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SUMMARY In recent years, the time variation of Internet
traffic has increased due to the growth of streaming and cloud ser-
vices. Backbone networks must accommodate such traffic with-
out congestion. Traffic engineering with traffic prediction is one
approach to stably accommodating time-varying traffic. In this
approach, routes are calculated from predicted traffic to avoid
congestion, but predictions may include errors that cause con-
gestion. We propose prediction-based traffic engineering that is
robust against prediction errors. To achieve robust control, our
method uses model predictive control, a process control method
based on prediction of system dynamics. Routes are calculated so
that future congestion is avoided without sudden route changes.
We apply calculated routes for the next time slot, and observe
traffic. Using the newly observed traffic, we again predict traf-
fic and re-calculate the routes. Repeating these steps mitigates
the impact of prediction errors, because traffic predictions are
corrected in each time slot. Through simulations using backbone
network traffic traces, we demonstrate that our method can avoid
the congestion that the other methods cannot.
key words: Model Predictive Control, Traffic Engineering,
Traffic Prediction, Multi-path Routing

1. Introduction

In recent years, the time variation of Internet traffic
has increased due to the growth of streaming and cloud
services. Backbone networks must accommodate such
traffic without congestion.

Until now, backbone networks have addressed this
problem by reserving redundant link capacity to ac-
commodate not only average traffic but also traffic
surges [1,2]. However, this approach incurs higher costs
as the average and variance of traffic increases. More-
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over, this approach wastes energy due to the poor util-
ity of network resources; this approach reserves more
than double the capacity required to accommodate the
actual traffic. Hence, a method for accommodating
network traffic without congestion and with limited re-
sources is required in order to reduce costs and power
consumption caused by over-provisioning.

Routing optimization such as load balancing by
splitting traffic among paths is effective for accommo-
dating traffic with limited resources. A routing method
called oblivious routing [3–5] tries to accommodate traf-
fic demands without prior knowledge of traffic statistics
by using fixed routes that are calculated in advance. In
this method, the route is calculated so as to minimize
a metric called oblivious ratio which is the worst ra-
tio of maximum link load to its optimal value. Such
worst-case-guarantee routes, however, degrade perfor-
mance under normal situations. In [5], numerical eval-
uations show that oblivious routing will spend most
of its time in a congested state when the number of
source–destination pairs is large, despite achieving a
low oblivious ratio.

Many dynamic traffic engineering (TE) methods
have addressed the problem of accommodating time-
varying traffic by using limited resources effectively [6–
9]. In dynamic TE methods, a control server periodi-
cally observes network traffic and dynamically reroutes
flow to accommodate the observed traffic. These meth-
ods set routes for only observed traffic, however. This
renders the configured routes unsuitable after signifi-
cant traffic changes because routes are not changed un-
til the next control cycle. Control servers can quickly
respond to traffic changes by shortening the control
cycle interval, but frequent route changes cause rout-
ing oscillations that degrade TCP session throughput;
oscillations cause packet reordering by delivering the
packets of a given TCP session via different paths,
which reduces the TCP session window size. Rout-
ing oscillations also cause overly frequent changes in
round-trip time (RTT), which decreases the through-
put of delay-based TCP [10]. Hence, a method that
avoids congestion without significant route changes is
required.

TE with traffic prediction is one approach to solv-
ing such problems. In this method, routes are calcu-
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lated on the basis of predicted future traffic. Prediction
methods for network traffic have been studied for var-
ious time scales, with variation ranging from millisec-
onds or seconds [11–14] up to daily [15, 16] and even
monthly or yearly long-term variation [17, 18]. Traf-
fic prediction that considers both daily and short-term
variation has also been proposed for TE [19]. However,
no prediction methods are without error, and routes
calculated from incorrect traffic information become in-
appropriate for actual traffic and may cause congestion.
Therefore, TE with traffic prediction should be robust
to prediction errors.

In this paper, we propose a TE method that uses
traffic prediction in a way that is not impacted by pre-
diction errors. Our method uses model predictive con-
trol (MPC) [20,21], which has been recently studied as
a method of system control based on the prediction of
system dynamics. In MPC, a controller inputs system
parameters so as to maintain system output at close
to a target value. The MPC controller predicts the
system output, which reflects changes in the input val-
ues, and calculates the optimal input values for future
time slots. Input values are implemented for only the
next time slot. The MPC controller then observes the
output and corrects the predictions by using the out-
put value as feedback. After correction of the predic-
tions, the MPC controller recalculates the input value
for the next time slot with the corrected predictions.
By repeatedly performing the above steps, the MPC
controller can calculate accurate input for future time
slots even when prediction errors occur. Moreover, the
MPC controller avoids overreaction to temporary pre-
diction errors by avoiding drastic changes in the input
value. In this paper, we apply MPC to TE to propose
a method that follows predicted traffic variation and is
robust against prediction errors.

We summarize the contribution of this paper as
follows. (i) This paper proposes a new prediction-based
TE method, which is robust to the prediction errors by
applying the idea of MPC. (ii) This paper demonstrates
the advantage of our TE method by simulation using
the actual traffic trace. (iii) This paper discusses the
suitable parameter setting of our TE method.

