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Traffic Engineering

• Increasing the time variation of traffic in a backbone network

• Deployment of streaming, cloud services, etc.

• Traffic Engineering(TE)

• Periodical measurement of traffic and optimization of routes
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Problems of existing TE

・Time lag of repose to traffic change

・Frequent route change caused by quick response

Network instability

Path 1

Path 2

Source

Destination

• Overview

• Predicting the future traffic variation based on the observed traffic

• Calculating a route considering the predicted traffic variation

• Advantage 

• Calculating routes in advance of a traffic change

• Stable routes change by considering the future traffic

Traffic Prediction
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Calculation of Routes
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Applying Traffic Prediction to TE
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Actual

The prediction errors affects the TE performance

Objective and Approach

• Objective

• Establishment of prediction based TE which achieves the both features

• Proactive control to traffic changes

• Robust control to prediction errors

• Approach
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[1] T. Hashimoto, “Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic 

disturbances,” in Proceedings of IEEE 52nd Annual Conference on Decision and Control, Dec. 2013, p. 6434―6439. 

• Considers future system behaviors

• Corrects the prediction by feedback

• Keeps the risk of wrong control low

Stochastic Model Predictive Control

(SMPC)[1]

• Proactive control to traffic changes

• Robust control to prediction errors

Applying SMPC to TE

• Inputs setting to a system to make the output close to desired

• Considers how output will change to calculate input values

Model Predictive Control（MPC）[2]
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Desired 

𝑢

𝑦

Prediction target

System 
input： 𝑢(𝑡) output：𝑦(𝑡)

Controller 

The prediction of output includes errors.

So, the setting of input must be robust to prediction error.

feedback
時間

[2] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,”

Control Engineering Practice, vol. 11, no. 7, pp. 733–764, Jul. 2003.

• Controller corrects the prediction by observing the output

• Controller recalculates the inputs with the corrected prediction

• Controller avoids the drastic change of the input

Correction of prediction error by feedback
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Calculation 

of input

system

state: 𝑧
prediction

input: 𝑢(𝑡 + 1)predicted
output: 𝑦(𝑡 + 1)

feedback: 𝑦(𝑡)

The increase of prediction error can be avoided.

However, influence of one step error still exists.
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Influence of prediction error

• System has some constraints about input and output

• Physical limitation, Boundary condition, etc. 

• Controller may break the constraints due to prediction errors

7

time

o
u
tp

u
t

Upper bound

actual

predicted

Even if the predicted value is feasible, 

the actual output exceeds the upper bound.

• Keeps the probability of wrong control under a certain level

• Calculates the input value under 𝑃 𝑦 𝑡 > 𝑦𝑢 ≤ 𝑝

Probability distribution function of 𝑦(𝑡)

Predicted value

𝐸[𝑦 𝑡 ]

𝑃 𝑦 𝑡 > 𝑦𝑢

𝑦𝑢

Stochastic Model Predictive Control（SMPC）
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𝑦𝑢 𝑃 𝑦 𝑡 > 𝑦𝑢 ≤ p

actual
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𝑦𝑢 : upper bound of output

𝑝: desired probability  

Modeling TE control as SMPC

• Routes 𝑅 is the input, and traffic on each link 𝒚 is the output

• Accommodation of traffic under targeted capacity is objective

• Controller keeps the probability of exceeding the capacity lower than 𝑝
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Risk probability 
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Traffic prediction
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Risk probability ≤ p

𝑝

• Formalization

• Procedure 

𝑤: weight for routes change

𝑓: cost function 

𝐺: routing matrix

 𝒙: predicted value of traffic on flow
𝐶𝑙 : targeted capacity of link l

𝑝: desired probability

℘: set of available paths

 𝒚: predicted value of traffic on link
𝑅: fraction ratio of routes allocation

SMP-TE （Stochastic Model Predictive TE)
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Calculation 

of routes
Route settingTraffic prediction

𝑅(𝑡 + 1) 𝒙
𝒚(𝑡 + 1)

feedback

Keep the risk of overcapacity under a certain level

Avoid large changes in route setting

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶  

𝑘=𝑡+1

𝑡+ℎ

( 1 − 𝑤 ||𝑓 𝑅(𝑘) ||2 + 𝑤||𝑅 𝑘 − 𝑅 𝑘 − 1 ||2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶  𝒚(𝑘) = 𝐺 ⋅ 𝑅 𝑘 ⋅  𝒙 𝑘
∀𝑝, ∀𝑓, 𝑅𝑝,𝑓 𝑘 ∈ 0,1

