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Abstract

n the Internet, Autonomous Systems (ASes) exchange traffic through interconnected links. As traffic demand

increases, more traffic becomes concentrated on such links. The traffic concentrations depend heavily on the global

structure of the Internet topology. Therefore, a topological evolution considering the global structure is necessary to

continually accommodate future traffic amount. In this paper, we first develop a method to identify the hierarchical

nature of traffic aggregation on the Internet topology, and use this method to discuss the long-term changes in traffic

flow. Our basic approach is to extract the “flow hierarchy”, which is a hierarchical structure associated with traffic

aggregation. Our results show that the current connection policy will lead to a severe traffic concentration in the future.

We then examine a new evolution process that attempts to reduce this traffic concentration. Our proposed evolution

process increases the number of links in the deeper level in the hierarchy, thus relaxing the traffic concentration. We

apply our evolution process to the Internet topology in 2000, and evolve this scenario over 13 years. The results

show that our evolution process could reduce the traffic concentration by more than half compared with that without

our evolution process. n the Internet, Autonomous Systems (ASes) exchange traffic through interconnected links.

As traffic demand increases, more traffic becomes concentrated on such links. The traffic concentrations depend

heavily on the global structure of the Internet topology. Therefore, a topological evolution considering the global

structure is necessary to continually accommodate future traffic amount. In this paper, we first develop a method

to identify the hierarchical nature of traffic aggregation on the Internet topology, and use this method to discuss

the long-term changes in traffic flow. Our basic approach is to extract the “flow hierarchy”, which is a hierarchical

structure associated with traffic aggregation. Our results show that the current connection policy will lead to a severe
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traffic concentration in the future. We then examine a new evolution process that attempts to reduce this traffic

concentration. Our proposed evolution process increases the number of links in the deeper level in the hierarchy,

thus relaxing the traffic concentration. We apply our evolution process to the Internet topology in 2000, and evolve

this scenario over 13 years. The results show that our evolution process could reduce the traffic concentration by

more than half compared with that without our evolution process. I The Internet topology, Autonomous System, Flow

hierarchy, Modularity, Traffic aggregation

I. I NTRODUCTION

The Internet is the largest network system in the world, and is becoming ever larger. The amount of traffic

on the Internet has been increasing owing to the increase in the number of network users, network services, and

communication devices, such as PCs, smartphones, and tablet devices. An AS is a network that is managed by an

organization under a single administrative control. The Internet consists of many ASes and the connections among

ASes. According to Border Gateway Protocol (BGP) data in [1, 2], the number of ASes has doubled over the last

decade; as at November 15, 2013, there were at least 45,980 ASes and 105,540 interconnected links. The number

of ASes is estimated to continue increasing in response to the increase in mobile traffic, which doubles each year,

and traffic from new and emerging applications using, e.g., sensor devices with a communication function [3, 4].

As the traffic amount increases, more traffic will concentrate on existing links. To relax the traffic concentration,

each AS tries to form new links with ASes that have not yet been connected. An AS usually has its own policy for

selecting which ASes to connect with from among the many candidates. For example, an AS attempts to connect

with another AS such that the cost, revenue, and performance after connecting are optimized. That is, new links

are constructed based on the local decision of two ASes. They do not consider the global structure of the Internet

topology. However, because the degree of traffic concentration on links depends heavily on the global structure

of the topology [5], local decision-making is inadequate to fundamentally avoid the future traffic concentration

associated with the increase in traffic. An evolution that considers the global structure of the Internet topology is

necessary to continually accommodate future traffic amount.

The evolution of the Internet topology has been studied intensively in recent years [6-8]. Dhamdhere et al. [6]

investigated the long-term change in the number of peering/transit links. The authors also discussed the factors

behind the emergence of the current topological structure, and gave graph generation models for the Internet

topology. Shavitt et al. [8] used the clustering coefficient [9] and betweenness centrality [10] to characterize this

evolution, while Gregoria et al. [7] extracted well-connected subgraphs from the Internet topology, and discussed

how these subgraphs were connected to the rest of the Internet topology. These studies longitudinally analyzed

the change in the Internet topology from a graph metrics perspective. However, a more important metric to avoid

future traffic concentration is related to the change in the structure of the Internet topology associated with spatial

dynamics of the traffic flow. An analysis of the change in the structure associated with traffic flow can help to

reveal where the traffic concentration occurs and how to deal with it.

We therefore develop a method to identify the hierarchical nature of traffic aggregation in the Internet topology,

and use this method to discuss the long-term changes in traffic flow. Our basic approach is to extract the “flow

hierarchy”, which is a hierarchical structure associated with traffic aggregation, from the Internet topology. Many
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works have shown that the Internet has a hierarchical structure [11-13]. Within this hierarchical structure, an AS

aggregates traffic from lower-level ASes, and relays the traffic to higher-level ASes. Such traffic aggregation leads

to a hierarchy of traffic aggregation, which in turn leads to the traffic concentration on links. Recently, the structure

of the Internet topology is becoming “flat” [14], and the trend of traffic flow also is changing from centralized to

more distributed. Nevertheless, the flow hierarchy has not disappeared because the flat structure is formed by adding

links to existing hierarchical structure. To extract the flow hierarchy, we focus on structures called “modules” as

the unit of traffic aggregation, and retrieve the hierarchy of modules that appear in the Internet topology. A module

consists of a set of ASes that are densely connected with each other, and each module is sparsely connected with

other modules [15]. The outgoing traffic from one module is first aggregated inside that module, and then the traffic

is transferred to the other module through the sparsely connected links. A module may be divided into two or more

submodules, that is, there is a containment relationship between the module and submodules. By repeating the

division of modules and revealing their containment relationships, we can extract the flow hierarchy of the Internet

topology. We then investigate the long-term changes in the flow hierarchy of the Internet topology. Our results show

that the increase in traffic amount at the top-level module is larger than that at middle-level or low-level module and

particularly has slightly accelerated since 2011. This suggests that the current connection policy will lead to a severe

traffic concentration in the future Internet topology. Therefore, we urgently need an evolution process that considers

the global structure of the Internet topology to slow down the increase in traffic concentration. In this paper, we

examine a new evolution process that attempts to increase the number of links between lower-level modules to relax

the traffic concentration in higher-level modules. We apply our evolution process to the Internet topology in 2000,

and evolve this scenario for 13 years. We then evaluate the traffic concentration at various levels of containment

following the evolution. The results show that our evolution process can suppress the traffic concentration by more

than half compared with that without our evolution process.

This paper is organized as follows. Section II gives an overview of some related work in the analysis of the

Internet topology. Section III describes the hierarchy concept based on the containment relationship of modules,

and presents the method of extracting the flow hierarchy from the Internet topology. Section IV discusses the long-

term change in the flow hierarchy of the Internet topology. We first investigate the internal structure in a module,

and then illustrate the structure between top-level modules in the flow hierarchy, because a large amount of traffic

traverses the links between top-level modules. Finally, we investigate the long-term change in the structure of each

level in the flow hierarchy. Section V studies the links on which a lot of traffic is aggregated. In Sec. VI, we

examine a new evolution process that attempts to increase the number of links between lower-level modules. We

apply the evolution process to the Internet topology in 2000, and confirm that it suppresses the traffic concentration

across links between top-level modules. Section VII shows that the appearance of Hyper Giants does not enable

the continued accommodation of an increase in traffic amount. Section VIII concludes this paper.

