
Priority Control Based on Website Categories in
Edge Computing

Noriaki Kamiyama∗†, Yuusuke Nakano∗†, Kohei Shiomoto†,
Go Hasegawa‡, Masayuki Murata∗, and Hideo Miyahara∗

∗Department of Information Science, Osaka University, Osaka 565-0871, Japan
Email: {kamiyama.noriaki, nakano.yuusuke, murata, miyahara}@ist.osaka-u.ac.jp

†NTT Network Technology Labs, Tokyo 180-8585, Japan, Email: shiomoto.kohei@lab.ntt.co.jp
‡Cybermedia Center, Osaka University, Osaka 560-0043, Email: hasegawa@cmc.osaka-u.ac.jp

Abstract—Modern websites consist of many rich objects dy-
namically produced by servers and client terminals at diverse
locations. To deliver dynamic objects efficiently, edge computing
in which objects are dynamically generated and delivered to client
terminals on edge servers located at edge nodes will be effective. It
is anticipated that the effectiveness of edge computing depends on
the geographical pattern of object deployment, and the tendency
of geographical distribution of objects is different among website
categories, e.g., Sports and News, so it seems effective to prioritize
website categories for edge computing. In this paper, we first
propose a platform for measuring the geographical tendency of
object deployment in each website category. We then propose
to differentiate the caching priority in edge computing among
website categories based on the measured deployment pattern
of objects. Through the experience of accessing about 1,000 of
the most popular websites from 12 locations worldwide using
PlanetLab, we clarify that we can improve the reduction ratio
of web response time by about 20% by carefully differentiating
caching priority among website categories.

I. INTRODUCTION

In recent years, a large portion of Internet traffic has been
dominated by HTTP traffic. However, it has been reported
that two-thirds of the users encountered slow websites every
week, and about half of those users abandoned websites after
experiencing performance issues [4]. Furthermore, it has been
reported that a 400-millisecond delay resulted in a 0.74%
decrease in searches on the Google search engine [18], and
that Amazon′s revenue increased by 1% for every 0.1 second
reduction in web page load time [19]. Therefore, reducing web
response time is urgent for many ISPs and content providers.
It is important to adequately control web traffic to improve
user-perceived quality and to reduce the amount of network
resources consumed.

Each website consists of a large number of data objects,
and objects are transmitted from object servers using HTTP.
With traditional websites, static objects are stored at servers,
and web browsers simply download them. Content delivery
networks (CDNs) that use a number of cache servers deployed
in multiple networks have been widely used as a method
to efficiently transmit web traffic and reduce response time
[9][11][17]. Currently, 74% of the 1,000 most frequently
accessed websites use CDNs [11]. Such networks are effective
for delivering static objects because identical data can be used
for multiple users. However, the ratio of dynamic objects
generated when executing programs, e.g., Java server pages

(JSPs) and Servlet, at servers or executing JavaScript, e.g.,
Ajax and document object model (DOM), at client terminals,
has increased recently [4]. Content delivery networks are not
effective for delivering dynamic objects because such objects
cannot be reused among multiple users in many cases. The
problem of a long time being required to access websites
consisting of many dynamic objects has been pointed out
[18][19].

To deliver dynamic objects efficiently, edge computing, in
which objects are dynamically generated and delivered to
client terminals on edge servers located at edge nodes, seems
effective [5][14][15]. More recently, similar idea by the name
of fog computing has been also proposed [3][20][21]. By
caching application codes for generating dynamic objects, the
same application codes can be reused among various users,
so we can expect to avoid the delay caused to obtain the
application codes from remote servers. However, because the
total number of websites worldwide is enormous and continues
to increase rapidly, edge servers cannot support all the objects
of the entire set of websites around the world, so it is important
to carefully select objects to maximize the effectiveness of
edge computing.

