∑
k=t−h+1

(xk − x′
k)

2, (19)

where xk is the original traffic rate on a flow at k-th time slot
and x′

k is the extracted variation by preprocessing. Using σ, we
compensate for the excluded variation in the predicted traffic
with x̄t+βσ where β is a parameter indicating the confidence
level for the upper bound prediction of the excluded variations.

Finally, the upper bound prediction including both the
prediction error and the excluded variation in the preprocessing
can be calculated as x̂i = x̄i + ασ̂i + βσ.

V. EVALUATION

A. Datasets

We use actual traffic traces from the backbone network of
Internet2 [29], a research and education network in the United
States. Figure 2 shows its topology, and the capacity of each
link is described in [30]. The traffic data are collected by a
Netflow protocol at each of the nine PoP routers. The sampling
rate is one packet in every 100 packets, and aggregated data
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Fig. 2. Internet2 topology

TABLE I
NUMBER OF DATA USED IN TRAINING AND TEST SERIES

control period [hours] training series [hours] test series [hours]
3 336 3
12 336 12
24 336 24

are exported every five minutes. The sampling method has two
main problems: it causes sampling errors, and there may be
unsampled flows. However, it is not a critical problem for our
evaluation because we only need the traffic rate of aggregated
OD flow, which has a large number of samples. The large
daily variation between day and night is mainly observed in
the traffic variation. Focusing on such traffic variation over
several hours, we set the length of the observation time slot to
one hour and aggregate the observed data into the time slots.

We use four week’s worth of data (11/28/2011 to
12/25/2011) aggregated into the flows between PoP routers
using the BGP information. Table I summarizes the number
of time slots used to train the traffic model, and number of time
slots used to test the prediction accuracy or traffic engineering
performance. We use the data from the previous two weeks
as the observed data. We perform the preprocessing and
prediction processes using these data, then compute optimal
routes for the targeted control period using the predicted
traffic. Finally, we evaluate these routes with actual traffic
traces during the control period. We perform the above process
24 times, changing the start time of the prediction because
traffic variation at the start of the prediction greatly affects its
accuracy. Due to an over-provisioning policy [5], link utiliza-
tion on the Internet2 network is less than 20%. Congestion
rarely occurs in such situations, but this means that most
of equipped capacity is redundant and unnecessary energy
consumption is incurred. Our interest here is how to deal with
congestion under limited resources in a way that reduces over-
provisioning and power consumption costs, so we multiplied
actual traffic amounts by 5 in the following evaluation.

B. Characteristics of the Traffic Prediction

1) Prediction Error: Before the evaluation of prediction
based traffic engineering, we investigate the characteristics of
the prediction method. First, to investigate accuracies of the
prediction methods, we compare the mean absolute percentage
error (MAPE), defined as MAPEk = 1

k

∑t+k
i=t+1

|x̄i−xi|
xi

,
where x̄i is the predicted traffic rate, xi is the actual traffic
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rate, and k is the length of the test series. This is one of
the most frequently used metrics of prediction performance in
previous work (e.g. [16, 18]).

Fig. 3 compares the MAPE corresponding to the length
of the prediction target. In Fig. 3, “non-preprocess” means
prediction using original data without preprocessing; “trend,”
“envelope,” and “lowpass” mean prediction with each cor-
responding preprocessing; and “arima” and “sarima” mean
prediction by the ARIMA and SARIMA models, respectively.
Fig. 3 indicates that any traffic prediction includes prediction
errors (e.g. at least around 40% in the case of “lowpass”).
Fig. 3 also indicates that the MAPE generally increases as
the prediction target becomes far from the current time slot
except the case of “envelope”. This increase is caused by the
accumulation of one step prediction errors. In the SARIMA
and ARIMA models, the future traffic value is predicted by
continuing the one step prediction. As a result, even if the
prediction errors included in each step is small, the prediction
errors in the far future become large by accumulating the
prediction errors included in each step.

From Fig. 3, prediction with the envelope has the largest
prediction error. This is because the “envelope” includes the
large short-term fluctuation, since the upper bound of traffic is
frequently changed by temporal traffic changes. It is difficult
for SARIMA or ARIMA model to fit to the traffic pattern
which includes such a large fluctuation. As a result, the
prediction result with the envelope has large error even in
one-step prediction. This large prediction errors also makes
the MAPE of envelope independent from the time slot, while
the MAPE of the other prediction methods increases as the
time slot becomes far from the current time slot.