II. RELATED WORK

Understanding and analyzing the structure of the Internet topology is important, because the properties of

the Internet are used for network design. The network performance, such as the amount of traffic that can be

accommodated across the Internet, is dependent on the structure of the Internet topology, because this strongly

affects the traffic flow. Therefore, when a network operator of an AS adds new links and network equipment, a
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design based on the properties of the topology is needed to improve the network performance. Determining the

structure of the Internet topology is also vital to evaluate the performance of new applications and protocols on a

topology reflecting the structure and properties of the Internet. For example, a topology reflecting properties of the

Internet is required to evaluate the scalability of BGP [16].

For the past dozen years, various structural properties of the Internet topology have been widely investigated.

Refs. [17, 18] visualized the Internet topology to determine its structural properties. However, it is difficult to

characterize structural properties from pictures of the Internet topology generated by these studies, because the

Internet topology is large and complex. Some studies have investigated structural properties using various graph

metrics. In Ref. [19], Faloutsos et al. revealed that the degree distribution of the Internet topology exhibits power-law

attributes, and Satorras et al. [12] showed that the distribution of betweenness centrality also follows a power law.

However, these studies analyzed the structural properties at a point in time. Network design requires the prediction

of the future structure of the Internet topology. To predict the future structure, the trend in changes to the Internet

topology has to be clarified. In Ref. [6], Dhamdhere et al. quantified the ability of an AS to attract customer ASes

that pay a transit fee for traversing traffic, and found that Internet Service Providers (ISPs) connecting to a lot of

customer ASes had acquired more customer ASes. These studies analyzed the evolution of the Internet topology

using some graph metrics. Each graph metric shows a characteristic of the Internet topology; however, these are not

directly related to network performance. For instance, even if two networks have the same degree of distribution,

the amount of network equipment needed to accommodate traffic demand will differ depending on the structure

of the networks. For example, Ref. [5] found that the degree of traffic concentration on links is heavily dependent

on the global structure of the topology. Actually, the Internet topology suffers from traffic congestion more than

a random network [20]. It is important to understand the global structure related to the spatial dynamics of traffic

flow to develop a new evolution process that avoids the current and future traffic concentration suffered by the

Internet topology.

In Ref. [8], Shavitt et al. analyzed changes in topological structure, such as betweenness centrality and link

density, by focusing on large content providers, also referred to as Hyper Giants [14, 21]. From this analysis, it was

found that the structure of the Internet topology has changed from a hierarchical to a flat structure. This is because

large content providers construct links with a lot of small ISPs. Because they have influenced the Internet topology,

considerable attention is currently focused on these Hyper Giants. However, Hyper Giants do not contribute to the

moderation of traffic concentration over certain parts of the links, because the traffic flow between two ASes does

not traverse the Hyper Giants, i.e., the traffic is not aggregated at the links controlled by the Hyper Giants. Thus,

the Hyper Giants are not relevant to an evolution process to reduce traffic concentration at these links. In this study,

we focus on the structure of traditional links, such as those between ISPs.

III. T HE FLOW HIERARCHY

A. Concept of the flow hierarchy

We use the flow hierarchy to reveal where and how traffic is aggregated. The structure of the flow hierarchy is

the hierarchical structure based on containment relationship of modules. We note that the flow hierarchy is not a

hierarchy of “tier” based on the ISP’s business scale but the structure indicating a gradual traffic aggregation in

the Internet topology. Such the containment relationship has appeared in the history of the Internet evolution, and
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then the traffic is aggregated in accordance with the flow hierarchy. This makes the flow hierarchy be useful for

analyzing degree of traffic aggregation. In the late 1960s, some academic organizations deployed network equipment

and connected with all other organizations. This is the origin of the Internet, and the organizations became to be

called ASes later. To participate in the early Internet, new ASes needed to connect with all other ASes. However,

as the scale of the Internet became larger, it was increasingly difficult to sustain the full mesh network. Because

the construction and maintenance costs of long or high-capacity links are high, new ASes tend to connect with

only a few “senior” ASes that have long or high-capacity links. As a result, sets of ASes centered on senior ASes,

i.e., modules, were generated. However, as the number of ASes connecting to senior ASes increases, the amount of

traffic aggregated at senior ASes and global links increases, and the risk of suffering traffic congestion increases. To

reduce the traffic load at senior ASes, some ASes have locally aggregated traffic. Because a hierarchical structure

has appeared in the Internet under this process of traffic aggregation, the flow hierarchy reflects the hierarchical

nature of traffic aggregation. Therefore, we use the flow hierarchy to reveal where and how traffic is aggregated.

B. Extraction of the flow hierarchy

We now extract and investigate the flow hierarchy in the Internet topology. First, we obtain the topology data

of ASes and links in the Internet topology (Sec. III-B1). We then extract the hierarchical structure based on

containment relationship of modules from the Internet topology (Sec. III-B2). We finally give the traffic demand

to the hierarchical structure because the flow hierarchy is derived by adding the traffic amount on each link to the

hierarchical structure (Sec. III-B3).

1) Obtaining topology data:We obtain the topology data of ASes and links in the Internet topology. We extract

the topology data from the BGP routing tables that have been recorded in the gateway routers of large ISPs and

have been gathered. Various organizations, such as UCLA [22] and CAIDA [17], create the Internet topology data

and these topology data include more links [23, 24]. However, these topology data are not suitable for a longitudinal

topological analysis because the number of monitors that observe BGP tables and traceroute results that are used to

create topology data has greatly increased. That is, we cannot distinguish between actual evolution of the topology

is contributed by the real change of the topology and changes caused by the increase of monitors. Instead of

the data provided by UCLA and CAIDA, we use the BGP tables gathered by a part of servers of RouteViews

Project and RIPE NCC. The part of servers have been gathering the BGP tables from almost the same ISPs after

starting up of their projects. Although the number of links observed is fewer than the topology data of UCLA

and CAIDA, the BGP tables from RouteViews Project and RIPE NCC are suitable for a longitudinal topological

analysis because they are consistently comparable over time. BGP tables contain AS paths, which are the routes

between two ASes. The AS path is described as a list of ASes that the traffic traverses. From the AS paths in

the BGP tables, we obtain the ASes and links in the Internet topology. We use BGP routing tables stored in

route-views.route-views.org , which is a RouteViews Project server, andrrc00.ripe.net , which is

a RIPE NCC server. The reason why we use these servers is that they are the oldest ones that are still working.

Table I shows the number of ASes and links that we can extract. Unfortunately, Refs. [6, 25] reported that this

method cannot capture over 40% of the peering links on which traffic is exchanged without a transit fee. Since

a huge amount of traffic traverses peering links through IX, missing of peering links decreases the accuracy of

estimated amount of traffic traversing each link. However, the use of BGP routing tables is not a problem for this
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TABLE I. NUMBER OF ASES, LINKS , AND AS PATHS IN THE INTERNET TOPOLOGY.

2000/6/15 2004/6/15 2008/6/15 2013/11/15

# of ASes 8,162 18,015 29,320 45,980

# of links 17,533 40,205 64,305 105,540

# of AS paths 299,434 1,108,704 1,901,745 3,136,820

TABLE II. DEFINITION OF NOTATION FOR MODULARITY (EQ. (1))

Notation Definition

m Number of links

i, j Node

Aij Element of adjacency matrix.

ki Degree of nodei

Si Module that contains nodei

δSiSj Kronecker delta. IfSi and Sj are the same,δSiSj is 1,

otherwise 0.

study because the purpose of this study is to reveal the impact of the global structure of the Internet on the traffic

concentration rather than to show the actual traffic amount.