The worldwide deployment patterns of objects will strongly
affect web response time, and the object-deployment patterns
may tend to differ among website categories, e.g., Sports and
Business. In our previous work [8], we showed the result of
measuring traffic generated when browsing about 1,000 of the
most popular websites from 12 locations worldwide and con-
firmed the difference in the tendencies of object-deployment
patterns among 16 website categories. For example, objects
of categories with high locality, e.g., Home and Shopping,
tend to be obtained from servers near users in each region,
whereas those of categories with low locality, e.g., Adult and
Society, tend to be obtained from remote servers because they
are obtained from an identical and specific location even when
accessing from different regions around the world. Therefore,
it is anticipated that the effectiveness of edge computing in
reducing web response time will depend on the object category
and that priority control for the edge-computing target among
website categories will be effective.

In this paper, we propose a method of differentiating the
caching priority among the website categories in edge com-
puting based on the geographical pattern of object deployment
measured from the edge servers. The contributions of this



2

paper are summarized as follows:
• To effectively reduce the web response time with dynamic

objects, we propose a platform for measuring the geo-
graphical tendency of object deployment in each web-
site category, and we propose to dynamically configure
the caching priority among website categories in edge
computing based on the measured deployment pattern of
objects.

• To clarify the potential and effectiveness of the proposed
caching method in edge computing, we roughly analyze
the lower bound of the reduction effect of response time
obtained by differentiating the priority of caching in edge
computing among website categories.

In Section II, we summarized the measurement procedure and
the results of object-deployment tendencies in each website
category by accessing websites from various access points
using PlanetLab [8]. In Section III, we discuss our platform
for configuring the caching priority in edge computing based
on the active measurement from edge servers. In Section IV,
we evaluate the effectiveness of the proposed caching method
in edge computing and conclude the manuscript in Section V.

II. ANALYSIS OF WEB-TRAFFIC PATTERNS

In this section, to clarify the possibility and significance
of differentiating priorities among website categories in edge
computing, we summarize the results of analyzing the tenden-
cies of object deployment of each website category by actively
measuring the traffic patterns generated when accessing vari-
ous websites from various access points [8].

A. Measurement Procedure
First, we briefly describe the procedure used to measure the

traffic properties when accessing various websites.
1) Acquisition of Web-Traffic Properties: The traffic gener-

ated when users access popular websites should be analyzed to
investigate trends in the communication patterns of websites.
Quantcast provides a ranking list of websites accessed by
users in each country [13]. We used this ranking list for
selecting the most popular websites. The URLs shown in this
access ranking list are the home pages of each website, so
we analyzed the properties of traffic generated only when
accessing the home pages. We did not evaluate which pages
can be accessed from the home pages; therefore, we did not
evaluate user behavior when they were browsing websites.
However, we were able to roughly investigate web traffic
trends by analyzing the communication properties generated
when users access many websites. We classified the selected
URLs into website categories to investigate the differences in
communication patterns among various types of websites. The
website of Alexa provides URL lists classified by category,
e.g., Arts and Business [1], and we classified the extracted
data into the 16 website categories shown in Table I on the
basis of this list.

We acquired HTTP archive record (HAR) files [10] to obtain
the communication properties generated when sending a GET
message of an HTTP request from the probing terminal. In
the HAR files, various communication properties, e.g., the
host URL from which each object is downloaded, size of each
object, and delay caused in obtaining each object, are output

as JavaScript Object Notation (JSON). We continuously and
automatically accessed a large number of websites by using
the netsniff.js executable on phantomjs in which JavaScript
can be executed on the command line [6]. Many cacheable
objects, e.g., video or images, are cached at client terminals,
and these objects in the local cache are reused when accessing
the same websites from the same client terminal. We obtained
all the objects from remote servers by invalidating the local
cache of the probing client terminal. After obtaining the HAR
file for each website accessed, we extracted various data from
the information of each object included in each obtained HAR
file.