In Fig. 3, prediction with the lowpass filter achieves the
lowest prediction error, because the lowpass filter effectively
improves the prediction accuracy by excluding noisy variation.
However, this result does not necessarily mean that prediction
methods using the lowpass filter are best suited to traffic
engineering. The MAPE indicates the overall accuracy of the
prediction of all flows. However, for the traffic engineering,
the importance of the prediction may depend on the flows;
the prediction of the large flows may be important since the
large flows have a large impact on the link utilization. We
demonstrate the impact of the prediction on traffic engineering
in Subsection V-C.

2) Predicted Traffic Variation in Case of Daily Traffic
Pattern: To investigate the detailed characteristic of each
prediction method, we show the predicted traffic time series.
As an example, Fig. 4 shows the prediction results of a
flow using each preprocessing method without a confidence
interval. In Fig. 4, “SARIMA” and “ARIMA” mean the pre-
diction methods using the SARIMA model and the ARIMA
model, respectively. Additionally, “real” means the actual
traffic rate. Figs. 4(a)–(c) show the prediction results using
the trend component, the lowpass filter, and the envelope. Fig.
4(d) shows the prediction results using original data without
preprocessing.

Fig. 4 indicates that the preprocessing methods “trend” and
“lowpass” improve the accuracy of the prediction of the daily
variation. This is because the preprocessing excludes the noisy
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Fig. 3. MAPE of each prediction method

variation and clarifies the longer-term traffic variation, which
enables accurate modeling of the daily traffic variation. Fig.
4 also indicates that the SARIMA model predicts the daily
variation more accurately than the ARIMA model. This is
because considering the periodicity in the prediction model is
effective for predicting the daily variation. The results shown
in Fig. 4 is different from those in Fig. 3. This is caused by that
the prediction errors in the small flows; the MAPE is average
of the prediction errors normalized by their actual values, and
the prediction errors in the flows whose actual traffic amounts
are small have significantly large impacts on the MAPE. In
addition, the large prediction errors occur in the small flows,
especially in the flows whose average traffic amounts are small
but that have some spikes. Figure 5 shows an example of such
small flows with spikes. In this figure, the vertical dotted line
indicates the start point of the prediction. In this figure, there
is a spike before the start point of the prediction. Such spikes
cannot completely extracted by the trend or lowpass filter, and
have a impact on the extracted long-term tendency. In the case
of Fig. 3, the spike causes the sudden increase and decrease
in the extracted tendency just before the start point of the
prediction. As a result, the SARIMA model whose parameters
are set to fit such sudden changes becomes different from the
long-term trend of the traffic, and causes a large prediction
error.

However, such spikes causing the large prediction errors
are not found in the large flows. This is because the large
flow includes a numerous number of user flows. The spikes
in the flows are caused by the spikey behavior of the user
flows. However, even if the flow includes the user flows whose
behaviors are spikey, the spikey flows have only small impacts
on the total traffic amounts of the flow, when the flow includes
a large number of user flows.

Considering the traffic engineering, the prediction of the
large flows such as a flow shown in Fig. 4 are important,
compared with the small flows, since the large flows have a
large impact on the link utilizations. Thus, the evaluation of
the accuracy of the prediction is not sufficient, and we need
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Fig. 4. Example of the predicted traffic time series using each preprocessing
method

time[hours]

tr
a

ff
ic

[b
p

s
]

0 10 20 30 40

0
e

+
0

0
4

e
+

0
8

8
e

+
0

8

real

SARIMA

ARIMA

pre−processed

(a) Trend component

time[hours]

tr
a

ff
ic

[b
p

s
]

0 10 20 30 40

0
e

+
0

0
4

e
+

0
8

8
e

+
0

8

real

SARIMA

ARIMA

pre−processed

(b) Lowpass filter

Fig. 5. Example of failure prediction with SARIMA

the evaluation of the performance of the traffic engineering
using the predicted traffic, which is discussed in Section V-C.

3) Predicted Traffic Variation in Case of Sudden Traffic
Change: Though we do not need the accurate prediction on
the spikey flows with small average traffic rates, the large
flow may have the traffic variation which suddenly deviate
from the longer-term pattern. Since the large flow affects the
performance of the traffic engineering, the prediction should
follow the main pattern of variation even in this case.

In this subsection, we investigate the accuracy of the pre-
diction with a lowpass filter and trend component when such
sudden change occurs in the large flows. Fig. 6 shows the

prediction results of the SARIMA and ARIMA of a flow when
the sudden traffic change is included. Fig. 6 plots the actual
traffic variation and the predicted variation. In this figure, we
plot the prediction results of two prediction methods (lowpass
and trend) that can accurately predict the daily traffic variation
as discussed in the previous subsection. The vertical dotted line
indicates the start point of the prediction. “upper lowpass” and
“upper trend” indicates the upper bound calculated by setting
α and β to 0.84, which correspond to the confidence level of
80% for prediction error and short-term variation, respectively.