2) Extracting the hierarchy of modules based on containment relationship:The structure of the flow hierarchy

is the hierarchical structure based on containment relationship of modules. We extract the hierarchical structure

from the Internet topology. The hierarchical structure based on containment relationship of modules is extracted by

repeating the division of modules into submodules. Several methods for division of modules have been proposed

such as the Infomap method [26], the OSLOM method [27], and the Louvain method [28]. Since our main concern

is the traffic aggregation, we select the Louvain method for our analysis. The Infomap method uses the probability

flow of random walks on a network as a proxy for information flows in the real system and divide the network

into modules by compressing a description of the probability flow [26, 29]. However, since the traffic flow of the

Internet is not random walk, we cannot capture links where the traffic is aggregated from the Infomap method. The

OSLOM method uses a measure indicating how obvious module structure there is in the network against a random

null model graph. Therefore, the OSLOM method can detect the obvious module structure against the random null

model graph. However, the traffic concentration is expected to be observed in also the random null model graph

and the OSLOM method cannot capture the traffic concentration. Unlike the Infomap and the OSLOM methods, the

Louvain method derives modules so that the number of inter-module links relative to that of the intra-module links

is minimized. The traffic originated inside a module is first conveyed and aggregated by the intra-module links,

and then transfered by the intra-module links. The Louvain method incrementally merges modules into a module,

so we can gradually capture links where the traffic is aggregated by using the Louvain method.

In the Louvain method, the topology is divided in such a way as to maximize the modularity. The modularity is

a measure of the strength of interconnection among modules when a particular divisionP of a topology is given,
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Fig. 1. Extraction of hierarchical structure based on the containment relationship of modules.

and is defined by,

M(P ) =
1

2m

∑
ij

[Aij −
kikj
2m

]δSiSj . (1)

Descriptions of the variables in Eq. (1) are shown in Table II. Here, we regard the maximum ofM(P ) for all

divisions as the modularity of the topology. The modularity of a topology ranges from 0 to 1. The modularity is

high in case that links between ASes in the same module are densely connected and links between ASes in different

modules are sparsely connected. The modularity of a complete graph and a star graph is 0, because these graphs

do not consist of sets of nodes densely connected to each other.

After dividing the Internet topology into modules as described above, we divide each module into smaller

submodules. Furthermore, we divide these submodules into even smaller submodules. By repeating this dividing

process, the hierarchical structure based on the containment relationship is extracted. If the modularity of a module

is 0, it cannot be divided into submodules because the module does not consist of sets of densely connected nodes.

All modules are repeatedly divided until their modularity is 0. We define the “containment level” (CL) as the level

of the hierarchical structure. As shown in Fig. 1, CL1 modules are modules that are extracted in the first division

of the Internet topology. Submodules of CL1 modules are CL2 modules, and submodules of CLn modules are

CLn+ 1 modules, wheren is a non-negative integer.

3) Assigning traffic demand:We assign traffic demand to the hierarchical structure of the containment relationship

of modules. Since the actual traffic amount on most paths is closed information, we give the traffic demand based

on the gravity model [30]. The gravity model is a simple method for estimating the traffic demand [30, 31] and

is used in some studies [32, 33]. The traffic demand of ASi is proportional to the degree of ASi since the

business scale of ASi is related to its degree [34, 5]. Note that, as discussed in [35], the gravity model does not
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capture self-similarity and long-range dependence of traffic. However, we use the gravity model for assigning traffic

demand since our study focuses on the increase in the degree of traffic concentration rather than short-term traffic

fluctuation. The gravity model is represented by the following expression;

eij = γ · xi · xj , (2)

whereeij is traffic amount on the path between ASi and AS j. xi and xj are the traffic demand of ASi and

AS j, respectively, andγ is a scaling factor and is set to 1 hereafter. Note that this setting may not reflect actual

traffic amount. However, our focus here is to reveal the traffic concentration on some links rather than actual traffic

amount on each link.

Note that Hyper Giants send huge amounts of traffic compared with the other ASes. In particular, Google and

Akamai are defined as Hyper Giants by some studies [5, 14]. We check names of organizations managing ASes

in CIDR report [36], and we regard ASes whose names contain “Google”, “Akamai” as Hyper Giants. Then,γ is

set to 1 if both of ASi and ASj are not Hyper Giants, otherwiseγ is set to 895. These values are determined

based on a Cisco report [37, 38] that quantifies the traffic amount on the Internet. Cisco reported the traffic over the

whole of the Internet to be 369 exabytes in 2011, and that between users and data centers to be 116 exabytes. The

number of ASes registered by the Internet Registry is 60538, and the number of famous content providers is about

30. Therefore, the average amount of traffic at each AS is 4.18 petabytes (= (369− 116)/(60538− 30) exabytes),

and the average amount of traffic sent by a large content provider is 3.74 exabytes (= 116/30 exabytes). Thus,

we setγ to 895 (= 3.74 · 1000/4.18) for the Hyper Giants. The value ofγ may not reflect actual traffic amount.

However, our focus here is to reveal the traffic concentration on some links rather than actual traffic amount on

each link. Note that Microsoft is also called as Hyper Giants in some studies [5, 14], however, we regard only

Google and Akamai as Hyper Giants because the degree of Microsoft (AS number is 8075) has greatly changed.

When we derive the amount of traffic that traverses each link from the amount of traffic between AS pairs,

the path between two ASes is required. Unfortunately, most paths between AS pairs are undocumented. Thus, we

assume that the path between two ASes is a minimum hop path, although this is not always the case for actual BGP

routings [39]. This assumption is sufficient to observe the change in traffic aggregation, because Ref. [8] reported

that the number of minimum hop paths that traverse an AS is similar to the actual amount of traffic that traverses

that AS. Thus, we consider minimum hop paths to be useful for analyzing the changes in traffic aggregation.

IV. L ONG-TERM CHANGE OF THE FLOW HIERARCHY

The traffic concentration at links between modules is dependent on the structure within modules and the structure

between modules. An investigation of the change in the flow hierarchy is important for discussing the future evolution

of the Internet topology. Therefore, in this section, we first analyze the internal structure of modules. Through this

analysis, we investigate ASes that have a lot of links between modules to confirm where traffic is aggregated in

the module. We then analyze the between-module structure. In particular, we investigate the structure between CL1

modules, which are top-level modules in the flow hierarchy, because it is thought that large amounts of traffic are

aggregated in the links between CL1 modules. Finally, we investigate the long-term change in the structure of each

level in the flow hierarchy to reveal the trend of traffic aggregation at links between modules at each level.



9

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2000 2002 2004 2006 2008 2010 2012

M
ea

n 
ra

tio
 o

f
lo

w
-d

eg
re

e 
A

S
es

Year

CL1
CL2
CL3
CL4
CL5

(a) Mean ratio of the number of one- or two-

degree ASes to the number of all ASes in a

module

 0

 50

 100

 150

 200

 250

2000 2002 2004 2006 2008 2010 2012

M
ea

n 
of

 m
ax

 d
eg

re
e

Year

CL1
CL2
CL3
CL4
CL5

(b) Mean of max degree

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

2000 2002 2004 2006 2008 2010 2012

M
ea

n 
of

 a
ss

or
ta

tiv
ity

Year

CL1
CL2
CL3
CL4
CL5

(c) Mean of assortativity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2000 2002 2004 2006 2008 2010 2012

M
ea

n 
of

cl
us

te
rin

g 
co

ef
fic

ie
nt

Year

CL1
CL2
CL3
CL4
CL5

(d) Mean of clustering coefficient

 2
 3
 4
 5
 6
 7
 8
 9

 10

2000 2002 2004 2006 2008 2010 2012

M
ea

n 
of

 d
ia

m
et

er

Year

CL1
CL2
CL3
CL4
CL5

(e) Mean of diameter

Fig. 2. Mean value of graph metrics of modules in each CL.

