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Abstract—Modern webpages consist of many rich objects
dynamically produced by servers and client terminals at diverse
locations, so we face an increase in web response time. To reduce
the time, edge computing, in which dynamic objects are generated
and delivered from edge nodes, is effective. For ISPs and CDN
providers, it is desirable to estimate the effect of reducing the
web response time when introducing edge computing. Therefore,
in this paper, we derive a simple formula that estimates the lower
bound of the reduction of the response time by modeling flows
obtaining objects of webpages. We investigate the effect of edge
computing in each webpage category, e.g., News and Sports, using
data measured by browsing about 1,000 popular webpages from
12 locations in the world on PlanetLab.

I. INTRODUCTION

In recent years, web browsing has been one of the most
popular activities on the Internet. It was reported that 67%
of users experienced a long waiting time every week when
browsing webpages, and 17% of users would not wait if the
time exceeded 5 seconds [6]. In this paper, we define the
web response time as the time spent waiting after clicking
the hyperlink of a webpage until the entire part of the target
webpage is shown on the web browser. It was claimed that
users expect a page to load in 2 seconds or less and that
40% of them will wait for no more than 3 seconds before
leaving a page [11]. It was also reported that a 400-millisecond
delay resulted in a 0.74% decrease in searches on the Google
search engine [22] and that Amazon increased revenue 1%
for every 0.1 second reduction in webpage load time [24].
Users on high-performance pages were 15% more likely to
complete purchases and 9% less likely to abandon the pages
after viewing only one page [13]. Therefore, for many Internet
service providers (ISPs) and content providers, reducing the
web response time is an urgent issue that needs to be solved
in order to improve the QoE of users and the profit of content
providers.

Each webpage consists of a large number of data objects,
and objects are transmitted from object servers using HTTP.
With traditional webpages, static objects are stored at servers,
and web browsers simply download them. Content delivery
networks (CDNs), which use a number of cache servers
deployed in multiple networks, have been widely used to
efficiently transmit web traffic and reduce the response time
[13][14][21]. CDNs are effective for delivering static objects
because identical data can be used for multiple users. How-

ever, the ratio of dynamic objects generated when executing
programs, e.g., Java server pages (JSP) and Servlet, at servers
or executing JavaScript, e.g., Ajax and DOM (document object
model), at client terminals, has increased recently [4]. CDNs
are not effective for delivering dynamic objects because the
objects cannot be reused among multiple users in many cases.

To deliver dynamic objects to users with small latency,
it is effective to generate objects at edge nodes close to
users instead of object servers remote from users, and AT&T
proposed ACDN based on this concept [17]. A similar concept
was also proposed by Akamai by the name of edge computing
[5], and Sivasubramanian et al. compared various architectures
of edge computing from the viewpoints of data replication
techniques and latency [19]. More recently, a similar idea has
been also proposed by the name of fog computing [3][25][26].
In this paper, we use the term, edge computing, to represent
these techniques. By caching application codes for generating
dynamic objects, the same codes can be reused among various
users, so we can expect to avoid the delay that is caused
in order to obtain the codes from remote servers. However,
introducing edge computing brings high cost because ISPs and
CDN providers need to provide high processing functions at
a large number of edge nodes, and they need to keep the
consistency of data among multiple edge nodes. Therefore,
it is desirable for ISPs and CDN providers to estimate the
expected effect of reducing the web response time in a simple
way when introducing edge computing.

Therefore, in this paper, we model the flows of acquiring
objects when browsing webpages and derive a simple formula
that estimates the lower bound of the reduction of web
response time by edge computing. We investigate the effect
of edge computing on reducing the web response time in
each web category, e.g., News and Sports, on the basis of the
data measured by browsing about 1,000 of the most popular
webpages from 12 locations in the world using PlanetLab [15].
After briefly summarizing the related works analyzing the web
response time in Section II, we derive a simple formula that
estimates the effect of edge computing on reducing the web
response time in Section III. In Section IV, we describe the
experimental configuration using PlanetLab, and we investi-
gate the numerical results in Section V. Finally, we conclude
this manuscript in Section VI.