Unlike the spikey flows with small average traffic rates, the
large flow, whose traffic rates suddenly increase, increases over
multiple time slots as shown in Fig. 6. Thus, we can obtain
the information used for the prediction of the sudden increase.

In Fig. 6, the method using the trend component follows the
main variation under sudden traffic change more accurately
than the method using the lowpass filter. This is because the
trend component extracts the tendency to increase, while the
lowpass filter removes all the variation shorter-term than daily
variation. As a result, the lowpass filter removes the increasing
tendency and underpredicts the sudden increase in traffic.

Fig. 6 also indicates that the predicted traffic of the ARIMA
and SARIMA are almost the same. This is because the
periodicity of the traffic variation is not effective for such
sudden variation.

C. Performance of the Traffic Engineering

In this subsection, we investigate the performance of the
traffic engineering using the predicted traffic. In this evalu-
ation, we compute the optimum routes by solving the linear
programming problem in Eqs. (3–7) using the predicted traffic.
The linear programming problem is solved by CPLEX [31].
After the calculated routes are set, we investigate the per-
formance of traffic engineering using actual traffic with the
calculated routes.

To evaluate the performance of traffic engineering, we
investigate the link load of each link at each slot, which are
the sum of traffic passing the link. In this evaluation, we focus
on the peak link loads during the control period, because the
network operator should set the bandwidth of each link so as
to accommodate peak traffic without congestion. Among all
links, we also focus on the most congested link, because the
reduction of the link load on the most congested link is one
of important objectives in the traffic engineering. Since the
most congested link is passed by a large number of flows,
the mitigation of the congestion of such a link improves the
performance of a large number of flows. In addiction, the
reduction of the link load on the most congested link avoids
the concentration of traffic on a certain link, which may cause
the necessity of enhancement of the link capacities. Thus, we
use the maximum peak link loads defined by

r = max
l,k∈[t+1,t+f ]

yk(l) (20)

where f is the length of control period, and yk(l) is the traffic
rate on the link l at the time slot k. The small r indicates that
we do not require a large bandwidth to accommodate traffic
without congestion.
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Fig. 6. Example of the prediction for the sudden traffic change

In the evaluation, we normalize the value of r by that of
InvCap routing, which is the most commonly used method for
load balance routing. InvCap routing calculates the shortest
path using the inverse of link capacities as weights, splitting
the traffic equally among equal weighted paths. The normal-
ized maximum peak link load r′ is defined as

r′ =
r

rInvCap
(21)

where rInvCap = maxl,k y
InvCap
k (l) is the maximum peak link

load under the InvCap routing, and yInvCap
k (l) is the traffic rate

on the link l at the time slot k under the routes determined
by InvCap routing. In our evaluation, we focus on the largest
value of r′ to clarify the reduction in the required bandwidths
to avoid congestion.

1) Impact of Considering the Short-Term Variation and
Prediction Errors: We compare the maximum peak link load
by the traffic engineering using the predicted traffic with
various α and β. Figures 7–8 show the complement cumulative
distribution function (CCDF) of the normalized maximum
peak link load. Figures 7–8 show the cases of SARIMA and
ARIMA with the trend component for various control periods.

TABLE II
VALUES OF PARAMETERS FOR CONFIDENCE LEVELS (α,β)

control period [slots] 3 12 24
trend (0.5,0.6) (0.5,0.8) (0.9,0.8)
lowpass (0.8,0.5) (0.7,0.8) (0.8,0.9)
envelope (0.8,-) (0.9,-) (0.8,-)
non-preprocess (0.7,-) (0.7,-) (0.8,-)

In this comparison, when changing α, β is set to 0. On the
other hand, when changing β, α is set to 0. Here, “mean”
indicates the result using mean prediction without confidence
interval, and “k %” means that confidence level corresponds
to k%. The confidence interval corresponding to a confidence
level is calculated under the assumption that predictive error
follows a Gaussian distribution. This assumption can be exam-
ined by a Kolmogorv-Smirov (KS) test, and the null hypothesis
of Gaussian distribution cannot be rejected at a significance
level of 5% for more than 85% of OD flows.