A. Internal structure of modules

In this section, we reveal the internal structure of modules using various graph metrics. Here, we do not divide

CL5 modules even when some CL5 modules can be divided to CL6 modules. The reason is that the number of

CL6 modules and the size of CL6 modules are too small to see the change of internal structure of the CL5 module.

Figure 2 shows the longitudinal change in the graph metrics of modules. From the analyses in Fig. 2, we confirm

that the internal structure of modules gives a star-like graph. Figure 2(a) shows the mean ratio of ASes that have

degree one or two. For the modules in most CLs, the ratio of these ASes is over 80%. Figure 2(b) shows the mean

of the maximum degree in the modules. Whereas over 80% of ASes in a module have only one or two links, the

degree of hub ASes in CL1 modules is over 100, and that in CL2 modules is over 30. Furthermore, the degree of

hub ASes in these CLs has been increasing. Although the degree of hub ASes in CL4 and CL5 is less than 10, they
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TABLE III. RATIO OF INTER-MODULE LINKS OF HUB ASES AND RATIO OF INTER-MODULE LINKS OF LOW-DEGREEASES.

Hub ASes Low-degree ASes

CL1 0.244 0.137

CL2 0.396 0.269

CL3 0.476 0.293

CL4 0.463 0.267

CL5 0.406 0.093

connect to most of the ASes in the module. Thus, it is found that the degree of most ASes in a module is small, but

the degree of some ASes is large. To reveal where the links are constructed in a module, we now investigate the

assortativity of modules. Assortativity is an index indicating that a node in a network connects with ASes that have

the similar degree [40]. If all links are constructed between nodes that have the same degree, the assortativity of the

network is 1. On the contrary, the assortativity is 0 when there is no correlation between the degrees of two nodes

that are connected with each other. When the nodes with small degrees are likely to be connected to the nodes

with large degrees, the assortativity is close to -1. As shown in Fig. 2(c), the assortativity of modules in all CLs

is small, which means that ASes that have a small degree connect to hub ASes. Figure 2(d) shows the clustering

coefficient of modules in each CL to investigate the connection between neighbor ASes. The clustering coefficient

of an AS is an index indicating the ratio of connected pairs to all neighbor nodes’ pairs of an AS, and ranges from

0 to 1. As shown in Fig. 2(d), the clustering coefficient of each module is small. This means that neighbor ASes

of a given AS do not connect with each other. The result suggests that hub ASes link to a lot of ASes that have

a small degree, and ASes with a small degree are not connected to each other. Finally, Fig. 2(e) shows the mean

diameter of modules. As the CL increases, the module diameter approaches 2. To summarize the points in Fig. 2,

it is obvious that the internal structure of each module is a star-like graph.

B. ASes with a number of links between modules

The large amount of traffic that is generated within a module is aggregated at links between modules. We reveal

the relationship between the degree of ASes and the number of links between modules. We first investigate whether

a hub AS or an AS that has a small degree have more links between modules. Here, we define hub ASes as those

having a degree that is more than half of the maximum in the module. Table III shows the average ratio of links

between modules to all links of an AS in the Internet topology on 15 July 2013. This shows that hub ASes have a

higher ratio than low-degree ASes. This means that low-degree ASes tend to connect to only the hub ASes belonging

to the same module. The hub ASes link to both ASes in the same module and ASes in other modules. Therefore,

the traffic between modules is aggregated at the hub ASes, and then transferred to ASes in other modules.

Next, we examine which types of ASes have many links between modules. In the Internet, there are various

types of ASes. ISPs are classified into four types, Tier-1 to Tier-3 and sub-Tier-1. We define sub-Tier-1 as ISPs

for which there is no consensus as to whether they should be categorized as Tier-1 or Tier2. The other ASes are

classified as Hyper Giants or Academic. In this study, ASes are ranked based on two types of links: transit links

and peering links. A transit link is one in which traffic is exchanged with a transit fee. A peering link is one where



11

TABLE IV. AVERAGE NUMBER OF LINKS BETWEEN MODULES.

e1 e2 e3 e4 e5 e6

Tier-1 989.54 158 624.31 0.54 22.77 0

sub-Tier-1 191.03 75.23 160.82 2.31 14.31 0

Tier-2 52.76 29.39 52.63 0.93 7.74 0.03

Tier-3 16 11.33 33.08 0.58 2.42 0.17

traffic is exchanged without a transit fee. Unfortunately, information about the type of link is generally unknown.

The method of Ref. [17] can infer the link type with an accuracy rate of 99.1%, and so we use this approach. We

classify ASes based on the following steps. First, we extract “peering links” and ASes that have peering links. We

regard a connected component consisting of peering links as one tier, because two ASes connected with a peering

link generally process the same amount of traffic. Next, we check the commercial name of the AS in each connected

component, and determine the tier of each connected component from six types. Finally, we regard the tier of the

connected component that contains the AS to be the type of AS. There is a hierarchy in the Internet based on link

types [11, 13, 12]. Note that a hierarchy based on AS types is different from the flow hierarchy. The hierarchy

based on link types shows the difference in the amount of traffic exchanged by two connected ASes. The flow

hierarchy describes the amount of traffic aggregated at ASes or links based on the global structure of the topology.

Table IV shows the average number of links between modules for each AS type.ex is the average number of

links between modules of an AS in CLx. Table IV shows thatex decreases asx increases. This means that Tier-1

ASes have more links between modules than other ASes, because most Tier-1 ISPs have a global network spanning

multiple continents and connected with many ISPs all over the world.

According to our findings, the flow hierarchy can be illustrated as in Fig. 3. In Fig. 3, the number of ASes,

number of links between ASes in different tiers, and number of links between ASes in the same tier are 1/5 of

those in the actual Internet topology in 2012. In Fig. 3, ISPs are arranged from top to bottom in descending order

of amount of traversing traffic, and the triangles represent modules. As shown in Fig. 3, there is a hierarchy in the

Internet based on AS type. Note that this hierarchy is different from the flow hierarchy. The major difference is

that the hierarchy based on AS type is not reflected by the structure of the topology. Each module contains ASes

in different tiers, and ASes in higher tiers have more links between modules. A module in the flow hierarchy is a

part of a vertically divided Internet topology. From the structure in Fig. 3, we can see that Tier-1 ISPs exchange

traffic traversing from/to other modules. The traffic concentrates at Tier-1 ISPs, because they aggregate the traffic

that is generated in the modules.

C. Long-term change in structure of top-level modules in the flow hierarchy

A hub AS connects links to a lot of ASes in other modules. Thus, a hub AS aggregates traffic generated in the

module, and relays the traffic to the other modules. Therefore, it is considered that an immense amount of traffic

generated in CL1 modules is aggregated at the links between top-level (CL1) modules. In the future, when traffic

concentrates at links between CL1 modules, an evolution process is needed that avoids traffic concentration, allowing

the Internet topology to accommodate this increase in traffic amount. Thus, the change of traffic concentration at



12

Fig. 3. Outline drawing of the flow hierarchy in the Internet topology.

links between CL1 modules must be clarified. For this purpose, we analyze the long-term change in the structure

between CL1 modules, because the degree of traffic concentration at the links depends on the connections between

CL1 modules.