II. RELATED WORKS

Here, we briefly summarize the existing works analyzing
the web response time. They can be classified into two groups
based on the approach: active measurement and passive mea-
surement. In the first approach, the properties of HTTP traffic
was analyzed by actively browsing target webpages from
single or multiple probing locations. For example, Butkiewicz
et al. periodically accessed about 1,700 randomly selected
webpages from four probing locations for nine weeks, investi-
gated the properties of HTTP traffic including the object count
for each webpage and number of servers accessed, and derived
a regression formula that estimates the web response time from
the measured properties [4]. Although this work clarified the
major factors determining the web response time by actively
measuring the latency of a large number of webpages, the
analysis was limited to evaluating the tendencies of latency,
so the effect of reducing the web response time by delivering
objects from edge nodes could not be estimated. Sundaresan et
al. installed a program called Mirage that acquires only static
objects of webpages from a large number of user terminals
in the world, and they analyzed the effect of caching static
objects in home networks when browsing nine webpages [22].
However, the analysis was limited to a few webpages, and the
difference among web categories was not investigated.

The second approach, i.e., passive measurement, analyzes
the reduction effect of various techniques on reducing web
response time. For example, Tariq et al. proposed WISE,
which is used to estimate the effect of various strategies in
CDNs, e.g., server selection, server deployment, and capacity
increase, on reducing the web response time [23]. In WISE,
CDN operators can estimate the effect of these various strate-
gies on reducing the web response time by inputting the
strategies as what-if scenarios. Wang et al. proposed WProf, a
browser plug-in tool modeling the relationship among various
functions executed in browsers and measuring the dependen-
cies among these functions, and they investigated the major
factors affecting the web response time [24]. Although we
can estimate the reduction effect of various techniques on
reducing web response time by using these methods of passive
measurement, the calculation load for estimating the web
response time in these methods was high, and exhaustive
analysis from many probing locations for many webpages is
difficult. He et al. investigated the usage of hosting services
in popular many webpages, and they showed that throughput
and latency can be improved by dynamically using caches in
multiple areas [8]. However, their analysis was limited to the
latency and throughput of each object, and the reduction effect
on web response time was not evaluated.

III. SIMPLE ESTIMATION OF EFFECT OF EDGE
COMPUTING

When viewing webpages, various processes including
HTML pursing, object fetching, generation of dynamic ob-
jects, generation of a document object model (DOM) tree, and
page rendering are executed at the browsers of user terminals
[24]. By using edge computing, we can expect to reduce
the latency caused in object fetching, i.e., acquiring objects
from remote object servers. In this section, we first model the
flows of acquiring objects between a user terminal and object

servers, and we derive a formula that estimates the reduction
of web response time obtained by edge computing.

A. Modeling Flows of Object Fetching

Many modern webpages consist of many data objects,
between 40 and 100 [9]. When a user clicks a hyperlink to a
target webpage, the web browser first downloads the HTML
file from the web server and analyzes the obtained file. Next,
the web browser downloads objects embedded in the file by
using the HTTP sessions over TCP connections established
between the user terminal and object servers as shown in Fig.
1(a)1. Finally, the web browser displays the target webpage
by rendering the page by using the obtained data objects [24].
In the example shown in Fig. 1(a), the user terminal obtains
three objects from object server A and one object from object
server B. To acquire each object, the user terminal sends the
HTTP request to the object server, which sends the object to
the user terminal as the HTTP response. The server response
time, e.g., the processing time for generating dynamic objects
by Java Servlet or Java server pages (JSP), occurs between
receiving the HTTP request and sending the HTTP response
at the object server. Therefore, the latency in obtaining each
object consists of one round-trip time (RTT) and the server
response time.

To reduce the web response time, many web browsers
normally establish multiple TCP connections with each object
server and download multiple objects in parallel. However,
if web browsers establish too many TCP connections with
an identical object server simultaneously, the processing load
of object servers seriously increases, so many web browsers
limit the maximum number of TCP connections that can be
established simultaneously with an identical object server to P
[20]. For example, P = 2 is recommended in the HTTP/1.1
specification, P = 4 is used in Safari 3 and Opera 9, and
P = 6 is used in Internet Explorer 8 and Firefox 3 [20].
Figure 1(b) shows an example of delivery flows for the object
acquisition shown in 1(a) when P = 22. To obtain three
objects, the user terminal establishes P = 2 TCP connections
with object server A. After obtaining objects a and b in parallel
using the two TCP connections, the user terminal fetches
object c on the TCP connection which was used to obtain
object a. In addition, the user terminal establishes only one
TCP connection with object server B because only object d
is downloaded from object server B.
B. Deriving Reduction Amount of Web Response Time

In this section, we derive a simple formula that estimates the
lower bound of the reduction of web response time obtained
by edge computing. As mentioned in the previous section,
the latency required to obtain objects from each object server
s is affected by various factors including the object count
obtained from server s, the response time of server s, and
the RTT to server s. Moreover, there are dependencies among
objects. For example, a browser cannot start downloading
objects until the acquisition and generation of other objects are

1When content providers of objects use CDNs, objects will be delivered
from the cache servers of CDNs. When an identical user accesses an identical
webpage within a short time frame, no HTTP flows will be generated because
objects can be obtained from the local cache of the user terminal.