In most cases in Figs. 7–8, the largest link load of
prediction-based traffic engineering is improved by consid-
ering the confidence level. This is because by considering
the range of the short-term variation and prediction errors,
the congestion occurred by temporal traffic variation can be
avoided. When these ranges are not considered, temporal
traffic variation sometimes causes congestion. Moreover, the
difference between considering confidence intervals or not
becomes large when the control period is large. This is because
a large control period has a higher possibility of temporal
traffic changes which may causes the congestion.

From Figs. 7–8, an overly large α sometimes requires large
capacity, while the maximum peak link load is kept small
even when β is set to a large value. When α is set to a large
value, the predicted traffic rate of the distant future time slots
becomes large because the traffic of the distant future time
slot is difficult to predict and the variance of the prediction
becomes large. As a result, too many resources are allocated
to the traffic whose variance of the prediction is large. On the
other hand, the variance of the short-term traffic variation is
constant for all time slots in our prediction procedure. Thus,
even when β is set to a large value, no traffic is predicted as a
too large value. Therefore, setting β to a large value and α to
0 is sufficient to avoid future congestion caused by short-term
variation.

2) Comparison of the Preprocessing Methods: We com-
pare the impacts of the preprocessing methods on the traffic
engineering using the predicted traffic. Hereafter, we configure
the confidence levels (α and β) of each prediction method in
traffic engineering so that the maximum link load at the peak
time slot is minimized. Table II shows the configured values
of (α,β). For “envelope” and “non-preprocess”, the value of β
is not valid because it makes no sense to consider the removed
variance in preprocessing in these methods.

Figs. 9–10 show the CCDF of normalized maximum peak
link load at each control period when the traffic is predicted
by the SARIMA or ARIMA with each preprocessing. Here,
“observation-based TE” means calculating routes using the
previous one hour’s worth of data instead of the predicted
traffic.

Figs. 9–10 show that the traffic engineering with the predic-
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Fig. 7. Complement Cumulative distribution of maximum peak link load normalized by InvCap routing with different confidence levels in the SARIMA
model prediction with the trend component
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Fig. 8. Complement Cumulative distribution of maximum peak link load normalized by InvCap routing with different confidence levels in the ARIMA model
prediction with the trend component
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Fig. 11. Box plot of gain of prediction-based traffic engineering in reduction
of maximum peak link load compared with the observation-based traffic
engineering (Control period: 12slots)

tion keeps maximum peak link load low for the worst or almost
worst case than “observation-based TE”. This is because the
traffic engineering using the predicted traffic variation sets the
routes so as to avoid the future congestion by considering the
future traffic variation. On the other hand, the “observation-
based TE” sets the routes on the basis of the observed traffic,
which sometimes differs from the future traffic significantly.
As a result, the “observation-based TE” causes the congestion
on a certain link.

Comparing the results of the different control periods, the
maximum peak link loads increases as the control period
becomes large. This is because the traffic changes included
in the control period increases as the control period becomes
large. As a result, more bandwidth is required to accommodate
the traffic fluctuation during the control period. However, the
short control period causes frequent route changes. In addition,
the routing optimization may take a long time, the control
period cannot be set to a small value especially in a large
network. Even in the case of the long control period, the
prediction based TE does not required a large bandwidth,
compared with the observation based TE, which is one of the
important advantage of the prediction based TE.

In Fig. 9, the SARIMA method with the trend keeps the
worst value of link load small compared with the other
methods. This is caused by that the SARIMA with the trend
follows both of the long-term variation and sudden changes.
As a result, traffic engineering using SARIMA with the
trends allocates sufficient resources considering the long-term
variation and sudden changes.

We also investigate the gain of the prediction based TE
compared with “observation-based TE”, defined by

1− r

robservation

where r is the maximum peak link load of the prediction
based TE, robservation = maxl,k y

observation
k (l) is that of the

observation based TE, and yobservationk (l) is the traffic rate
on the link l at the time slot k under the routes determined
by observation based TE. Figure 11 shows the performance
gain of each control period when the control period is set
to 12 slots. In Fig. 11, the maximum, third quartile, median,

first quartile, and minimum values are plotted as horizontal
line from top to bottom, and the average value is plotted as
a crossed point. Similar to the previous results, we focus on
the worst case to evaluate the reduction of capacity which
must be prepared. Although there is difference among the
prediction method, the worst case of gain is positive in all
methods. Especially, the gain of the prediction based traffic
engineering using SARIMA with the trend component is at
least 18.9%. That is, the prediction based traffic engineering
using SARIMA with trend component reduces the required
bandwidth by 18.9% compared with the observation based
traffic engineering.