We first investigate the long-term change in modularity of the Internet topology to investigate the structure

between CL1 modules. Since the value of modularity itself is not suitable measure to investigate the modular

structure [41-43], we compare the modularity between the ER random model, hierarchical scale-free graph, and

the Internet topology. Figure 4 shows the long-term change in modularity of these graphs. For the hierarchical

scale-free graph, a module having a scale-free degree distribution is first generated, and this is incrementally added

into the graph until the number of nodes and links exceed those of the Internet topology. We create the hierarchical

scale free graph that have the same number of nodes and links as the Internet topology. In Fig. 4, we use Eq. (19)

in [41] for calculating the modularity of the ER random model. Eq. (19) is an equation to analytically calculate

the maximum modularity of the ER random model without the module detection, and the modularity derived by

the Eq. (19) in [41] is close to the modularity derived by the simulated annealing method [41]. There is another

approach to calculate the maximum modularity [43]. However, the modularity derived by the equation in [41] is

slightly closer to the modularity derived by the simulated annealing method in case that the average degree is fewer

than 10 (see Fig. 12 in Ref. [43]). Since the average degree of the Internet topology is also fewer than 10, we use

the equation in [41].

As shown in Fig. 4, the hierarchical scale-free graph has the largest modularity, and the ER random graph has the

smallest. In the hierarchical scale-free graph, a large amount of traffic tends to be aggregated at the links between

modules, because the large modularity indicates a low density of links between modules. In Fig. 4, the modularity

of the hierarchical scale-free graph and the ER random graph remains constant. On the other hand, the trend in

modularity of the Internet topology changed sometime around 2007. This suggests that the overall structure started

to change at this time. The dashed line in Fig. 4 denotes 1 January 2007. Until this point, the modularity of the

Internet topology had been increasing. This suggests that new links had tended to be locally constructed between

two ASes in a module. It is thought that, when new ASes are created in the Internet topology, they connect to

ASes having links between higher-level modules. Since 2007, the modularity of the Internet topology has remained

constant. However, the number of links between modules has increased since 2007.



13

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

2000 2002 2004 2006 2008 2010 2012

M
od

ul
ar

ity

Year

Hierarchical scale free graph
The Internet topology

Theoretical value of ER random graph

Fig. 4. Long-term change in modularity.

α

(a) Ratio of links between nodes in a module

to all links.

β

(b) Probability that a link exists between node

i and nodej in a module when links are

randomly deployed on the topology.

Fig. 5. Long-term change of variables in the definition of modularity.

To clarify the factors affecting the change in the modularity trend around 2007, we investigate the long-term

change of variables in the definition of modularity (Eq. (1)). The modularity depends on the ratio of links between

nodes in a module to all links and the node degree in each module. The key terms in Eq. (1) are

α =
1

m

∑
ij

AijδSiSj , (3)

and

β =
1

m

∑
ij

kikj
2m

δSiSj . (4)

α is the ratio of links between two nodes in a module to all links, andβ is the probability of drawing a link between

nodes that are in the same module when the link is randomly deployed on the topology. The higher the degree

of node i and nodej, the higher the value ofβ. α andβ are normalized by the number of links in the Internet

topology. Figure 5 shows the long-term change in these terms. Figure 5(b) shows thatβ has decreased continuously

since 2000. As there is no change in this trend around 2007,β is not considered to be a factor in the change in

modularity. On the other hand, Fig. 5(a) shows that the trend ofα changed around 2007.α was increasing until

2007, with minor fluctuations, and decreases after 2007. Thus, we assert that the change in the trend ofα affected
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Fig. 6. Evolution of the flow hierarchy with the increase of modules, the number of ASes in a module or width.

the modularity of the Internet topology. Even though the scale of the Internet topology has increased since 2007,

the ratio of links between nodes in a module has decreased; i.e., the number of links between top-level modules has

increased. We believe that the factors behind the increase in links between top-level modules are the reduction in

the price of constructing links and the increase in IXes (Internet eXchanges), which are relaying points for traffic

between two connected ASes. These factors lead to an increase in inter-module links between ASes that do not

have a lot of links between top-level modules. As a result, the modularity of the Internet topology has decreased.

D. Long-term change of each level in the flow hierarchy

More links between modules are needed to avoid an increase in traffic concentration at links between top-level

modules. New links between modules should be constructed between two ASes that locally aggregate traffic. This

is because a part of the traffic that traverses the existing links between top-level modules will traverse links between

two ASes that locally aggregate traffic. We investigate the traffic aggregation at links between modules in each CL

to reveal where the ASes that locally aggregate traffic are located. The degree of traffic aggregation at the links

between modules in each level of the flow hierarchy depends on the structure between the modules in each level.

Therefore, in this section, we investigate the long-term change in the structure of each level in the flow hierarchy.

There are two ways in which the flow hierarchy can evolve: by expanding in depth and by expanding in width.

There are two further subcategories for the expansion of the width. One is to increase the number of modules in

each CL, and the other is to increase the number of ASes in each module. Figure 6 illustrates these expansions

of the flow hierarchy. White nodes indicate ASes that exist before the growth, and red nodes indicate those added

after the expansion. In the left-hand growth pattern in Fig. 6, the number of modules in each CL increases as the

topology grows. In this case, the links between modules also increase in number. By increasing the links between

modules, the concentration of traffic at existing links is relaxed. In the center growth pattern in Fig. 6, a star-like

graph in each module becomes larger because additional ASes connect to the hub ASes in each module. As a result,

the amount of traffic aggregated at hub ASes and on links between modules increases. In the right-hand growth
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TABLE V. NUMBER OF MODULES IN EACHCL.

Year CL1 CL2 CL3 CL4 CL5 CL6

2000 26 255 812 529 71 0

2002 37 384 1215 881 131 6

2004 43 462 1526 1173 208 6

2006 40 479 1883 1562 299 4

2008 40 508 2437 2088 389 6

2010 42 490 2795 2641 438 2

2012 51 578 3153 3181 638 12

TABLE VI. MEAN NUMBER OF ASES CONTAINED IN ONE MODULE.

Year CL1 CL2 CL3 CL4 CL5 CL6

2000 224.97 24.78 8.41 4.01 3.22 2

2002 424.32 35.73 9.81 4.32 3.35 2.75

2004 414.07 37.84 10.41 4.67 3.59 3.5

2006 528.33 43.54 11.25 5.43 3.59 2

2008 695.98 57.18 12.20 6.20 3.71 2

2010 841.98 69.16 12.26 5.71 3.81 2.17

2012 915.93 73.31 12.93 6.36 3.74 2.89

pattern in Fig. 6, submodules are generated in each module. The generation of submodules increases the maximum

number of CLs, which corresponds to the depth of the flow hierarchy. If the depth of the flow hierarchy in the

Internet topology grows, the amount of traffic aggregated on the links between top-level modules will decrease.

This is because the paths between ASes belonging to the same module do not traverse the links between modules

in the upper CL.

We first investigate whether the depth of the flow hierarchy has been expanding or not. The depth of the flow

hierarchy is defined by the containment level where a module at the level cannot be divided into sub modules.

Hereafter, we call modules that do not have sub modules as terminal modules. Figure 7 shows the number of

terminal modules at each CL. The value ofY -axis is normalized by the total number of terminal modules. We

observe that most of terminal modules are located at CL3 and CL4, and the depth of these modules has increased

from 2000 to 2012. However, the increase in terminal modules in CL4 is only 10 %. Moreover, the average depth

of terminal modules is slightly increased; from 3.42 to 3.71. The depth of the deepest terminal module remains

steady at six from 2003 to 2013. Therefore, we conclude that the depth of the flow hierarchy has not changed

greatly.