The rest of this paper is organized as follows. Sec-
tion 2 describes TE and TE with traffic prediction. Sec-
tion 3 describes our TE method, to which we apply
MPC. Section 4 presents an evaluation of basic behav-
ior in our TE method. Section 5 gives an evaluation
of our TE method as applied to an actual backbone
network. Section 6 surveys related work. Section 7
presents our conclusions.

2. Traffic Engineering and Traffic Prediction

2.1 Traffic Engineering

TE has been studied as an approach to accommodating

changing traffic by dynamically changing routes. The
process of TE is composed of the following three steps:
(1) traffic rates at network devices are observed, (2)
routes are calculated so as to accommodate the current
traffic, and (3) the calculated routes are applied to the
actual network. These steps are periodically repeated
to follow traffic changes. The details of the above steps
are discussed below.

Traffic rates are observed at a fixed interval (e.g.,
one second, one minute, or one hour), with the times
between observations called time slots. Because there
are a huge number of traffic flows, aggregate traffic rates
are observed instead of individual rates. In [6,8], multi-
ple flows are aggregated as an origin–destination (OD)
flow that traverses from the ingress point-of-presence
(PoP) router to the egress PoP router. Similar to
these work, we too aggregate individual flows as OD
flows. Hereafter, we denote the traffic rate of OD
flow i at the kth time slot by xi(k), and the vector
x(k) = t(x1(k), · · · , xq(k)) represents the traffic rates
of all OD flows at the kth time slot, where q is the
number of OD flows. The traffic rates of the OD flows
are monitored by routers or traffic monitors attached
to the routers. This information can be collected by
using the Netflow protocol or similar.

After the traffic information is collected, routes are
calculated on the basis of the observed traffic rates.
The routes are defined by the fraction of traffic of each
OD flow sent to each path. We denote the fractions
by a matrix R(k) whose (i, j) element Ri,j(k) indicates
the fraction of traffic on the OD flow j that traverses
the available path i. Under the assumption that the
traffic pattern will not change between the current and
next time slots, the expected traffic rates on links are
calculated as

ŷ(t+ 1) = G ·R(t+ 1) · x(t) (1)

where ŷ(t + 1) = t(ŷ1(t + 1), . . . , ŷl(t + 1)) is a vector
whose component ŷi(t+1) indicates the expected traffic
rate of link i at the next time slot, l is the number
of links, and G is a matrix whose (i, j) element Gi,j

is 1 if the available path j traverses the link i and 0
otherwise. TE is the process of calculating routes R(t+
1) so as to minimize a cost function f(ŷ(t + 1)), such
as link load, delay, or packet loss rate for traffic rates
on the links. The TE is formalized as the following
optimization problem:

minimize : f(ŷ(t+ 1)) (2)

subject to : ŷ(t+ 1) = G ·R(t+ 1) · x(t). (3)

The most used cost function is maximum link utiliza-
tion [6,8] for accommodating unexpected traffic surges.

Finally, the calculated routes are implemented.
One approach to implementing the routes is to set the
MPLS label-switched paths (LSPs) between the OD
pair along the calculated routes [7, 22, 23]. In this ap-
proach, a control server calculates the set of links used
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by each LSP and the split ratio of OD flow among LSPs
from R(t + 1). Then, the calculated routes are imple-
mented by establishing the LSPs.

In the existing TE method, the control server cal-
culates the next routes R(t + 1) from the latest ob-
served traffic rates x(t). These routes R(t + 1), how-
ever, are not exactly suited to the traffic rates at time
slot t + 1, because the actual rates will differ from
those of time slot t. Under drastically changing traf-
fic, the difference between x(t + 1) and x(t) becomes
large and routes calculated from x(t) may no longer ac-
commodate the actual traffic at the (t+1)th time slot.
Frequent control with narrow time slots is one way to
quickly respond to such traffic fluctuations. In such
methods, routes are frequently calculated to respond
to traffic changes. However, frequent and significant
route changes degrade the throughput of TCP sessions
because of the induced packet reordering or frequent
changes in RTT. To solve these problems, the TE and
traffic prediction must cooperate. By using predicted
traffic, the TE method directly sets routes fitting the
traffic at future time slots.

2.2 TE with Traffic Prediction

Traffic prediction is useful for TE to prevent route
change delays due to differences between actual and ob-
served traffic. Fig. 1 shows an overview of TE with traf-
fic prediction. Unlike existing observation-based TE
methods, observed traffic rates are not directly used
to calculate routes. Rather, observed traffic is used to
calculate future traffic rates by the traffic prediction
process, and routes are then calculated from prediction
results. This process is periodically repeated to follow
traffic trends. The details are shown below.

The traffic prediction is estimation of future traffic
rates of OD flows. First, a model of traffic dynam-
ics is constructed from the observed traffic rates. The
model represents a time evolution such as x(k + 1) =
F (x(1), · · · , x(k)) where F is a model of traffic dynam-
ics. Future traffic rates are then predicted in accor-
dance with the model. If we observe the traffic rate
until time slot t, the traffic rate at time slot t + 1 is
calculated as

x̂(t+ 1) = F (x(1), · · · , x(t)), (4)

where x̂(t + 1) is the predicted traffic at time slot
t + 1. The traffic rates from time slot t + 2 are it-
eratively calculated, by using the previous predicted
values instead of observation values, as x̂(t + k) =
F (x(1), · · · , x(t), x̂(t+ 1), · · · , x̂(t+ k − 1)).