TABLE I
NUMBER OF WEBSITES FOR EACH WEBSITE CATEGORY USED IN

CLUSTERING ANALYSIS

ID Category ID Category
C1 Business C9 Home
C2 Computers C10 Shopping
C3 News C11 Adult
C4 Reference C12 Arts
C5 Regional C13 Games
C6 Science C14 Kids & teens
C7 Society C15 Recreation
C8 Health C16 Sports

TABLE II
MEASUREMENT LOCATIONS

ID Area Location ID Area Location
L1 NA Massachusetts L7 OA Australia
L2 NA Wisconsin L8 OA New Zealand
L3 NA California L9 AS Japan
L4 EU Ireland L10 SA Ecuador
L5 EU Germany L11 SA Argentina
L6 RU Russia L12 AF Reunion

We accessed websites from multiple access locations using
PlanetLab [12], which is an overlay network constructed on
the Internet and consists of over 500 hosts worldwide. Using
PlanetLab, we were able to execute various kinds of programs
on a number of selected hosts. By executing the procedure
described in the previous two subsections, we were able to
access various websites from various locations worldwide. The
probing terminals we used were various hosts on PlanetLab.
We also measured the RTT from each access host to each
object server in addition to the statistical data obtained from
the HAR files. To measure the RTT of each object, we
automatically sent a ping command to each object server
immediately after obtaining the HAR file of each website at
each PlanetLab access host.

We selected a total of 12 measurement locations on Plan-
etLab: three points in North America (NA), two in Europe
(EU), one in Russia (RU), two in Oceania (OA), one in
Asia (AS), two in South America (SA), and one in Africa
(AF). These 12 locations are shown in Table II. We selected
300 websites with the highest access count from each of the
16 website categories. From each location, we continuously
accessed these websites starting at midnight (0:00) and noon
(12:00) local time of each access location. The total number of
websites from which the HAR files were successfully obtained
was 1,124 at midnight and 927 at noon.

By investigating the tendencies in web traffic of objects
delivered using CDNs (denoted as CDN objects) and objects



3

delivered without using CDNs (denoted as non-CDN objects),
we can investigate the geographical tendency of cache de-
ployment of CDNs and the locations where original objects
of websites are provided. We classified the objects extracted
from the HAR files into two sets, i.e., CDN objects and non-
CDN objects, by creating a list of second-level domains of
hosts delivering CDN objects.

First, we listed the second-level domains of various CDN
providers by manually checking websites of various CDN
providers. We obtained a total of 44 second-level domain
names of CDN caches, e.g., edgesuite.net, cloudfront.net,
and akamaiedge.net. The domain names of objects extracted
from the HAR files are those of content providers, e.g.,
www.yahoo.com, and the domain names of hosts delivering
objects, e.g., host1.akamaiedge.net, differ from those extracted
from the HAR files. We obtained the domain names of the
hosts actually delivering objects by using the dig command.
Finally, we identified CDN objects by comparing the second-
level domain obtained by the dig command with each second-
level domain included in the generated list.

B. Clustering Analysis of Web Traffic Properties

To understand the manner in which properties tend to differ
when accessing websites from various locations, we used
clustering analysis. We accessed various websites, Y1 and Y2,
from various measurement locations, X1, X2, and X3, at each
measurement time t. When we accessed each website from
N access locations, we obtained N results of each property,
e.g., average RTT, for the same website. Therefore, we can
construct v(y, t), a vector of N dimensions in which each
element vy,t,k (1 ≤ k ≤ N ) is the value v measured at
location k when accessing website y at t. When we accessed
M websites at t from N locations, we obtained M vectors
v(y, t) for 1 ≤ y ≤ M . Using the obtained M vector v(y, t),
we applied the clustering analysis to investigate the trends in
the way each v differs among the accessed locations.

The k-means method is the most widely used method for
centroid-based clustering, and we applied it to cluster websites
on the basis of v(y, t). It is widely known that k-means
method results are strongly affected by the initial clusters,
i.e., the initial k centroids. One of the major problems with
the k-means method is that the approximations found can be
arbitrarily bad with respect to the objective function compared
to the optimal clustering. To address this problem, Arthur et
al. proposed the k-means++ algorithm, which is a procedure
to initialize the cluster centers before proceeding with the
standard k-means optimization iterations [2]. The basic idea of
this method is spreading out the k initial cluster centers. The
first cluster center is chosen uniformly at random from the data
points that are being clustered, after which each subsequent
cluster center is chosen from the remaining data points with
probability proportional to its squared distance from the points
closest to the existing cluster center. We use the k-means++
method to avoid the initial cluster problem. Moreover, the k-
means method results also strongly depend on the parameter
k, i.e., the number of clusters. In this study, we used the JD
method proposed by Jain et al. to optimally determine k [7].