We next investigate whether the growth in the flow hierarchy has followed the left-hand pattern or the center

pattern in Fig. 6. Table V shows the number of modules in each CL. The number of modules in CL3 and CL4 is

greater than that in other CLs. Furthermore, the number of modules at CL3 and above has increased more rapidly

than the number at CL1 and CL2. This means that the structure in CL3 and above has grown in similar fashion to
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Fig. 7. Containment level where a module at the level cannot be divided anymore.

the left-hand pattern in Fig. 6. Table VI shows the average number of ASes in a module. From 2000 to 2012, the

average number of ASes in CL1 modules increased by a factor of 4.07, and that in each CL2 module increased

2.96 times. The number of ASes in modules in these CLs increased at a faster rate than in the other CLs. This

suggests that the structure in CL1 and CL2 has expanded by increasing the number of ASes within a module. That

is, the structure of these CLs has expanded according to the center pattern in Fig. 6. The expansion in width with

the increase of ASes in a module leads to an increase in the amount of traffic aggregated at links between modules.

Therefore, more traffic has been concentrated at links between CL1 modules and links between CL2 modules. Note

that it is known that the Louvain method suffers from a resolution limit. The resolution limit is the characteristic

scale of the smallest size of a module that the method can detect. We checked the effect of the resolution limit by

comparing divisions by the Infomap method, which is known to mitigate the resolution limit better than the Louvain

method [44]. We found that the division by the Louvain method is affected by the resolution limit: the number of

small size (< 10 ASes) modules is about ten times fewer than that by the Infomap method. However, we also found

that the impact of the resolution limit on analyzing the evolution of flow hierarchy is marginal (see Appendix A. for

detail). The main reason is that the evolution of the flow hierarchy depends on the relation between the large-size

module at the CL and the large-size module at lower-level CL. That is, the evolution of flow hierarchy indicates

how the large size module at a CL can be divided into sub modules at lower-level CL. Our result shows that the

resolution limit of the Louvain method is enough to capture the large-size module and is enough to understand the

way of traffic aggregation in the flow hierarchy. Another reason is that, although the Infomap method can detect

some “periphery nodes” (which in turn form a small-size module), such the small-size modules are detected at each

CL. Thus, the relation between the large-size module at the CL and the large-size module at lower-level CL is less

suffered from the resolution limit.

V. L ONG-TERM CHANGE IN TRAFFIC AGGREGATION

Section IV showed that the structure within a module can be represented as a star-like graph. It was also revealed

that the structure in higher CLs has expanded by increasing the number of ASes within a module, whereas the

structure in lower CLs has expanded with an increase in the number of modules. In this section, we use this



17

 0

 2

 4

 6

 8

 10

 12

 14

 16

2002 2004 2006 2008 2010 2012

T
he

 n
um

be
r 

of
 s

ub
 m

od
ul

es

Year

CL1
CL2
CL3
CL4
CL5

Fig. 8. Average number of submodules contained in a module in each CL.

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 4e+006

 4.5e+006

2000 2002 2004 2006 2008 2010 2012

T
ra

ffi
c 

am
ou

nt

Year

CL1
CL2
CL3
CL4
CL5

Fig. 9. Normalized average traffic amount on inter-module links in each CL.

structural analysis to investigate where the traffic will become concentrated. In particular, we focus on the traffic

amount over inter-module links where large amounts of traffic are exchanged.

A. Relationship between inter-module links and traffic aggregation

The traffic concentration on links between modules is dependent on the structure of the Internet topology. In

particular, the number of submodules influences the amount of traffic aggregated on the links between modules.

This is because traffic aggregated inside each submodule is aggregated at an AS in a higher-level module, and

the traffic aggregated at this AS is relayed via links between modules. We therefore investigate the number of

submodules contained in a module. Figure 8 shows the average number of submodules contained in a module in

each CL. The average number of submodules contained in a CL1 module increased until 2007, after which it can

be seen to have slightly decreased. In levels below CL2, the average number of submodules has remained almost

constant. In CL2, the average number of submodules has increased. The reason for this increase is that the number

of CL3 modules has increased more than the number of CL2 modules, as shown in Sec. IV-D. Thus, more traffic

has become concentrated on the links between CL2 modules.

B. Amount of traffic traversing links between modules

We now investigate the traffic concentration on links between modules. Figure 9 shows the increase in the average

amount of traffic traversing links between modules in each CL. The average amount of traffic on links between CL1



18

modules has increased more than in other CLs. If this trend continues, more traffic will become concentrated on

links between CL1 modules. The amount of traffic traversing links between CL2 modules also increased compared

to the other CLs. In particular, the amount of traffic traversing links between CL2 modules in Fig. 9 has slightly

accelerated since 2011. The reason for the shift in 2011 may relate to the change of structure in CL2 modules.

In Fig. 2(c) and Fig. 2(e), we can see that the increase in the assortativity and diameter of CL2 modules stopped

around 2011. This implies that ASes having few links have tended to connect to an AS with the highest degree in

a CL2 module after 2011. This trend leads to the increase in traffic aggregated on links between CL2 modules, and

the acceleration in the amount of traffic on links between CL2 modules prevents the Internet from accommodating

the overall increase in traffic. We also examined by changing the value ofγ from 238 at year 2004 to 3804 at year

2012, and the similar tendency of traffic concentration was observed. By the traffic concentration, the operating and

investment costs of routers increase. For example, the increase in processing cost leads to heatings problem and the

power cost to cool routers, which is the primary contributor to an energy footprint, exponentially increases [45].

Moreover, an expansion of network equipment is needed according to the increase in the traffic volume. However,

the transit fee that an AS receives from the other ASes does not increase more largely than the increase of traffic

traversing the AS [5]. The traffic concentration will prevent ASes from continual maintenance and expansion of

network equipment. Therefore, a new evolution process is needed to slow down the traffic concentration on links

between CL1 modules and links between CL2 modules.

VI. EVOLUTION TO ACCOMMODATE THE INCREASE IN TRAFFIC AMOUNT

Our analysis of the flow hierarchy shows that traffic is concentrated on links between CL1 modules and links

between CL2 modules. Therefore, an evolution process that considers the global structure of the Internet topology

is needed to slow down this increase in concentration. In this section, we examine a new evolution process that

attempts to increase the number of links between lower-level modules to reduce the traffic concentration among

higher-level modules. We explain our evolution process in Sec. VI-A, and then evaluate its performance in Sec.

VI-B.

A. Evolution process to slow down traffic concentration

The results presented in Sec. V show that traffic has become increasingly concentrated on links between CL1

modules and links between CL2 modules. This is mainly because the number of ASes within CL1 and CL2 modules

has increased, leading to an increase in the traffic generated in these modules. To continually accommodate the

increase in traffic amount, the Internet topology requires a new evolution process to reduce this concentration at the

links. Because the degree of traffic concentration on the links depends heavily on the global structure of the topology,

our focus here is a global structure that can accommodate more traffic without increasing the concentration. For this

purpose, we apply our evolution process in a centralized manner, rather than in the autonomous manner currently

employed by ASes.

The basic approach of our evolution process is to construct more links between modules at lower CLs. With the

links between lower CL modules, the traffic concentration in the current Internet can be relaxed, as some of the

traffic will no longer have to traverse links between higher-level modules. On the one hand, our evolution process is

necessary to avoid traffic concentration among higher-level modules associated with the increase in traffic amount.
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On the other hand, our evolution process relies to some extent on the current topological characteristic that attempts

to aggregate many paths into one link. In fact, the Internet topology has evolved such that a hub AS attracts

more intra-module links (see discussion of Fig. 2(b)). The hub AS aggregates and exchanges traffic from/to other

modules. In the proposed evolution process, we must avoid traffic concentration among higher-level modules while

retaining the characteristic of traffic aggregation used in the past. We therefore introduce a parameterw to represent

the threshold of the number of links between hub ASes in different modules. As we increasew, the number of

links between modules increases, which will lead to a relaxation in traffic concentration at higher-level modules.