Using the predicted traffic on the OD flows, traffic
rates on the links can also be predicted; the predicted
traffic rates on links in the case of routes R(t + 1) are
calculated as

ŷ(t+ 1) = R(t+ 1)x̂(t+ 1). (5)
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Fig. 1 Overview of traffic engineering with traffic prediction
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Fig. 2 Overview of MPC

In TE with traffic prediction, the routes are calculated
by considering the cost function of ŷ(t+ 1).

TE with traffic prediction configures routes so as to
avoid future congestion without frequent route changes.
One approach is to configure the fixed routes R that
minimize a cost function at future time slots from t+1
to t + h. The optimal fixed routes R are obtained by
solving the following optimization problem:

minimize : f(ŷ(t+ 1), · · · , ŷ(t+ h)) (6)

subject to : ŷ(k) = Rx̂(k), k = t+ 1, · · · , t+ h. (7)

The predicted traffic, however, includes the prediction
error. Thus, the TE method must configure the appro-
priate routes even when the prediction errors occur.

3. Traffic Engineering Based on MPC

3.1 MPC

MPC is a method of system control based on predic-
tions of system dynamics; this has been studied in re-
cent years. Fig. 2 shows an overview of MPC. In MPC,
a controller sets an input parameter so as to keep the
output performance of the system close to an operator-
specified target. Unlike traditional system control, the
MPC controller predicts changes in the output value
to calculate the inputs for the predictive horizon, time
slots [t + 1, t + h] where h is the distance to the pre-
dictive horizon. We denote the input and output at
the kth time slot by u(k) and y(k), respectively. The
MPC controller calculates the inputs for the predictive
horizon [t+ 1, t+ h] so as to keep y(k) close to the tar-
get value ry(k). The inputs u(t+ 1), · · · , u(t+ h) that
keep y(k) close to ry(k) are obtained by using the ob-

jective function J1 =
∑t+h

k=t+1 ∥y(k) − ry(k)∥2, where
∥ · ∥ represents the Euclidean norm:

(u(t+ 1), · · · , u(t+ h)) = arg min
(u(t+1),··· ,u(t+h))

J1. (8)

To solve the above optimization problem, the fu-
ture outputs y(t + 1), · · · , y(t + h) must be predicted
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from the inputs u(t+ 1), · · · , u(t+ h). The future out-
put under the given input is calculated by a system
model that represents the system dynamics. In sys-
tem control, a system model is often represented by a
mathematical formula, the state space representation,
described as

z(k + 1) = ϕ(k, z(k), u(k)) (9)

y(k) = ψ(k, z(k), u(k)), (10)

where z(k) is the state of the system at the kth time
slot, and ϕ and ψ are functions that respectively map
the current state and input onto the next state and
output.

Modeling the system by a mathematical formula,
however, may entail modeling errors, such as the use
of ϕ or ψ functions that do not well represent actual
system dynamics. Predictions of system output will
be inaccurate under an incorrect model, and predic-
tion errors become increasingly large with more dis-
tant predictive horizons. The MPC controller there-
fore implements only the first of the calculated inputs
u(t+ 1), · · · , u(t+ h) for the predictive horizon. Then,
the MPC controller observes the output and corrects
the prediction by using the output value as feedback.
After prediction correction, the MPC controller recal-
culates the input value for the next time slot with the
corrected prediction.

Prediction errors may also significantly change in-
put values, destabilizing the system. The controller
therefore restricts the amount of allowed change to in-
puts, which mitigates the influence of prediction errors.
We denote the amount of change in the input at the
time slot k by ∆u(k) = u(k)− u(k− 1), and the aggre-
gated amount of change during the predictive horizon

by J2 =
∑t+h

k=t+1 ∥∆u(k)∥. Instead of the input val-
ues determined by Eq. (8), the controller calculates the
input values by the following optimization problem:

(u(t+1), · · ·, u(t+h)) = arg min
(u(t+1),···,u(t+h))

(1−w)J1+wJ2 (11)

where 0 ≤ w ≤ 1 is a parameter for weighting the two
objective functions J1 and J2.

3.2 Applying MPC to TE

We apply MPC to TE to achieve a prediction-based TE
that is robust against prediction errors. Fig. 3 shows an
overview of our TE method, to which MPC is applied.
We assume that a control server collects all traffic in-
formation and sets the routes. In the TE, a central
control server acts as the MPC controller, which inputs
the routes R(k) and measures the outputs of the net-
work and the traffic rates on the links y(k). The con-
trol server periodically changes the routes by repeating
the following two steps: 1) The control server predicts
the traffic rates of OD flows for the target time slots
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Fig. 3 Overview of traffic engineering based on MPC

from the previously observed traffic rates using a cer-
tain prediction model. 2) The control server calculates
the routes from the prediction so as to minimize a cost
function f(ŷ(k)), such as link load, delay, or packet loss
rate.

3.2.1 Traffic Prediction

The control server predicts future traffic from the previ-
ous observations in accordance with a prediction model.
The predicted traffic is used as an input of the route
calculation. In our TE, any prediction method can be
used. Though a prediction method may have an impact
on prediction errors, the suitable prediction method is
out of the scope of this paper. Instead, we use one
of the simplest prediction models in our evaluation to
demonstrate that our TE works properly even in the
case of inaccurate prediction.