C. Geographical Distribution of Original Objects
We investigated the tendency in the geographical distribu-

tion of original objects in each URL category through the
clustering analysis of RTT for non-CDN objects. Figures 1(a)
and (b) respectively plot the centroids of the average RTT
of non-CDN objects of websites classified into each cluster
and the ratio of websites classified into each cluster when
using the midnight dataset. We classified the websites into
four clusters and observed the different tendencies among the
URL categories in average RTT, unlike the case of average
distance.

Fig. 1. (a)(c) Centroids of average RTT of non-CDN objects at each access
location, (b)(d) ratio of websites classified into each cluster in each website
category

The average RTT to servers providing original objects of
websites classified into Cluster 1 was small only in North
America, and the ratio of Society, Adult, Recreation, and
Sports websites classified into Cluster 1 was large. The web-
sites of these categories tended to be provided by content
providers in North America. The centroid of Cluster 2 was
small in North America, Europe, and Asia, and more websites
for Computers, News, Reference, Science, Arts, Games, and
Kids & Teens were classified into this cluster. Many content
items of these categories were provided by content providers
in North America, Europe, and Asia. For example, we can
assume that many websites of Games and Kids & Teens were
provided by major Japanese content providers. We can say
that the geographical locality of many websites classified into
Clusters 1 and 2 was weak, and identical content tended to be
viewed from various regions.

On the other hand, the centroid of Cluster 3 was small in
all the areas excluding Africa, and more websites of Home
and Shopping tended to be classified into this cluster. The
geographical locality of many websites of Home and Shopping
was high, and the websites of these categories tended to be
provided from various countries. Therefore, original objects
were obtained from servers provided at locations close to each
access location. Finally, the average RTT to servers providing
original objects of websites classified into Cluster 4 was small
only in Europe, and only less than 10% of websites of all
categories were classified into this cluster.

Figures 1(c) and (d) respectively plot the same properties
using the noon dataset in which the websites were classified



4

into five clusters. Clusters 1, 2, and 3 in the noon dataset
correspond to Clusters 2, 1, and 3 in the midnight dataset,
respectively. Moreover, Clusters 4 and 5 in the noon dataset
correspond to Cluster 4 in the midnight dataset. We confirmed
that the tendency of the centroids of clusters was similar to
that in the midnight dataset.

III. DIFFERENTIATING PRIORITY AMONG WEBSITE
CATEGORIES IN EDGE COMPUTING

In Section II-C, we confirmed that the tendencies of geo-
graphical distribution of original objects are different among
website categories, and we can roughly classify the website
into two broad groups: universal, e.g., Adult and Society,
and localized, e.g., Home and Shopping. On the basis of this
finding, the following approach would seem to be effective for
priority control of edge servers:

Servers providing objects of websites of the universal group
with low locality tend to concentrate in North America,
so an effective way to improve the user response time of
websites would be to preferentially deliver the objects of these
categories from edge servers over various areas in addition to
North America.

However, the object deployment pattern continues to change
dynamically over weeks or months, and the priority of website
categories in edge computing should be dynamically adjusted.
To achieve this goal, the network operator needs to periodically
collect the data of the web communication pattern measured
at various points in the network. Therefore, first we propose
a platform for measuring the RTT to object servers of various
websites from the edge servers and analyzing the geographical
tendency of object deployment at the controller to effectively
configure the caching priority among website categories in
edge computing.

A. Platform for Measuring Deployment of Web Objects
To grasp the geographical tendencies of web-object deploy-

ment, the network operator needs to measure the RTT from
various access points on the network. Here, we propose a
measurement platform in which all the edge servers act as
the measurement hosts and execute the active-measurement
procedure described in Section II-A. As shown in Fig. 2, the
proposed platform consists of the controller of the network
operator, edge servers, and webservers of various websites. At
any time, the network operator can freely update the probing
configuration at the controller and send the probing configu-
ration to edge servers to update their probing configurations
to the latest one set by the network operator, as shown in
Fig. 2(a). As a result, the probing configuration set by the
network operator is dynamically reflected to all the edge
servers. The probing configuration includes the list of URLs
each edge server accesses and the time when starting the active
measurement of web-traffic properties.

