

クラスタ数 k の最適選定

- Jain-Dubes法*を用いて最適なクラスタ数 kを設定
 - 要素数が n のときに、2 ≤ k ≤ 1+log2n の範囲で各クラスタ数 k のクラスタリングを実施
 - ▶ 次式で定義されるコストp(m)が最小となるkを選択

O NTT

 $\begin{aligned} p(k) &= \frac{1}{k} \sum_{i=1}^{k} \max_{1 \leq j \leq k} \left\{ \frac{\eta_i + \eta_j}{\xi_{ij}} \right\} \\ &= \frac{1}{n} \sum_{i=1}^{n_j} D\left(\boldsymbol{x}_i^{(j)}, \boldsymbol{m}_j\right) \quad \xi_{ij} = D(\boldsymbol{m}_i, \boldsymbol{m}_j) \end{aligned}$

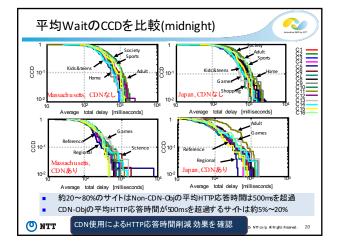
 $n_j \stackrel{i}{\longleftarrow} 1$ $x^{[j]} : クラスタ j 内の i 番目の要素、<math>n_j : クラスタ j の要素数$ $m_j : クラスタ j の重心, D(a,b) : ベクトルa とb間の距離$

 各クラスタに属する要素のクラスタ重心に対する距離Aの平均値の 、二つのクラスタの重心間の距離Bに対する比率を、最小化することに相当

*A.K. Jain and R. C. Dubes, Algorithms for clustering data, Prentice-Hall, 1988

Copyright© 2015 NTT corp. AlRights Reserved. 18

Basic Properties



		We	bsite	Object	Object	Total
ID	Category	co	unt	size	count	size
		0:00	12:00	(kbytes)	count	(Mbytes)
C1	Business	59	40	14.70	55.14	0.810
C2	Computers	112	91	16.26	43.63	0.709
C3	News	39	27	13.55	72.45	0.982
C4	Reference	112	109	13.09	43.42	0.568
C5	Regional	80	73	17.77	50.59	0.899
C6	Science	95	86	14.04	52.86	0.742
C7	Society	79	83	15.01	66.86	1.003
C8	Health	86	52	14.27	54.30	0.775
C9	Home	85	47	15.66	55.39	0.867
C10	Shopping	69	68	15.67	70.77	1.109
C11	Adult	112	102	10.49	53.04	0.557
C12	Arts	55	60	15.43	68.18	1.052
C13	Games	87	58	15.28	54.12	0.827
C14	Kids & teens	106	64	13.23	54.59	0.722
C15	Recreation	86	52	13.55	57.30	0.776
C16	Sports	38	53	16.62	86.67	1.440

- Entertainment websites, e.g., Arts, Shopping, and Sport, tend to have more objects and larger total data size.
- Information websites, e.g., Business, Computers, Health, and Reference, tend to have fewer objects and smaller total data size.

O NTT

Copyright© 2015 NTT corp. AlRights Reserved. 19

HTTP応答時間改善の施策

 CP(content provider)がCDN使用オブジェクト(CDN-Obj)の比率を増加 現状、CDNを用いずに配信しているObj(non-CDN-Obj)をCDNで配信し、CDN-Objの比率を増加させることでHTP応答時間を低減

L CPが使用CDNを変更

CDN事業者のキャッシュの地理的な配置、キャッシュサーバ能力、NWスループット、キャッシュ制御ポリシィ、等が異なることから、よりHTTP応答時間の低減効果が見込めるCDN事業者にCPが契約先を切替

III. CDN事業者がObjのキャッシュ位置や配信サーバ選択を適正化 CDN事業者がキャッシュサーバ配置場所、キャッシュサーバ制御ポリシィ(置 換方式、キャッシュ判断方式)、配信キャッシュサーバ選択を適正化し、ユー ザに近いキャッシュサーバがら配信することでHTTP応答時間を低減

本発表: 広域アクティブ測定により, CDN-Obiとnon-CDN-Objの地理的な配置傾向を分析し, 施策級IIIのHTTP応答時間改善のポテンシャルを評価

O NTT

Copyright© 2015 NTT corp All Rights Reserved.

取得データ

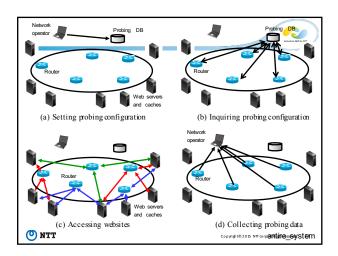
各受信オブジェクトに対して、HARファイルから 以下の 情報を抽出(GeolPのAP)を用いてホスト名から都市 名と座標を取得)

データ項目名	Key
HTTP 送信先ホスト名	"request"-"url"
ホストの存在する国名	GeoIP: "country_name"
ホストの存在する都市名	GeoIP: "city"
ホストの緯度	GeoIP: "latitude"
ホストの経度	GeoIP: "longitude"
	"response" - "content"
サイズ (byte)	-"size"
総遅延時間 (ms)	"time"
コネクション接続時間 (ms)	"timings" - "blocked"
DNS 名前解決時間 (ms)	"timings" - "dns"
TCP コネクション確立時間 (ms)	"timings" - "connect"
HTTP リクエスト転送時間 (ms)	"timings" - "send"
サーバ応答待ち時間 (ms)	"timings" - "wait"
レスポンス転送時間 (ms)	"timings" - "receive"
SSL/TLS 時間 (ms)	"timings " - "ssl "
	"response"-"content"
MIME Type	"

digコマンドを用いて、実際に各オブジェクトを配信したサーバのドメイン名を取得し、さらにpingを送付してRTTを計測

O NTT

Copyright© 2015 NTT corp. AlRights Reserved. 22


Overview of Measurement and Analysis

- I. 世界の12の地点から約1,000 のWe bサイトにアクセスした際の, 配信サーバ距離, RTT, HTTP応答時間等の各種通信特性を測定
- II. 測定データを、CDN-Objとnon-CDN-Objとに分離して、さらに Web サイトのジャンルごとに、平均値や累積分布を算出
- 1. 12の各測定地点における各特性値に基づきWebサイトをクラスタ 分析することで、各WebサイトジャンルのCDN-Objと non-CDN-Objの 地理的な配置傾向を分析

O NTT

Copyright© 2015 NTT corp AlRights Reserved. 23