3.2.2 Routes Calculation

The control server computes the routes by minimiz-

ing the objective function J1 =
∑t+h

k=t+1 f(ŷ(k)), which
indicates the summation of the cost function during
the predictive horizon. In addition, the control server

also minimizes J2 =
∑t+h

k=t+1 ∥∆R(k)∥2 where ∆R(k)
is a matrix whose (i, j) element ∆Ri,j(k) = Ri,j(k) −
Ri,j(k − 1). By minimizing J2, the overreaction to
prediction error is avoided. This multi-objective opti-
mization is conducted by minimizing the weighted sum
(1− w)J1 + wJ2, where 0 ≤ w ≤ 1 weights the impor-
tance of the restriction on the route changes.

In our TE method, the control server solves the
following optimization problem at each time slot t:

minimize :
t+h∑

k=t+1

(
(1− w)f(ŷ(k)) + w∥∆R(k)∥2

)
(12)

subject to : ∀k, ŷ(k) = G ·R(k) · x̂(k) (13)

∀k, ∀i,∀j, Ri,j(k) ∈ [0, 1] (14)

∀k, ∀j,
∑

i∈℘(j)

Ri,j(k) = 1. (15)

Here, x̂(k), G are given variables and R(k), ŷ(k) are
the variables to be optimized. Eq. (13) represents the
relation between the traffic rates of the OD flows and
links. Eqs. (14) and (15) mean that all traffic on each
OD flow is allocated to an available path.

Although all of the routes R(t + 1), · · · , R(t + h)
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during the predictive horizon are obtained by solving
the above optimization problem, the control server im-
plements only the next routes R(t+1). After the route
change, the control server corrects the traffic predic-
tion x̂(k) by using the newly observed traffic rate and
recalculates the next routes by solving the optimization
problem again.

4. Evaluation of Basic Behavior of MPC-based
TE

In this section, we investigate the behavior of the MPC-
based TE in a basic situation. In this evaluation, we
generate the average traffic rate of each time slot of
each OD flow. At the beginning of each time slot, we
calculate the routes of the OD flows by TE methods
using the traffic rates of the past time slots. Then,
we map the OD flows on the links according to the
calculated routes. Finally, we evaluate the performance
of the TE based on the average traffic rate on each link.
In this evaluation, we do not assume a specific time
scale of the time slot, but the length of the time slot
is sufficiently large so that the route change does not
affect the traffic rate.

4.1 Simulation Environment

4.1.1 Network Topology

We use the simple network topology shown in Fig. 4.
Each link has a capacity of 100 units of traffic and delay
of 0.1 unit time. In this simple network there are only
two OD flows, from node 0 to node 1 and from node
4 to node 5. Each OD flow has two available paths,
shown by the arrows in Fig. 4, the paths 0–1 and 0–2–
3–1 for the OD flow between node 0 and node 1 and
the paths 4–5 and 4–2–3–5 for the other OD flow. Due
to the overlap between paths 0–2–3–1 and 4–2–3–5 (on
link 2–3), the control server has to adjust the split ratio
of traffic among the paths. For example, if the traffic
rates increase at the OD flow 0–1, more traffic should
be bypassed on the path 0–2–3–1, and traffic at OD
flow 4–5 should not traverse the path 4–2–3–5 so much
to avoid the congestion.

4.1.2 Network Traffic

We use the artificial traffic shown in Fig. 5. This ar-
tificial traffic includes traffic increases and decreases,
which will cause congestion unless the routes are ap-
propriately changed.

4.1.3 Prediction Method

In this evaluation, we use a simple prediction method
detailed as follows. First, we find a best-fit straight
line l(k) = ak + b that minimizes the sum of squared
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Fig. 5 Network traffic for simple network topology

distances from the previous observed traffic rates x(t−
s), x(t−s+1), · · · , x(t)(s ≥ 1), denoted as

∑s
k=0(x(t−

s + k) − l(t − s + k))2. We then obtain the future
traffic rate as x̂(t + k) = l(t + k). Though there are
many more sophisticated prediction methods, we use
the above simple prediction with s = 1 to verify the
effect of correcting the prediction with feedback from
new observations, which is one of the main effects of
MPC.

4.1.4 Cost Function

In this evaluation, we use a cost function that is based
on link utilization, which is similar to existing work [24].
While most previous studies have minimized link uti-
lization, high link utilization does not affect communi-
cation performance unless congestion occurs. We there-
fore use a cost function that indicates whether conges-
tion occurs. In this cost function, we define the conges-
tion level ζj(k) ≥ 0 for each path j at time slot k. To
distinguish whether congestion occurs or not, we intro-
duce a threshold value called target capacity ci = ρCi

where ρ is an allowable upper limit of link utilization
which is defined by the performance requirements such
as delay or loss rate. In this evaluation, we set the
value of ρ to 0.9. If traffic on any links over path j does
not exceed the target capacity, then j is regarded as
an uncongested path. If there are the links with traffic
exceeding the target capacity, then j is regarded as a
congested path. The congestion level of a path is deter-
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mined under the following policies: (1) the congestion
on a link equally affects paths that traverse the link,
and (2) the congestion level on a path is determined
by the bottleneck link, defined as the most congested
intermediate link on the path. Based on these polices,
we set ζj(k) as