3) Comparison of the ARIMA and SARIMA Models: We
also compare the performance of the traffic engineering using
the traffic predicted by the ARIMA and SARIMA models.
Fig. 12 compares the CCDF of maximum peak link load
normalized by InvCap routing. In Fig. 12, we present the
results for the traffic engineering using the traffic predicted by
the ARIMA/SARIMA with the trend component or lowpass
filter, and the observation-based traffic engineering.

Fig. 12 indicates that the traffic engineering using the traffic
predicted by the ARIMA keeps maximum peak link load
similar in size to that of the traffic engineering using the traffic
predicted by the SARIMA when the control period is small.
This is because the traffic variation of the short control period
can be predicted even without considering the periodicity of
the traffic variation.

On the other hand, the SARIMA method achieves lower
maximum peak link load than the ARIMA when the control
period is 24 slots. Because the longer-term traffic varia-
tion cannot be predicted without considering the periodicity,
the prediction errors of the ARIMA become large. On the
other hand, the SARIMA predicts the longer-term variation
accurately by considering the periodicity. As a result, the
traffic engineering using the traffic predicted by the SARIMA
allocates the resources to the traffic properly.

We also compare the computational complexity of the
ARIMA and SARIMA. The computational complexity of the
prediction with ARIMA and SARIMA is O(m3t) where m
is the oldest time slot in the model and t is the length
of the data used to learn the parameters of the model.
m = max(sP, sQ) + max(p, q) in the SARIMA model and
m = max(p, q) in the ARIMA model. In the case of datasets
used in our evaluation, the period length s equals 168, the
number of period terms P or Q usually equals 1, and p or q
usually equals 3–5. Therefore, the value of m in the SARIMA
model is about 30–60 times larger than the ARIMA model.
Thus, the ARIMA predicts the traffic about 38,000–180,000
times faster than the SARIMA.

Therefore, the ARIMA prediction is useful for the traffic
engineering targeting the short time scale. This kind of the
traffic engineering may require the future traffic variation to
be frequently recalculated, and the ARIMA predicts the traffic
quickly. In addition, the ARIMA predicts the traffic variation
with sufficient accuracy to avoid the congestion during the
short control periods.

On the other hand, the SARIMA is required when we aim
to calculate the stable routes for a long control period. By
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Fig. 9. Complement Cumulative distribution of maximum peak link load normalized by InvCap routing when the SARIMA model prediction with the
different preprocessing is used in traffic engineering

0.0 0.2 0.4 0.6

0
.1

0
0

1
.0

0
0

Link Load

C
C

D
F

ARIMA.trend
ARIMA.lowpass
ARIMA.envelope
ARIMA.non−preprocess
observation−based TE

(a) Control period: 3 slots

0.0 0.2 0.4 0.6 0.8

0
.1

0
0

1
.0

0
0

Link Load

C
C

D
F

ARIMA.trend
ARIMA.lowpass
ARIMA.envelope
ARIMA.non−preprocess
observation−based TE

(b) Control period: 12 slots

0.0 0.2 0.4 0.6 0.8

0
.1

0
0

1
.0

0
0

Link Load

C
C

D
F

ARIMA.trend
ARIMA.lowpass
ARIMA.envelope
ARIMA.non−preprocess
observation−based TE

(c) Control period: 24 slots

Fig. 10. Complement Cumulative distribution of required maximum peak link load normalized by InvCap routing when the ARIMA model prediction with
the different preprocessing is used in traffic engineering

considering the longer-term traffic variation, we may handle
even unexpected traffic changes by changing routes of only
a small amount of traffic corresponding to the unexpected
changes. As a result, we keep the network stable.

To achieve this, we must predict both the longer- and short-
term traffic variations accurately. The SARIMA predicts the
longer-term variation accurately, while the ARIMA cannot.
Though the SARIMA takes a long time to predict the traffic,
the future traffic does not need to be frequently recalculated
when the target control period is large.

VI. CONCLUSION

In this paper, we proposed a traffic prediction procedure
that obtains all the information required for traffic engineer-
ing. In our prediction procedure, we extract the longer-term
variation before the prediction so as to improve the prediction
accuracy of the daily traffic variation. The short-term traffic
variation is also handled by calculating the variance of the
traffic variation excluded by the preprocessing. Through the
simulation, we clarified that the results of traffic engineering
using the predicted traffic show that considering the short-term
variation and prediction errors avoids the congestion caused by

the prediction uncertainty. The results also indicate that the
ARIMA model is suitable for the traffic engineering method
targeting the short-term control period and the SARIMA
model is suitable for the longer-term control period.

Our future work will include further investigation of more
sophisticated prediction models such as neural networks, and
developing traffic engineering methods suitable for use with
predicted traffic.
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