2For simplicity, we omit the three-way handshaking required to establish
the TCP connection in the figure.



Fig. 1. Example of sequence of object fetching

completed in order to sustain the consistency of the DOM tree
[24]. Therefore, we need to consider the dependencies among
objects to strictly derive the reduction amount of web response
time. However, to derive a simple formula that estimates the
lower bound of the reduction amount, we do not consider
the dependencies among objects and assume that objects are
continuously transmitted on each TCP connection without
waiting time at a user terminal.

We define vs as the average response time of object server
s, rs as the average RTT between the user terminal and
server s, and ξs,q as the number of objects obtained from
server s on TCP connection q. Moreover, we define us as the
average sending time of each object obtained from server s,
i.e., the average object size divided by the average transmission
throughput between server s and the user terminal. We assume
that the time required at server s in the three-way handshaking
for establishing the TCP connection is zero, and we consider
only one RTT, rs, for the three-way handshaking. We can
obtain ys,q , the total latency required to download objects from
server s on TCP connection q, by

ys,q = rs + ξs,q(rs + vs + us). (1)

We assume that all TCP connections less than or equal
to P with server s are simultaneously established, and the
browser starts downloading objects on all the TCP connections
at the same time. In this case, the total latency required to
obtain all the objects from server s is ys,q∗ , where TCP
connection q∗ gives the maximum ξs,q among all the TCP
connections established with server s. Let Ys denote the total
latency required to acquire all the objects from server s and
ms denote the number of objects acquired from server s. Ys

is minimized when the deviation of the object count among
TCP connections established with server s is minimized,
and the maximum number of objects transmitted on each
TCP connection with server s is ⌈ms/P ⌉, where ⌈x⌉ is the
minimum integer that is not below x. Before establishing TCP
connections with server s, the user terminal needs to resolve
the IP address of server s by using the DNS, and we define d as
the average time required in this address-resolution process3.
Now, we derive Ys as

Ys = d+ rs +
⌈ms

P

⌉
(rs + vs + us). (2)

3The address-resolution process includes the inquiry to local DNS servers
as well as the recursive inquiries starting from the root DNS server.

Moreover, we assume that the user terminal establishes the
TCP connections and starts downloading objects from all the
object servers Sx providing the objects constructing webpage
x when a user views webpage x. Without using edge com-
puting, wx, the total time required to obtain all the objects
constructing webpage x, is given by wx = maxs∈Sx

Ys.
Next, let us consider the case of delivering all the objects

from an edge node by edge computing. We can expect that
the RTT between the user terminal and object servers can be
dramatically reduced when delivering objects from the edge
node, so we assume that rs is zero for all the objects. However,
the DNS resolving latency, the server response time, and
object sending latency cannot be avoided even when delivering
objects from edge nodes, so we assume that the identical
values of d, vs, and us in the case without edge computing are
still applied to those in the case with edge computing. Now,
Y ′
s , the total latency required to acquire all the objects from

the edge node, is obtained by

Y ′
s = d+

⌈ms

P

⌉
(vs + us). (3)

The total time required to obtain all the objects constructing
webpage x from the edge node, w′

x, is also obtained by w′
x =

maxs∈Sx
Y ′
s . Because vs is about one digit larger than rs in

many webpages viewed at many locations in the world [9], we
can regard the identical object server s as giving the maximum
Ys and the maximum Y ′

s . Therefore, ex, the amount of the
reduction in the response time of webpage x when delivering
all the objects from the edge node, is derived as

ex = wx − w′
x = max

s∈Sx

[{⌈ms

P

⌉
+ 1

}
rs

]
. (4)

IV. EXPERIMENT BROWSING WEBPAGES FROM MULTIPLE
LOCATIONS

To estimate ex using (4), we need to measure the actual
data of Sx, the object server set of webpage x, ms, which
is the number of objects delivered from object server s,
and rs, which is the RTT between the user terminal and
object server s. Even when browsing an identical webpage
x, different object servers might be used depending on the
browsing location [1][9], so we need to collect measurement
data when browsing webpages at various locations in the
world to investigate the effect of edge computing. Therefore,
we evaluated ex by using measurement data obtained when
browsing about 1,000 of the most popular webpages at 12
locations in the world using PlanetLab [15]. In this section,
we describe the procedure of this experiment.