ζj(k) = max
i∈P(j)

[yi(k)− ci]
+/ni, (16)

where [x]+ equals x if x is positive and equals 0 other-
wise, ni is the number of paths which traverse the link
i, and P(j) is the set of all links the path j traverse.
In the following evaluation, we use the congestion level
normalized by scaling the value of ζj(k) with the max-
imum link capacity

ζ ′j(k) = ζj(k)/max
i
ci (17)

instead of ζj(k). If ζj(k) is 0 for any path j, the TE
succeeds in accommodating traffic with satisfying per-
formance requirements. Therefore, we use the sum of
ζj(k) as the metric to evaluate the TE methods.

4.1.5 Route Calculation

Though the congestion level defined by Eq. (17) is non-
linear, it can be rewritten as a linear constraint in the
optimization problem. The calculation of [ŷl(k)− cl]

+

can be replaced by a linear constraint [ŷl(k)− cl]
+

=
ŷl(k) − cl + Sl(k), where Sl(k) ≥ 0 is a slack variable.
The operation maxl∈P(p) is translated by inequality

constraints nlζp(k) ≥ maxl∈P(p) [ŷl(k)− cl]
+
/max cl

for all links l in the path p. As a result, the MPC-
based TE using the congestion level as a cost function
is rewritten as the following convex quadratic program-
ming problem:

minimize :

t+h∑
k=t+1

(
(1− w)∥ζ′(k)∥+ w∥∆R(k)∥

)
(18)

subject to : ∀k,∀p,∀l ∈ P(p), nlζ
′
p(k) ≥

αl(k)

max cl
(19)

∀k,∀l, αl(k) = ŷl(k)− cl(k) + Sl(k) (20)

∀k,∀l, αl(k) ≥ 0 (21)

∀k,∀l, Sl(k) ≥ 0 (22)

∀k, ŷ(k) = G ·R(k) · x̂(k) (23)

∀k,∀i,∀j, Ri,j(k) ∈ [0, 1] (24)

∀k,∀j,
∑

i∈℘(j)

Ri,j(k) = 1. (25)

Here, αl(k) ≥ 0 represents the value of [ŷl(k)− cl]
+
.

The solution of this optimization problem satis-
fies the original congestion level because the vari-
ables satisfy the inequality formulation nlζ

′
p(k) ≥

maxl∈P(p)
αl(k)
max cl

≥ maxl∈P(p)
[ŷl(k)−cl]

+

max cl
, and the

equality is attained when ζ ′p(k) is minimized.

To solve the optimization problem of Eqs. (18)–
(25), we use the CPLEX [25] package, which is an opti-
mization problem solver. We run CPLEX on computers
equipped with four Intel Xeon Processors, each having
10 cores and 30 MB of cache memory.

4.1.6 Compared Method

(1) Observation-based TE

We use an observation-based TE to compare with our
MPC-based TE. In the observation-based TE, the con-
trol server uses only the observed traffic rates instead
of the predicted rates. Comparing the MPC-based TE
with this observation-based TE demonstrates the effect
of considering future traffic variation.

(2) Simple Prediction-based TE

We also use a simple prediction-based TE in our com-
parison. In this method, the controller simply calcu-
lates the routes without restricting the routes changes.
For the prediction, the controller uses the same predic-
tion model for MPC-based TE. This TE method is a
special case for our method when parameters are set
to h = 1 and w = 0. Comparison with this method
demonstrates the effect of restricting route change to
avoid the impact of prediction errors.

4.2 Congestion Level

Fig. 6 shows the sum of ζj(k) for all paths, which is
the amount of traffic exceeding the target link capac-
ity at each time slot. The labels “MPC”, “prediction
base”, and “observation base” represent the results of
the MPC-based TE, simple prediction-based TE, and
observation-based TE, respectively. We compares two
cases of MPC-based TE with h = 1 and h = 3 to verify
the effect of considering the future traffic variation.

Fig. 6 indicates the advantages of MPC-based TE.
In Fig 6, congestion occurs at some time slots for
all TE methods except MPC(h = 3, w = 0.5). The
observation-based TE cannot avoid the congestion be-
cause the routes based on the previous traffic rates are
no longer suited to the next time slot. Thus, the traffic
prediction is required to avoid congestion. However, the
prediction based TE also cannot avoid the congestion
due to the prediction errors. In our evaluation, the pre-
diction error occurs at time slots 10, 20, and 30, because
the slope of traffic rate changes at those time slots.
Due to these prediction errors, the prediction-based TE
poorly configures the routes: the capacity of the shared
link 2–3 is under-allocated for the under-predicted flow,
while it is over-allocated for the over-predicted flow. As
a result, the actual traffic on the under-predicted flow
overshoots the target capacity and causes congestion.
The prediction error, however, is corrected after obser-
vation of the implemented routes at time slots 10, 20,
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Fig. 6 Traffic exceeding target link capacity in a simple net-
work
and 30. Therefore, the routes are corrected with exact
predictions after these time slots.