 𝑝∈℘ 𝑓 𝑅𝑝,𝑓 𝑘 = 1

∀𝑙, 𝑃 𝑦𝑙 𝑘 > 𝐶𝑙 ≤ 𝑝

Relaxation of constraints in far future

• Unnecessary route change is caused by considering far future

• Prediction errors increase as the prediction target becomes far

• Stochastic constraints becomes strict with the increase in error

• Relaxing the constraints is useful to avoid the route change

• Decreasing the probability to accommodate traffic as the target is far
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does not actually cause, 

route changes are begun.
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Without relaxation With relaxation

Unnecessary route change is 

avoided by relaxing constraints 

in uncertain future

e.g.  𝑞 𝑡 + 𝑘 = max 0.5, 1 − 𝑝 𝑒−
𝑘−1

𝜏 𝜏: time constant

Evaluation environment 

• Network 

• Topology ： Internet2

• traffic：actual trace data[3]（2012/2/6～2012/2/12）

• Prediction error

• Gaussian distribution: 𝑁(0, 𝜎𝑗
2𝑡)

• 𝜎𝑗
2 = 0.3 𝑉[𝑥𝑗

2][4]

• Metrics 

• Queuing delay on bottleneck link

• Route changes: |𝑅𝑝 𝑡 − 𝑅𝑝(𝑡 − 1)|

• Compared method

• simple prediction-based TE : uses only one-step prediction

• MP-TE : without considering the probability distribution of prediction error
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[3] “Internet2 data,” available from http://internet2.edu/observatory/archive/data-coll𝑅 ections.html
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[4] S. Han-Lin, et al., “Network traffic prediction by wavelet-based combined model,” Chinese Physics B,
vol. 18, no 5, pp. 1110-1124, Sep. 2005 

Topology of Internet2

Traffic on Internet2



Queueing delay on bottleneck link

• SMP-TE keeps delay low even when the prediction error exists

• Other methods causes congestion due to the prediction error
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Time slot Time slot
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99.9% queueing delay： the value of delay which 99.9% of packets experience delay lower than this value

Routes change 

• Drastic change occurs when using only one step prediction

• TE considering multi-step future avoids the drastic change
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One step prediction 5 step prediction

Drastic route change occurs just 

before the congestion occurs

Drastic route change is avoided 

by proactive route change

Routes changeｓ more frequently occurred when using multi-step prediction  

Effect of relaxing stochastic constraints

• SMP-TE with relaxation avoids unnecessary route changes

• Maximum routes change is slightly increased due to the delay of response

• Tuning 𝜏 balances the frequency and response delay 
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average maximum frequency

MP-TE 0.074% 6.28% 33.3%

SMP-TE-relaxed(𝜏 = 5) 0.10% 11.6% 52.2%

SMP-TE-relaxed(𝜏 = 20) 0.11% 8.91% 62.3%

SMP-TE 0.12% 5.97% 78.2%

Route changes occurred in each method(p=0.01,h=5)

average：average of |Δ𝑅𝑝 𝑡 | on all time slots and paths

maximum： max
p,t

|Δ𝑅𝑝 𝑡 |

frequency：ratio of time slots where Δ𝑅𝑝 𝑡 > 0.01 on some paths 

平均 最大 頻度

MP-TE 0.074% 6.28% 33.3%

SMP-TE-relaxed(𝜏 = 5) 0.088% 8.90% 42.0%

SMP-TE-relaxed(𝜏 = 20) 0.089% 7.14% 46.3%

SMP-TE 0.090% 6.04% 50.7%

各手法で生じた経路変更量(p=0.1)

Summary and future work

• Summary 

• Proposition of SMP-TE

• We introduce the idea of SMPC into TE

• We propose a relaxation method of stochastic constraints

• Evaluation of SMP-TE

• We show that SMP-TE avoids the congestion even when prediction errors exist

• We show that considering multi-step future avoids the drastic route change, 

while it causes unnecessary routes changes especially in SMP-TE

• We show that relaxation of constrains reduce the unnecessary routes changes

• Future work

• Decision of 𝜏 by considering the impact of route change in actual networks

• Improving the scalability of SMP-TE by distributed control
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