On the basis of the probing configuration, each edge server
sequentially accesses multiple websites according to the URL
list set by the probing configuration, as shown in Fig. 2(b),
and measures the RTT to web servers providing each object
of websites according to the procedure mentioned in Section
II-A. Then each edge server sends the obtained RTT data to
the network operator, as shown in Fig. 2(c). The network

operator derives the geographical tendencies of the RTT by
means of clustering analysis, as described in Section II-B. On
the basis of the obtained tendencies, the network operator sets
the priority among website categories for edge computing and
informs the determined category priority to edge servers, as
shown in Fig. 2(d). For example, the network operator can set
high priority to website categories that are classified into the
universal group with the RTT at many areas much larger than
that at the specific area, e.g., North America.

Fig. 2. Platform for measuring geographical deployment of web objects

B. Priority Control among Categories in Edge Computing

On the basis of the tendencies of object deployment, which
are analyzed at the controller of the network operator, the
network operator sets the priority among website categories
for edge computing and informs the edge servers of the
determined category priority. Based on this priority, each
edge server autonomously executes the priority control among
website categories. For selecting the objects cached at edge
servers, we can apply the same procedure with that currently
used in many CDNs.

For domain name system (DNS) queries issued by user
terminals when accessing websites, DNS servers of the ISPs
operating the edge computing platform select one edge server
and forward the user query to the selected edge server. The
edge server selected by the DNS generates an object and
delivers it to the requesting user if the application code of
the requested objects exists in its memory, i.e., cache hit.
Otherwise, i.e., cache miss, the edge server obtains application
codes from the original server, dynamically generates objects,
and delivers them to the requesting user. At this time, the
edge server determines whether to store the obtained appli-
cation code in the memory of the edge server based on the
website categories. For example, the edge server can store the
application code only if the website category of the obtained
application code is in the high priority class, i.e., universal
group. If the unused memory capacity is not sufficient to
store the obtained application codes, some application codes
in memory are removed using least recently used (LRU).

IV. REDUCTION EFFECT OF WEB RESPONSE TIME

To show the potential of the proposed caching method of
differentiating caching priority among website categories in
edge computing, we roughly evaluated the response time when
objects of the selected website categories are provided from



5

the edge servers, based on the main findings of the experiments
discussed in Section II-C.

A. Rough Estimate of Reduction Effect of Web Response Time
When objects are delivered from the edge servers, we can

roughly say that the RTT to the remote web servers from the
client terminals is subtracted from the total delay of objects.
Let Dx and Fx denote the time reduced by delivering objects
of website x from the edge servers and the response time
when browsing x without using edge servers, respectively.
Moreover, we define Gx, the reduction ratio of the response
time of x, by Gx = Dx/Fx. We also define Sx as the set
of web servers providing objects of x, Ms, as the number
of objects of x provided by web server s, and Rs as the
average RTT from the edge server and s. By delivering an
object whose origin server is s from the edge server to the user
terminal, we can expect to reduce Rs from the total response
time. Moreover, one RTT is necessary for setting up one TCP
connection between the user terminal and each web server.
Therefore, if the web browser sequentially downloads all the
objects, we have Dx =

∑
s∈Sx

∑Ms+1
s=1 Rs.

However, many web browsers support the function of simul-
taneously downloading multiple objects in parallel to reduce
the web response time, so the reduction in web response
time by edge computing is much smaller. The maximum
number of parallel sessions established with one web server is
limited to below the upper limit P to avoid congestion at web
servers. Although most browsers download only two objects
in parallel, newer browsers open more than two connections,
e.g., Internet Explorer 8 (six), Firefox 3 (six), Safari 3 (four),
and Opera 9 (four) [16]. Moreover, when the cache hit ratio
at the edge servers is given by H , we assume that objects
randomly selected with the probability of H are delivered
from the edge servers. Therefore, in an ideal case, the web
browser simultaneously starts downloading objects from all
web servers and downloading up to P objects from each web
server. In this ideal case, we have