Restricting the route changes avoids the overreac-
tion to prediction errors. However, restricting the route
changes may prevent the required route changes. As a
result, MPC(h = 1, w = 0.5) cannot avoid the con-
gestion. This problem can be solved by starting route
changes in advance. MPC(h = 3, w = 0.5) starts to
change the routes when the future congestion is pre-
dicted. Thus, MPC(h = 3, w = 0.5) configures the
routes so as to follow the traffic changes without chang-
ing the routes significantly at any time slot. As a re-
sult, MPC(h = 3, w = 0.5) avoids congestion at all time
slots.

The above results indicate that the idea of MPC
that controls input on the basis of predictions and mit-
igates the influence of prediction errors is effective for
TE. MPC-based TE avoids future congestion, while
the simple prediction- or observation-based TE cannot
avoid congestion induced by prediction errors or traffic
changes.

4.3 End-to-end Delay

In the previous subsection, we demonstrated that
MPC-based TE keeps the congestion level close to 0.
In this subsection, we demonstrate the impact of keep-
ing the congestion level close to 0.

One of the important impacts is the end-to-end de-
lay; keeping the congestion level to 0 keeps the queuing
delay of links small. Therefore, we compare the end-to-
end delay in this subsection.

We calculate the link delay from link utilization by
approximating packet processing on the Internet by the
M/M/1 queuing model. According to queuing theory,

link delay is calculated as L̄
Cl−yl

+ pl, where L̄ is the

average packet length, pl is the propagation delay, and
Cl is the actual capacity of the link l. The delay of
OD flow j at time slot k is the weighted sum of the
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Fig. 7 Average end-to-end delay of all OD flows in a simple
network
delays of all available paths

∑
i∈℘(j)Ri,j(k)dj , where

di is the delay of the path i as the sum of delays on all
links over the path. Large delays are caused not only
by congestion, but also by path length. Therefore, if
most traffic traverses a long path, the delay of OD flow
becomes large even under low congestion.

Figs. 7 and 8 show the average delay and maximum
delay of all OD flows, respectively. These figures show
that MPC(h = 3, w = 0.5) avoids the large delay at all
time slots. This is because MPC(h = 3, w = 0.5) keeps
the congestion level low.

In Figs. 7 and 8, MPC(h = 3, w = 0.5) decreases
the delay significantly from time slot 10 to 19. This is
because MPC(h = 3, w = 0.5) selects the shorter paths
without congestion.

This significant change of the end-to-end delay
does not degrade the TCP throughput, because the
length of the time slot can be set larger than the length
of TCP flows; frequent route change is not required
since MPC-based TE avoids congestion at all time slots.
In the evaluation using the actual traffic traces de-
scribed in Section 5, the length of the time slot is set to
1 or 10 seconds, while most of observed TCP sessions
ends withing 1 second.

In actual situation, the M/M/1 model is too simple
to model the packet processing. However, the rational
characteristic that a delay monotonically increases as a
link load increases does not change. Thus, the MPC-
based TE will suppress the queuing delay similarly even
in actual situation if the target capacity is set by using
realistic delay model.

5. Evaluation in an Actual Network

From the above simulation results, we show that MPC-
based TE can reduce the congestion level and end-to-
end delay in simple situations where only one link is
shared by two OD flows. In actual networks, where
multiple OD flows share multiple links, however, the
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Fig. 9 Internet2 topology

situation is more complex. To demonstrate that MPC-
based TE is also effective for actual networks, we evalu-
ate the performance on the Internet2 topology by using
actual traffic traces. The evaluation is performed by the
similar way to Section 4.

5.1 Simulation Environment

5.1.1 Network Topology

In this subsection, we use an actual Internet2 backbone
network, shown in Fig. 9. Each link has a capacity of
10 Gbps except four links (kans → salt, chic → kans,
newy → wath, and wash → atla), each of which has
a capacity of 20Gbps. The link capacities of Internet2
are over-provisioned, so that maximum link utilization
is less than 20%. Hence, in our simulation we set the
target capacity of the link to 15% of actual capacity.

5.1.2 Network Traffic

Here, we use actual traffic traces [26]. These traffic
data are collected by the Netflow protocol at each of
the PoP routers. The sampling rate is one out of every
100 packets, and aggregated data are exported every
five minutes. The sampling method has two main lim-
itations: it contains sampling errors, and there may be
unsampled flows. However, this is not a critical problem
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Fig. 10 Internet2 network traffic

for our evaluation because we need only the traffic rate
of the aggregated OD flow, which has many samples.
We use four minutes of data, avoiding file boundaries
by excluding the first and last 30 s of the Netflow data
for 12:00 to 12:05 p.m. on 1 November 2011. The traf-
fic data are aggregated into the OD flows between PoP
routers by using the BGP information. From the start
and end times and the total amount of traffic of each
flow in the Netflow data, we obtain the traffic rate ev-
ery second. The start and end times are recorded with
millisecond granularity. When the start and end times
of a flow are ts and te, the amount of traffic during a
certain period τ is calculated as

x =
θ

te − ts
τ (26)

by assuming that traffic arrives at a constant bitrate
with θ the total amount of flow traffic. The traffic
amount at the time slot k corresponding to the actual
time interval [tk, tk+1] depends on the active time of
the flow in the time slot, so τ is set to the active time
as

τ =



tk+1 − ts (tk < ts ∧ tk+1 < te)

te − ts (tk < ts ∧ tk+1 ≥ te)

tk+1 − tk (tk > ts ∧ tk+1 < te)

te − tk (tk > ts ∧ tk+1 ≥ te)

0 (otherwise).