A. Selecting Target Webpages
First, we selected the target webpages for estimating ex.

It is desirable to measure popular webpages gathering many
requests to compare the general tendencies of ex in each
web category and each access location. Quantcast provides a
ranking list of webpages accessed by users in each country
[16]. We used this ranking list to select the most popular
webpages. The URLs shown in this access ranking list are
the home pages of each webpage, so we analyzed only home
pages. We leave the evaluation of ex in webpages that can
be browsed from home pages as future work. We selected
the most popular 300 webpages in each of the 16 categories



summarized in Tab. I according to the ranking information on
the Alexa webpage [2].

TABLE I
PROPERTIES OF WEBPAGES OF EACH CATEGORY EVALUATED

ID Category Nc Oc Sc Mc Rc

C1 Business 59 60.7 13.2 6.3 84.3
C2 Computers 112 45.8 9.7 5.9 87.4
C3 News 39 67.4 13.2 6.2 98.0
C4 Reference 112 41.2 6.7 8.3 118.2
C5 Regional 80 51.5 9.4 6.6 86.3
C6 Science 95 52.2 10.0 7.0 86.3
C7 Society 79 65.1 11.6 7.6 86.7
C8 Health 86 57.3 10.8 7.0 77.1
C9 Home 85 63.3 13.5 5.7 69.0
C10 Shopping 69 68.6 14.0 6.1 64.0
C11 Adult 112 50.3 6.4 9.8 111.6
C12 Arts 55 55.2 12.2 6.2 84.9
C13 Games 87 55.3 11.4 6.1 87.2
C14 Kids&teens 106 58.1 11.1 6.4 81.8
C15 Recreation 86 61.0 11.0 7.0 72.8
C16 Sports 38 78.6 15.8 7.3 73.6

TABLE II
MEASUREMENT LOCATIONS

ID Area Location ID Area Location
L1 NA Massachusetts L7 OA Australia
L2 NA Wisconsin L8 OA New Zealand
L3 NA California L9 AS Japan
L4 EU Ireland L10 SA Ecuador
L5 EU Germany L11 SA Argentina
L6 RU Russia L12 AF Reunion

B. Constructing Measurement Platform on PlanetLab
PlanetLab is an overlay network consisting of about 500

hosts constructed on the Internet, and we can execute various
programs on the selected hosts of PlanetLab [15]. By executing
the procedure described in Section IV-C on multiple PlanetLab
hosts, we browsed target webpages from various locations in
the world. We selected 12 hosts: 3 from North America (NA),
2 from Europe (EU), 1 from Russia (RU), 2 from Oceania
(OA), 1 from Asia (AS), 2 from South America (SA), and
1 from Africa (AF). Table II summarizes these 12 probing
locations, and we note that Reunion (AF) is a French island
off the eastern cost of Madagascar.

C. Browsing Webpages at Multiple Locations
We acquired HTTP archive record (HAR) files [7] to obtain

the communication properties generated when sending a GET
message of an HTTP request from the probing PlanetLab host.
In HAR files, various communication properties, e.g., the host
URL from which each object is downloaded, size of each
object, and delay caused in obtaining each object, are output
as JavaScript Object Notation (JSON). We continuously and
automatically accessed a large number of webpages by using
the netsniff.js executable on PhantomJS, in which JavaScript
can be executed on the command line [12]. Many cacheable
objects, e.g., video or images, are cached at client terminals,
and these objects in the local cache are reused when accessing
the same webpages from the same client terminal. We obtained
all the objects from remote servers by invalidating the local
cache of the probing PlanetLab hosts.

We obtained Sx, the object server set of webpage x, and
ms, the number of objects delivered from object server s, by
extracting the name of object servers from the obtained HAR

files. Moreover, to obtain rs, the RTT between the probing
PlanetLab host and object server s, each probing PlanetLab
host sent a ping command to each object server immediately
after obtaining the HAR file of each webpage. To gather the
HAR files for many webpages, each PlanetLab host started to
browse the next webpage when no object servers responded
for more than 30 seconds. As a result, we correctly obtained
the HAR files for 1,124 webpages at all 12 locations shown in
Tab. II, and we evaluated ex for these 1,124 webpages. Table
I summarizes Nc, the number of webpages evaluated in each
category c, and let Xc denote the set of webpages evaluated
in category c.