Dx = max
s∈Sx

{⌈MsH

P

⌉
+ ⌊H⌋

}
Rs. (1)

We note that the second term, ⌊H⌋, takes unity when H = 1
or zero when H < 1, and this term corresponds to one RTT
required for setting up one TCP connection between the user
terminal and the web server. In reality, web browsers cannot
start downloading objects until the completion of obtaining
other objects due to various reasons, e.g., maintaining the con-
sistency of DOM, so web browsers cannot start downloading
all the objects at the same time [19]. Therefore, due to the
dependencies among objects, Dx will be much larger than that
obtained by (1) in many cases, and (1) gives the lower bound
of Dx. When deriving Dx from (1), we applied the measured
value obtained in the experiment mentioned in Section II to
Sx, Ms, and Rs, whereas we gave P and H as the setting
parameters.

B. Reduction in Response Time in each Website Category
First, we compared the effectiveness of edge computing on

reducing the response time among the website categories. As
an example, we evaluated Dx and Gx among four website

categories: Adult, Society, Home, and Shopping. As mentioned
in Section II-C, we can divide these four categories into two
groups: universal and localized. The weak-locality ones Adult
and Society were classified into the universal group, and the
strong-locality categories Home and Shopping were classified
into the localized group.

Fig. 3. Average reduction in response time in each website category against
cache hit ratio

Fig. 4. Complementary cumulative distribution (CCD) of reduction ratio of
response time obtained from edge computing

Figures 3(a) and 3(b) plot E(D), the average Dx of web-
sites, in each of the four categories, Adult, Society, Home,
and Shopping, against H , the cache hit ratio, based on Sx,
Ms, and Rs measured at the PlanetLab host in Japan when
setting P = 2 and 6, respectively. Figures 3(c) and 3(d) also
show E(D) based on the data measured at the PlanetLab host
in Ecuador. We observed that E(D) of universal categories,
Adult and Society, was much larger than those of localized
categories, Home and Shopping, in the wide range of H . When
P = 2 and H = 1 in Japan, for example, the response time of
the universal websites was reduced by more than two seconds
on average, whereas that of the localized websites was reduced
by less than 1.5 seconds on average by delivering objects from
the edge servers.

Figures 4(a) and 4(b) show the complementary cumulative
distribution (CCD) of Gx, the reduction ratio of response time
of websites in each of the four categories measured in Japan
when H = 1 and setting P = 2 and 6, respectively. Figures
4(c) and 4(d) also plot the CCD of Gx based on the data



6

measured in Ecuador. We also confirmed the difference in the
reduction in response time between the universal and localized
websites.

C. Differentiating Website Categories on Edge Computing
To investigate the effect of differentiating the caching prior-

ity among website categories in edge computing, we compared
E(G), the average reduction ratio of response time Gx, among
the following three cases determining how the four categories,
Adult, Society, Home, and Shopping, were treated.

• Without priority differentiation: We equally treated
all the four website categories without any differen-
tiation and assumed that objects of half the web-
sites for each category are delivered from the edge
server. Therefore, E(G) was obtained by E(G) =∑

c∈C
∑

x∈W c
Gx/Nc/4, where C is the set of all

the four website categories, W c is the set of measured
websites of category c, and Nc is the number of websites
included in W c.

• Prioritizing Universal group: We prioritized the univer-
sal group websites, i.e., Adult and Society, and assumed
that only objects for these categories are delivered from
the edge servers. Let CU denote the set of universal
group websites among the four categories, and we have
E(G) =

∑
c∈CU

∑
x∈W c

Gx/Nc/2.
• Prioritizing Localized group: We prioritized the lo-

calized group websites, i.e., Home and Shopping, and
assumed that only objects for these categories are de-
livered from the edge servers. We have E(G) =∑

c∈CL

∑
x∈W c

Gx/Nc/2, where CL denotes the set
of localized group websites among the four categories.