By changing the value ofw, we are able to examine how the number of links between modules slows down the

traffic concentration in links between higher-level modules. Formally,w is defined as follows. LetEv(CLx) be the

set of links between a hub AS and another AS in a CLx module, andEh(CLx) be the set of links between CLx

modules. We define the ratioR(CLx) of links in Eh(CLx) to bothEv(CLx) andEh(CLx) at CLx as:

R(CLx) =
|Eh(CLx)|

|Ev(CLx)|+ |Eh(CLx)|
. (5)

Then, our evolution process increases the links inEh(CLx) until R(CLx) exceeds the thresholdw. Figure 10

illustrates howR(CLx) is calculated. A red node denotes a hub AS, which we call the gateway AS hereafter, in a

module. A link between two red nodes is a link inEh(CLx), which is shown as a blue line. A link between a red

node and a white node is a link inEv(CLx), which is shown as a red line. By increasingw, links in Eh(CLx)

are constructed between blue nodes. We then evolve a topologyT using the following evolution process.

Step 1 Add new ASes toT .

Step 2 Add only one link for each new AS inT such that the new AS connects links toT .

Step 3 Calculate the flow hierarchy ofT .
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Step 4 Repeat the following steps from CL6 to CL1.

Step 4.1 Add a link between modules at the same CL.

Step 4.2 CalculateR(CLx).

Step 4.3 IfR(CLx) < w and the connection among CLx modules is not a full mesh, return to Step 4.1.

In Step 4.1, the link is constructed between gateway ASes, because a certain degree of traffic aggregation should

be retained to preserve its characteristics.

Note that the current Internet does not have a mechanism which lets an AS know the location and the CL of

the other gateway ASes. However, each AS can estimate whether an AS is a gateway from the AS paths in BGP

tables. When most AS paths traverse a specific AS, the AS is considered as a gateway AS. Since the amount of

traffic on links between modules in the same CL differs according to CL, as shown in Fig. 9, the traffic amount on

links connecting to gateway ASes also varies with the CL. By investigating the number of AS paths that traverse

the gateway AS, the CL of the gateway AS can be estimated.

B. Effect of the evolution process

1) Backtracking the Internet topology:We examine the effect of our evolution process in terms of slowing down

the traffic concentration. For this purpose, we apply our evolution process to the Internet topology in the year 2000,

and evolve the topology until 2013. Then, we compare the degree of traffic concentration in the evolved topology

with that of the actual Internet topology in 2013.

To apply our evolution process, we first check the ASes and links added from yeary to yeary + 1 from G(y)

andG(y+1). Here,G(y) represents the actual Internet topology at yeary. We then evolve the topology such that

the ASes are the same as those in the Internet topology in the next year. Links between ASes are constructed by

the proposed evolution process described in Sec. VI-A. The evolution process is repeatedly applied 13 times, that

is, the topologyT (y) is evolved toT (y+13). Note that when some ASes vanish atG(y+1), we remove them and

their links fromT (y+1) just after Step 1. If the topologyT (y+1) becomes unconnected by this removal process,

we select the largest connected component for further evolution. Selecting the largest connected component leads

to a decrease in the number of ASes and links. However, we can confirm that the number of ASes in unselected

connected components is less than 1% of all ASes, so the impact of this decrease is negligible.

At Step 3, we re-calculate the flow hierarchy after adding links in Step 2 such that the flow hierarchy reflects

the change of traffic aggregation altered by the link addition. At Step 4.1, we randomly select a pair of gateway

ASes to construct a link onEh(CLx). Instead, we could calculate the optimal pair that minimizes the amount of

traffic traversing links between higher-level modules. However, such a calculation is difficult in practice, because

it requires complete information about the Internet topology and AS paths. Therefore, we randomly select a pair

of gateway ASes, and estimate the change in the amount of traffic traversing links. In this paper, we evolve the

Internet 10 times with different random seeds, and present the average change in the amount of traffic traversing

links. After Step 4.1, when the number of links inT (y + 1) is the same as the number of links inG(y + 1), we

stop applying our evolution process. After Step 4.3, we ensure that the number of links inT (y+1) is equal to that

of G(y + 1) for the purpose of comparison. We randomly select links from a set that is not included inT (y + 1)

but is included inG(y + 1), and add the selected links toT (y + 1). Finally, y is set toy + 1, and our evolution

process is again applied untily becomes 2013.
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(a) Average traffic amount at CL1 inter-module links.
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Fig. 11. Average traffic amount at CL1 and CL2 inter-module links in the topology grown by applying the proposed evolution process.

2) Evaluation results of the proposed evolution process:To investigate how the number of links inEh(CLx)

should be increased in the Internet topology, we evaluate the amount of traffic at links between higher-level modules

in the topology evolved by our evolution policy. Figure 11 shows the average and the range of traffic amount on

CL1 and CL2 inter-modules links of 10 evolutions with different random seeds. The vertical axes in Fig. 11(a)

and Fig. 11(b) are normalized by the average traffic amount on links between CL1 modules and between CL2

modules, respectively, on 15 July 2000. The figures show results forw = 0.2, 0.4, and 0.6. Note that the evolved

topology has more links inEh(CLx) as we increasew. Figure 11 shows that the evolution policy slows down the

increase in traffic at links between higher-level modules. Whenw is 0.2, this slow down is small, because the size

of Eh(CLx) is small. In contrast, when the thresholdw is set to 0.4 or 0.6, the slow-down effect is high. This

is because traffic no longer needs to traverse links between higher-level modules. More importantly, the increase

in traffic on links between CL2 modules has accelerated since 2011 in the original evolution, but this trend is not

observed in Fig. 11(b). We observe that the traffic concentration given by our evolution policy withw = 0.6 is

not significantly different from that whenw = 0.4. This suggests that, when the size ofEh(CLx) is above some
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threshold, the slow-down effect is not enhanced. We consider the traffic aggregated at links between higher-level

modules to be adequately reduced whenw is set to 0.4.

These results mean that a suitable structure is derived when the thresholdw is 0.4. Although our evolution policy

with w = 0.4 slows down the traffic concentration, the volume of traffic on links between higher-level modules

increases slightly. Therefore, there is a possibility that the traffic concentration will become a problem in the distant

future. To further reduce the traffic concentration on these links, each AS exchanges information about which AS

is a gateway in the modules at each CL. Thus, some feedback mechanism is required to achieve a suitable global

structure and global performance. Under such a feedback mechanism, more suitable pairs of gateway ASes can be

selected to construct links inEh(CLx). This evolution process may be difficult to realize in the current mechanism

of link construction of ASes because this evolution process does not include the economic incentive for ASes. Our

focus is not to develop a rigid evolution policy, but investigate how the principles of evolution policy lead to the

difference of the evolution of the global structure and whether it is possible to relax the future traffic concentration

or not. Results show that our proposed evolution process can relax the traffic concentration on links between top

level modules by a half of the traffic concentration in the original evolution as shown in Fig. 11. In practice, some

economic incentives for promoting ASes to construct links based on the evolution process are necessary to optimize

the performance of the global Internet, which is left for our future work.