(27)

Finally, the traffic rate of an OD flow is obtained by
summing the traffic amount for all flows in the OD
flow. The calculated traffic rates are shown in Fig. 10.

5.1.3 Prediction Method

We use the same prediction method that was used in
Section 4.

5.1.4 Cost Function

We use the same cost function that was used in Sec-
tion 4.

5.1.5 Calculation of Routes

As in Section 4, we use CPLEX [25] to calculate the
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routes. In this evaluation, the optimization is finished
within one second when h = 3.

5.1.6 Compared Method

In addition to the simple prediction-based TE and
observation-based TE, we also compare MPC-based
TE with the following smoothed observation-based TE.
The smoothed observation-based TE calculates the
next routes R(t+1) by using the smoothed value x̄(t),
which reduces the noise of observation value x(t). We
use an exponential moving average for smoothing. If
x̄i(t−1) is a previous smoothed value of the flow i, and
we observe a current traffic rate xi(t), then we update
the smoothed value to x̄i(t) = ηxi(t)+ (1− η)x̄i(t− 1),
where η represents the degree of weighting decrease of
historical data. By comparing the MPC-based TE with
the smoothed observation-based TE, we demonstrate
that the advantages of MPC-based TE are not due to
smoothing the observed traffic rates, though the traffic
prediction obtains the average dynamics of traffic and
eliminates short-term variation.

5.2 Simulation Results

Fig. 11 shows the amount of traffic exceeding the tar-
get link capacity when MPC-based TE is applied to the
Internet2 topology with actual traffic traces. For read-
ability, we only show the results at certain time slots
around the time when congestion occurs. The label
“with smoothing” represents the results of smoothed
observation-based TE.

Similar to Fig. 6, only MPC(h = 3, w = 0.5) avoids
congestion at all time slots. The simple prediction-
based TE causes congestion due to prediction errors.
MPC(h = 1, w = 0.5) cannot also avoid congestion
because we cannot change the routes sufficiently. On
the other hand, MPC(h = 3, w = 0.5) avoids the con-
gestion; MPC(h = 3, w = 0.5) avoids the overreaction
to prediction errors by avoiding the significant route
changes, and follows the traffic changes by changing the
routes gradually after future congestion is predicted.

By comparing the results of MPC-based TE with
smoothed observation-based TE, we can distinguish the
effect of smoothing and prediction. From Fig. 11, the
TE using simple smoothing cannot avoid the congestion
because the smoothing amplifies the difference between
expected and actual traffic rates, which slows the re-
sponse to the traffic change.

5.3 Discussion on Parameter Setting

The MPC-based TE has some parameters such as
weight for route change, length of predictive horizon,
and cycle length of control and prediction. We investi-
gate the effect of these parameters in detail using the
Internet2 topology with actual traffic trace.
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Fig. 11 Traffic exceeding target link capacity with actual In-
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5.3.1 Weight for Route Change

First, we examine the impact of w, which is the weight
of route change. In the above evaluation, we show that
our TE method is robust against prediction errors when
w = 0.5. The value of w, however, represents the sen-
sitivity to not only the prediction error but also the
changing traffic. Hence, we may have to consider a
trade-off between the robustness and sensitivity to set
an appropriate value of w.

Figure 12 shows the maximum amount of traffic ex-
ceeding the target link capacity for all time slots when
the MPC-based TE is conducted with various values of
w. The y-axis is the amount of exceeding traffic, and
the x-axis is the value of w. The label h means that
the MPC-based TE is conducted with the predictive
horizon length of h.

In Fig. 12, the medium value of w such as w=0.1–
0.6 is appropriate for avoiding the congestion, which
manages to balance the robustness and sensitivity. In
addition, the achieved performance of the MPC-based
TE is not sensitive to w within the range of w=0.1–0.6.

5.3.2 Length of Predictive Horizon

Second, we investigate the impact of the length of the
predictive horizon h. This parameter indicates how
long into the future the control server considers calcu-
lating the routes. Using the large value of h, the control
server can take into account not only the next time slot
but also further time slots to change the routes gradu-
ally in advance of traffic changes. However, setting too
large hmay cause wrong route changes because the pre-
diction errors generally become large as the prediction
target is far ahead. In addition, the larger h becomes,
the longer the calculation of routes takes.

Figure 13 shows the maximum amount of traffic ex-
ceeding the target link capacity when the MPC-based
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TE is conducted with various values of h, setting the
value of w to 0.5. When h is larger than 27, the conges-
tion level increases as h becomes large. This is because
the influence of prediction error becomes large as the
predictive horizon becomes long. Too small values of
h = 1, 2 also cause the congestion because the control
server does not consider the traffic change further into
the future. The appropriate values of h to avoid the
congestion are within the range of 3–26. Hence, it is
sufficient for the MPC-based TE to set h to 3 or slightly
larger values.