Figure 5 plots the E(G) for each of the three strategies at
each of the 12 locations shown in Tab. II when setting H = 1.
We confirmed that E(G) can be improved by prioritizing
weak-locality universal group websites in the edge computing,
and that the effect of prioritizing website categories in edge
computing was more pronounced outside North America. For
example, when P = 2 in Australia, we could reduce the
average web response time by about 45% when prioritizing
universal group websites in the edge computing, whereas the
reduction effect of average web response time without dif-
ferentiating website categories and with prioritizing localized
group websites was just about 35% and 25%, respectively.
This clarified the potential and effectiveness of differentiating
website categories in the priority control of edge computing.

Fig. 5. Average reduction ratio of response time obtained by category
differentiation at each location

V. CONCLUSION

Recently, the communication structure brought about by
accessing websites has become more complex. To efficiently

deliver dynamic objects, edge computing in which edge servers
located close to users cache the application code, dynamically
generate objects, and deliver them to users on behalf of remote
object servers seems effective. However, the degree to which
these techniques are effective strongly depends on object
deployment patterns. In this study, we proposed a platform
for measuring the geographical deployment of web objects
from edge servers and configuring the caching policy based
on website categories in edge computing. Through the simple
analysis of the reduction in response time, we showed that
we can improve the reduction ratio of web response time by
about 20% by carefully differentiating caching priority among
website categories.

REFERENCES

[1] Alexa, http://www.alexa.com/topsites/category.
[2] D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful

seeding, ACM SODA 2007.
[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its

role in the internet of things, ACM MCC 2012.
[4] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, Understanding Website

Complexity: Measurements, Metrics, and Implications, ACM IMC 2011.
[5] A. Davis, J. Parikh, and W. E. Weihl, Edgecomputing: extending

enterprise applications to the edge of the internet, ACM WWW 2004.
[6] GitHub, Network Monitoring,

http://github.com/ariya/phantomjs/wiki/Network-Monitoring
[7] A. L. Jain and R. C. Dubes, Algorithms for Clustering Data, Englewood

Cliffs, NJ Prentice-Hall, 1988.
[8] N. Kamiyama, Y. Nakano, K. Shiomoto, G. Hasegawa, M. Murata,

and H. Miyahara, Investigating Structure of Modern Web Traffic, IEEE
HPSR 2015.

[9] E. Nygren, R. Sitaraman, and J. Sun, The Akamai Network: A Platform
for High-Performance Internet Applications, ACM SIGOPS 2010.

[10] J. Odvarko, HAR Viewer, Software is hard,
http://www.softwareishard.com/blog/har-viewer.

[11] J. Ott, M. Sanchez, J. Rula, F. Bustamante, Content Delivery and the
Natural Evolution of DNS, ACM IMC 2012.

[12] PlanetLab, https://www.planet-lab.org/
[13] Quantcast, http://www.quantcast.com/top-sites-1.
[14] M. Rabinovich, Z. Xiao, and A. Aggarwal, Computing on the Edge: A

Platform for Replicating Internet Applications, WCW 2003.
[15] S. Sivasubramanian, G. Pierre, M. Steen, and G. Alonso, Analysis of

Caching and Replication Strategies for Web Applications, IEEE Internet
Computing, 11(1), pp.60-66, 2007.

[16] S. Souders, High Performance Web Sites: Essential Knowledge for
Front-End Engineers, O′Reilly Media, 2007.

[17] A. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante, Drafting Behind
Akamai: Inferring Network Conditions Based on CDN Redirections,
ACM Trans. Networking, 17(6), pp. 1752-1765, 2009.

[18] S. Sundaresan, N. Feamster, R. Teixeira, and N. Magharei, Characteriz-
ing and Mitigating Web Performance Bottlenecks in Broadband Access
Networks, ACM IMC 2013.

[19] X. Wang, A. Balasubramanianm A. Krishnamurthy, and D. Wetherall,
Demystifying Page Load Performance with WProf, NSDI 2013.

[20] S. Yi, Z. Hao, Z. Qin, and Q. Li, Fog Computing: Platform and
Applications, IEEE HotWeb 2015.

[21] J. Zhu, D. Chan, M. Prabhu, P. Natarajan, H. Hu, and F. Bonomi, Im-
proving Web Sites Performance Using Edge Servers in Fog Computing
Architecture, IEEE SOSE 2015.