V. NUMERICAL RESULTS

In this section, we investigate ex, the reduction amount
of web response time estimated by (4) using the measured
data obtained by the experiment described in Section IV.
Because ex is determined by rs and ms, we first analyzed the
tendencies of rs and ms in each category and location. Next,
we investigated the tendencies of the effect of edge computing
on reducing the web response time in various areas of the
world.

A. RTT in Each Web Category

We define R
(a)
c , the average RTT of each webpage of Xc

when browsing it at location a, by

R(a)
c =

1

Nc

∑
x∈Xc

∑
s∈S(a)

x

m(a)
s r(a)s /o(a)x . (5)

We define S(a)
x , m

(a)
s , and r

(a)
s as the measurement results

of Sx, ms, and rs when browsing webpage x at location
a, respectively. Moreover, o

(a)
x is the number of objects

downloaded when browsing webpage x at location a, i.e.,
o
(a)
x =

∑
s∈S(a)

x

m
(a)
s . Table I summarizes Oc, the average

object count of each webpage of category c, Sc, the average
object server count of each webpage of category c, M c, the
average of the average object count obtained from each server
in each webpage of category c, and Rc, the average of the
average RTT of each webpage of category c.

Figure 2 plots the maximum, average, and minimum values
of R(a)

c among all the 16 categories at each browsing location.
In North America (L1, L2, and L3) and Europe (L4 and L5),
both the average and maximum difference of R

(a)
c among

the categories were in the range of 25 to 50 milliseconds,
and we confirmed that objects of all the categories tended
to be obtained from nearby locations. However, in Russia
(L6), Oceania (L7 and L8), Japan (L9), and Ecuador (L10),
the average and maximum difference of R

(a)
c was in the

range of 75 to 100 milliseconds, and the difference among
categories was remarkable. Moreover, in Argentina (L11) and
Africa (L12), the average R

(a)
c was large, i.e., between 125

and 250 milliseconds, whereas its maximum difference among
categories was small, i.e., between 50 and 100 milliseconds,
much smaller than the average value, so we confirmed that
objects of all the categories tended to be obtained from remote
locations.

Next, to show the difference of categories with a large or
small R(a)

c among browsing locations, we summarized the top



four categories with the largest R
(a)
c as well as the bottom

four categories with the smallest R(a)
c in California, Japan, and

Reunion in Tab. III. In the table, we also show the world-top
and world-bottom four categories with the largest or smallest
average R

(a)
c among all the 12 locations (All). Moreover, Fig.

3(a) plots the R
(a)
c rank at each of the 12 locations for the

world-top and world-bottom four categories. We observed that
the R

(a)
c rank in all the areas except South America and Africa

was almost identical with the world rank.

Fig. 2. Maximum, average, and minimum R
(a)
c , average RTT of each

webpage of each category measured at each location a

TABLE III
CATEGORIES WITH TOP AND BOTTOM FOUR RANKS IN R

(a)
c

Rank All California Japan Reunion
R1 Reference Reference Adult Regional
R2 Adult News Reference Business
R3 News Adult News Shopping
R4 Games Society Science Reference

R13 Sports Recreation Regional Kids&teens
R14 Recreation Arts Home Science
R15 Home Home Recreation Home
R16 Shopping Shopping Shopping Health

Fig. 3. Ranking of average RTT and average reduction effect on web response
time at each location of top and bottom four categories in world

Information-sharing webpages, e.g., Stack Overflow, Yahoo
Answers, and Internet Archive, which are commonly used by
users around the world, were classified into the Reference
category, and news pages providing news on a global scale,
e.g., CNN and Yahoo News, were classified into the News
category [2]. As shown in Fig. 2, R(a)

c was especially small
in North America, so we can anticipate that object servers
providing web content for these global categories that are
commonly viewed in all areas of the world tend to concentrate
in North America, where the ICT environment is fine, and
many content providers exist. As a result, the R

(a)
c of global

categories was large in many areas except North America.
Online shopping webpages, e.g., Amazon and Ebay, in

which different tenants sell various products and services in
each country were classified into the Shopping category, and
local-information webpages, e.g., Yahoo finance, Yelp, and
Groupon, providing localized information for each area, were
classified into the Home category [2]. When browsing the

webpages of these local categories, different content tended
to be provided at each area even when accessing the identical
URL, so we determined that R(a)

c was small in many areas.
However, when browsing the webpages of local categories
in South America or Africa, content localized in these areas
tended to not be provided, so the R

(a)
c rank of categories in

these areas was remarkably different from those in other areas
of the world.