VII. A RE HYPER GIANTS NECESSARY FOR THE EVOLUTION OF THEINTERNET?

Recently, the appearance of Hyper Giants, such as Google and Akamai, has impacted the traffic flow and evolution

of the Internet topology. They generate huge amounts of traffic and send this across the Internet. Ref. [14] found

that the traffic amount sent by Hyper Giants is about 30% of the whole amount across the Internet, and the traffic

amount generated and sent by Hyper Giants is expected to increase [5]. The appearance of Hyper Giants has

influenced the structure of the Internet topology [5, 6, 8, 14, 46]. Hyper Giants construct peering links to ASes

that use services provided by Hyper Giants, so that traffic sent by Hyper Giants does not traverse large ISPs. The

primary reason that Hyper Giants construct a lot of peering links is to reduce the transit cost of traffic traversing

large ISPs.

The increased number of peering links partly helps the Internet topology to achieve a suitable structure to

continually accommodate an increase in traffic amount. This is because peering links are connected between modules,

which are links inEh(CLx). However, the appearance of Hyper Giants alone will not allow the Internet topology

to evolve sufficiently to accommodate the increase in traffic amount, because only traffic between a Hyper Giant

and an ISP can be exchanged over the peering links. To accommodate the increase in traffic amount, some of

the traffic aggregated at links suffering from overconcentration must traverse the other links. The peering links of

Hyper Giants do not exchange traffic, but links between ISPs can. Therefore, it is important to consider not only

the peering links of Hyper Giants, but also the connection among ISPs.

VIII. C ONCLUSION

An evolution process that considers the global structure of the Internet topology is needed to accommodate future

traffic amount. An analysis of the structure in the topology reveals where the traffic is concentrated, which enables

us to develop an evolution policy to relax the overconcentration. Many works have shown that the Internet has a



23

hierarchical structure [11-13]. Within this hierarchical structure, an AS aggregates traffic from lower-level ASes,

and relays the traffic to higher-level ASes. To identify the hierarchical nature of traffic aggregation, we investigated

the long-term change in the structure of the Internet topology by analyzing the flow hierarchy. By examining the

internal structure of a module, we found that each hub AS in a module is a gateway that aggregates and exchanges

traffic from/to other modules. Furthermore, when the traffic demand is given by the gravity model, we showed that

the amount of traffic traversing links between top-level modules and link between second-level modules has been

rapidly increasing.

We considered a new evolution policy to avoid traffic concentration, and then examined how this policy could

slow down the traffic concentration compared with the actual evolution of the Internet topology. The basic approach

behind our evolution policy is to construct more links between gateway ASes in different modules at the same level

of the flow hierarchy, particularly at lower levels. While the topology retains the characteristic of traffic aggregation,

a new policy is needed to avoid traffic concentration. To retain this characteristic, links between a gateway AS and

other ASes in the same module should be preserved. We therefore introduced a threshold that determines the ratio of

links between gateway ASes in different modules to the links between a gateway AS and other ASes. By varying this

threshold, we examined how many links between gateway ASes are needed to slow down the traffic concentration.

In evaluating the effect of our evolution policy, we found that the traffic concentration at links between higher-level

modules decreased noticeably when the threshold was 0.4 or 0.6. We thus considered the traffic aggregated at links

between higher-level modules to be adequately reduced whenw = 0.4.

In future work, we will develop an evolution policy that considers the merits of each AS. Because the evolution

of the Internet topology is not centrally controlled but an ensemble of individual link construction by each AS,

the evolution policy should be applied to each AS. Indeed, Refs. [5, 47] investigated the evolution of the Internet

topology from the viewpoint of game theoretic behavior by each AS. Future evolution policies must consider both

the merit to individual ASes and the merit for the global structure of the Internet.

IX. A PPENDIX A - THE IMPACT OF RESOLUTION LIMIT ON ANALYSIS OF THE EVOLUTION OF THE FLOW

HIERARCHY

In Sec. IV, we analyzed the evolution of the Internet topology by investigating the evolution of the flow hierarchy.

In the investigation, we used the Louvain method to exploit the flow hierarchy from the Internet topology. However,

it is known that the Louvain method suffers from a resolution limit. The resolution limit is the characteristic scale

of the smallest size of a module that the method can detect. To determine the effect of resolution limit on the

analysis of the evolution of the flow hierarchy as shown in Table V and Fig. 6, we analyze the evolution of each

CL with the Infomap method [26], which does not much suffer from the resolution limit [44].

A. Analysis of the size of module by Infomap method

We first investigated the size of module derived by the Louvain method and the Infomap method. Figure 12

shows the size of CL1 modules derived by the Louvain method at 15th November 2013.X axis indicates the size

of a module andY axis indicates the number of modules. The width of a bar is 2 in both of Fig. 12(a) and Fig.

12(b). The number of modules containing fewer than 10 ASes is only about 10 and there is a few large modules

containing more than 5000 ASes. Figure 13 shows the size of CL1 modules derived by the Infomap method at 15th
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(b) Modules that contains smaller than 500 nodes.

Fig. 12. The size of CL1 modules that are divided by the Louvain method.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

Mod u le  s ize

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

T
h

e
 n

u
m

b
e

r
 o

f
 m

o
d

u
le

s

(a) All modules.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

Mod u le  s ize

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

T
h

e
 n

u
m

b
e

r
 o

f
 m

o
d

u
le

s

(b) Modules that contains smaller than 500 nodes.

Fig. 13. The size of CL1 modules that are divided by the Infomap method.

November 2013.X axis andY axis show the same as them of Fig. 12. By the Infomap method, much more amount

of small size modules appear compared to the Louvain method. This means that there is the effect of resolution

limit on our analysis of the modular structure.

B. Analysis of the evolution of the flow hierarchy by Infomap method

We next clarify whether our analysis of Table V and Fig. 6 in our first submitted paper is affected by the resolution

limit. Table VII shows the number of modules in each CL derived by the Infomap method. The depth of the deepest

module is always 3 from 2000 to 2012, i.e., the depth has not changed. This result is the same as the result with

the Louvain method. The number of modules in middle or bottom level such as CL2 and CL3 has more greatly



25

TABLE VII. THE NUMBER OF MODULES IN EACHCL DERIVED BY THE INFOMAP METHOD

Year CL1 CL2 CL3

2000 445 573 4

2002 752 950 19

2004 887 1313 53

2006 1127 1625 25

2008 1379 2221 42

2010 1757 2604 49

2012 1991 3177 64

TABLE VIII. THE AVERAGE NUMBER OFASES IN A MODULE DERIVED BY THE INFOMAP METHOD.

Year CL1 CL2 CL3

2000 18.34 10.33 4

2002 18.1 9.16 5.95

2004 20.31 10.56 7.66

2006 20.34 10.87 4.52

2008 21.26 10.74 4.83

2010 20.26 10.91 17.67

2012 21.1 10.67 6.03

increased than CL1 modules which is top level. This result also agrees with the result with the Louvain method.

Table VIII shows the average number of ASes in a module derived by the Infomap method. The increase of

ASes in a CL1 module is slight. The reason is that there are much more number of small size CL1 modules as

shown in Fig. 13. Nevertheless, the number of ASes in CL1 modules has increased compared to CL2 and CL3.

This suggests that the number of ASes in large size CL1 modules has greatly increased. From Table VII and Table

VIII, we consider that the structure in top level has expanded with the center pattern in Fig. 6 since the structure in

top level has expanded by increasing the number of ASes within a module. The structure in low level has expanded

with the left pattern in Fig. 6 since modules has more increased than top level. This result agrees with the result

of analysis with the Louvain method.
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