Traffic Engineering Based on Stochastic Model Predictive Control for Uncertain Traffic Change

Tatsuya Otoshi[†], Yuichi Ohsita[†], Masayuki Murata[†] Yousuke Takahashi^{††}, Keisuke Ishibashi^{††}, Kohei Shiomoto^{††}, Tomoaki Hashimoto^{†††}

- † Osaka University, Japan
- ⁺⁺ NTT Corporation, Japan
- +++ Osaka Institute of Technology, Japan

Traffic Engineering

- Increasing the time variation of traffic in a backbone network
 Deployment of streaming, cloud services, etc.
- Traffic Engineering(TE)
 - · Periodical measurement of traffic and optimization of routes

Problems of existing TE Time lag of repose to traffic change •Frequent route change caused by quick response → Network instability

Applying Traffic Prediction to TE

- Overview
 - Predicting the future traffic variation based on the observed traffic
 - Calculating a route considering the predicted traffic variation

- Advantage
 - Calculating routes in advance of a traffic change
 - Stable routes change by considering the future traffic

The prediction errors affects the TE performance

Objective and Approach

Objective

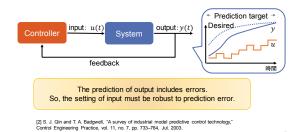
- Establishment of prediction based TE which achieves the both features
 Proactive control to traffic changes
- Robust control to prediction errors

Approach

3

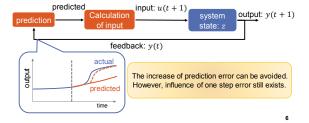
- Stochastic Model Predictive Control (SMPC)^[1]
- Considers future system behaviors
 Corrects the prediction by feedback
 Keeps the risk of wrong control low
- Applying SMPC to TE

2

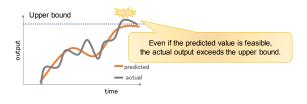

۵

- Proactive control to traffic changes
- Robust control to prediction errors

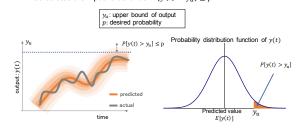
 T. Hashimoto, "Probabilistic constrained model predictive control for linear discrete-time systems with additive stochasti disturbances," in Proceedings of IEEE 52nd Annual Conference on Decision and Control, Dec. 2013, p. 6434—6439.


Model Predictive Control (MPC)^[2]

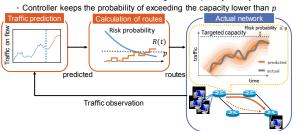
Inputs setting to a system to make the output close to desired
 Considers how output will change to calculate input values


Correction of prediction error by feedback

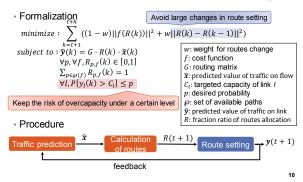
- · Controller corrects the prediction by observing the output
- · Controller recalculates the inputs with the corrected prediction
- · Controller avoids the drastic change of the input


Influence of prediction error

- System has some constraints about input and output
 Physical limitation, Boundary condition, etc.
- · Controller may break the constraints due to prediction errors

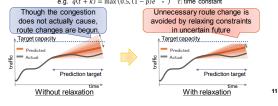

Stochastic Model Predictive Control (SMPC)

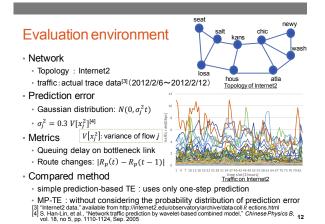
Keeps the probability of wrong control under a certain level
 Calculates the input value under P[y(t) > y_u] ≤ p



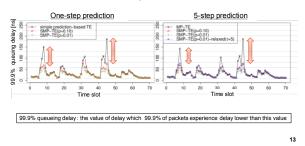
Modeling TE control as SMPC

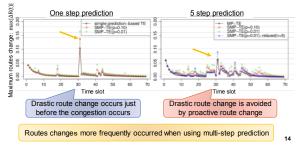
Routes *R* is the input, and traffic on each link *y* is the output
 Accommodation of traffic under targeted capacity is objective




SMP-TE (Stochastic Model Predictive TE)

Relaxation of constraints in far future


- Unnecessary route change is caused by considering far future
 Prediction errors increase as the prediction target becomes far
 - Stochastic constraints becomes strict with the increase in error
- Relaxing the constraints is useful to avoid the route change
 Decreasing the probability to accommodate traffic as the target is far
 e.g. q(t + k) = max (0.5, (1 p)e^{\frac{k-1}{c}}) r: time constant


Queueing delay on bottleneck link

- · SMP-TE keeps delay low even when the prediction error exists
- · Other methods causes congestion due to the prediction error

Routes change

- · Drastic change occurs when using only one step prediction
- TE considering multi-step future avoids the drastic change

Effect of relaxing stochastic constraints

SMP-TE with relaxation avoids unnecessary route changes
 Maximum routes change is slightly increased due to the delay of response

 \cdot Tuning τ balances the frequency and response delay

Route changes occurred in each method(p=0.01,h=5)				
	average	maximum	frequency	
MP-TE	0.074%	6.28%	33.3%	
SMP-TE-relaxed($\tau = 5$)	0.10%	11.6%	52.2%	
SMP-TE-relaxed($\tau = 20$)	0.11%	8.91%	62.3%	
SMP-TE	0.12%	5.97% 🧹	78.2%	

average: average of $ \Delta R_p(t) $ on all time slots and paths		
maximum: $\max_{p,t} \Delta R_p(t) $		
frequency; ratio of time slots where $ \Delta R_n(t) > 0.01$ on some paths		

15

Summary and future work

Summary

- Proposition of SMP-TE
 - $\,\cdot\,$ We introduce the idea of SMPC into TE
 - We propose a relaxation method of stochastic constraints
- Evaluation of SMP-TE
 - · We show that SMP-TE avoids the congestion even when prediction errors exist
 - We show that considering multi-step future avoids the drastic route change, while it causes unnecessary routes changes especially in SMP-TE
- We show that relaxation of constrains reduce the unnecessary routes changes
 Future work

 - \cdot Decision of τ by considering the impact of route change in actual networks
 - Improving the scalability of SMP-TE by distributed control