5.3.3 Cycle Length of Control and Prediction

Finally, we discuss the cycle length of control and pre-
diction. In the above simulation, we set the control and
prediction cycle length so that they equal the observa-
tion cycle length (one second). However, the frequent
control increases the loads on the control server. On the
other hand, the control server cannot follow the traffic
change when the control and prediction cycle is large.
Therefore, it is important to clarify which length of cy-
cle is appropriate to avoid the congestion and a large
calculation time.

To discuss the impact of cycle lengths of control
and prediction, we simply extend the MPC-based TE so
as to deal with different cycle lengths of control and pre-
diction. If the prediction cycle is Tp seconds, the control
server estimates the future traffic every Tp seconds us-
ing the previous average rate in each Tp seconds; that

is, we use the average rate x̄(k) = 1
Tp

∑kTp−1

i=(k−1)Tp
x(i)

as input to traffic prediction, and we obtain the fu-
ture average rates ˆ̄x(t+1), · · · ˆ̄x(t+h). Similarly, if the
control cycle is Tc seconds, which is a multiple of Tp,
the control server calculates the routes every Tc sec-
onds using the average rate of predicted traffic in each
Tc seconds; that is, we use the average predicted value

x̂′(k) =
Tp

Tc

∑kTc−1
i=(k−1)Tc

ˆ̄x(i) as input to TE in order to

calculate the route R′(t + 1) during the next Tc sec-
onds. Though the period of control and prediction is
changed, the time grain of traffic change is not. That
is, traffic rates change every second.

Figure 14 shows the maximum amount of traffic ex-
ceeding the target link capacity for all time slots when
the MPC-based TE is conducted with various lengths of
control and prediction. We set the x-axis to the length
of the predictive horizon similar to that in Fig. 13 be-
cause the effect of the predictive horizon will change
as cycle length changes. The labels Tp and Tc in the
figure represent the lengths of the prediction cycle and
control cycle, respectively.

From Fig. 14, frequent control and prediction are
better for avoiding the congestion. This is simply be-
cause the routes are quickly changed corresponding to
the traffic change by the frequent control and predic-
tion. However, the control cycle and prediction cycle
have different impacts. In Fig. 14, the congestion can be
avoided by the frequent prediction (Tp = 1) even when
the control cycle is 10 seconds. On the other hand, the
congestion cannot be avoided when the prediction cycle
is 10 seconds. This is because predicting with fine gran-
ularity can follow the changing traffic and the control
server can accommodate traffic even with fixed routes
considering the fluctuation of traffic. Therefore, we can
set the length of the control cycle to slightly large while
the prediction has to be frequently conducted.

6. Related Work

There is a large body of literature regarding TE.
Though we formalized MPC-based TE as a centralized
control in which a central control server collects all the
information and calculates all the routes for a network,
our method is also applicable to distributed schemes.
Distributed TE achieves scalability and quick response
to the traffic changes using only locally observed traf-
fic information. In TeXCP [6] and MATE [7], each
ingress node observes path states such as packet loss
rate and delay, and splits the traffic of ingress–egress
pairs among the paths on the basis of observed statis-
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tics.
In another application of MPC to TE, Rétvári and

Németh [27] applied MPC to rate-adaptive multipath
routing, in which a central controller adjusts sending
rates of each user. Their method preliminarily sets ex-
plicit rate control rules corresponding to each set of
user demands. The control server then periodically ob-
serves user demands, searches the appropriate control
rules, and adjusts the sending rate according to the
control rules. In setting the rules, they use a traffic
model called the zero-buffer path flow (ZBPF) model
instead of traffic prediction. In the ZBPF model, they
assume that no further traffic arrives within the pre-
dictive horizon. Hence, their method also works as an
observation-based TE.

The predictability of Internet traffic has received
significant interest in many domains, such as capac-
ity planning, anomaly detection, admission control, and
traffic engineering. Many prediction models have been
proposed to predict network traffic, such as ARMA,
ARIMA [11, 17], ARCH [14], GARCH [12], and neural
networks [15, 16] . Although we use only a simple pre-
diction method in our evaluation, our TE method can
select prediction models according to characteristics of
the target variation, such as time granularity and peri-
odicity.

7. Conclusion

We proposed a TE method that uses predicted traf-
fic rates instead of observed values. According to
prediction-based control theory, our TE method calcu-
lates routes while correcting predictions and avoiding
large route changes to mitigate the impact of predic-
tion errors. Through simulation with actual backbone
network traffic traces, we demonstrated that our TE
method can avoid congestion that observation-based
TE cannot. In addition, comparison with MPC-based
TE with a smoothing method showed that the advan-
tage of MPC-based TE does not come from the smooth-
ing effect of the traffic prediction. Moreover, we dis-

cussed the parameter setting such as the weight for
route change w, the length of predictive horizon h, and
the cycle length of control and prediction. Then, we
clarified that the performance of our method is not sen-
sitive to the parameters w and h in a certain range and
that we can select safe values of w and h from the range.
Furthermore, we showed that changing routes even in
10-second intervals is sufficient to respond to the change
in traffic rates every one second while the prediction has
to be conducted in one second.

Future work will include clarification of the robust-
ness of MPC-based TE through theoretical analyses.
Additionally, to guarantee its scalability, we will adapt
MPC-based TE to distributed control that determines
routes using only local traffic information. Through
experimental evaluation with MPC-based TE imple-
mented in hardware, we will investigate the effect of
interaction with other network controls such as TCP.
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