B. Object Count Obtained from Each Server

We define M
(a)
c , the average number of objects obtained

from each object server in each webpage of category c browsed
at location a, by

M (a)
c =

1

Nc

∑
x∈Xc

∑
s∈S(a)

x

m(a)
s /s(a)x , (6)

where s
(a)
x is the number of object servers accessed when

browsing webpage x at location a. Figure 4 plots the maxi-
mum, average, and minimum of M (a)

c among the 16 categories
at each browsing location. We observed similar tendencies of
M

(a)
c in each category in all the areas. As shown in Tab.

I, the M
(a)
c of the Adult and Reference webpages, in which

the number of object servers was small, tended to be large,
whereas that of the Home webpages with many object servers
and that of Computer webpages with few objects tended to be
small. In all the areas of the world, the maximum difference
of M

(a)
c among categories was about half of the average of

M
(a)
c , and the difference among categories was much smaller

than that of R(a)
c .

Fig. 4. Maximum, average, and minimum M
(a)
c , average number of objects

obtained from each server

C. Reduction Effect on Web Response Time

Let E(a)
c denote the average of ex when browsing webpages

of category c at location a. In this section, we investigate the
effect of edge computing on reducing the web response time
in each category at each location by evaluating E

(a)
c , when

setting P = 2 using the measured values of rs and ms. Table
IV summarizes the top four categories with the largest E(a)

c

as well as the bottom four categories with the smallest E(a)
c

in California, Japan, and Reunion. In the table, we also show
the world-top and world-bottom four categories (All), and Fig.
3(b) plots the E

(a)
c rank at each of the 12 locations for these

eight categories. Like in the case of the RTT, we observed that
the E

(a)
c rank in all the areas except South America and Africa

was almost identical with the world rank. As observed in Figs.
2 and 4, the difference of RTT among categories was large in



all the areas except South America and Africa, whereas the
difference of object count delivered from each object server
among categories was small. Therefore, the E

(a)
c rank among

categories tended to be the same as that of R(a)
c in these areas.

However, in South America and Africa, the difference of RTT
among categories was small as observed in Fig. 2, so the
E

(a)
c rank had unique tendencies among categories that were

different from the world rank.
Figure 5 plots the maximum, average, and minimum values

of E(a)
c among all the 16 categories at each browsing location.

Although the average reduction of web response time by edge
computing was small in North America and Europe (L1 - L5),
we can expect a reduction of about a one to three seconds in
Russia, Oceania, Japan, and South America (L6 - L11) and
about four to six seconds in Africa (L12). As observed in
Fig. 2, the RTT was large in many categories in all the areas
except North America and Europe, and it was remarkably large
in Africa. In these areas with a large RTT, edge computing
is effective. Moreover, in all the areas except Argentina and
Africa, the maximum difference of E(a)

c among categories was
almost equal with the average of E

(a)
c , and we observed a

remarkable difference in the effect of edge computing among
categories in these areas.

TABLE IV
CATEGORIES WITH TOP AND BOTTOM FOUR RANKS IN E

(a)
c

Rank All California Japan Reunion
R1 News News Adult Shopping
R2 Reference Society Reference Business
R3 Adult Reference News Sports
R4 Society Adult Society News
R13 Home Home Business Home
R14 Recreation Computers Recreation Science
R15 Computers Arts Regional Games
R16 Shopping Shopping Shopping Computers

Fig. 5. Maximum, average, and minimum E
(a)
c and average reduction of

web response time

VI. CONCLUSION

In this paper, we derived a simple formula that estimates the
lower bound of ex, the reduction of response time of webpage
x by delivering objects from edge nodes, and we investigated
the effect of edge computing in each web category, e.g., News
and Sports, in numerical evaluations using the data obtained by
browsing about 1,000 webpages from 12 locations in the world
using PlanetLab. We summarize the main findings obtained in
the numerical evaluation as follows.

• In Russia, Oceania, Japan, and Ecuador, the average RTT
to object servers strongly depended on the web categories,
and the RTT of webpages of global categories, e.g.,
Reference and News, was large, whereas that of webpages
of local categories, e.g., Home and Shopping, was small.

In comparison, in Argentina and Africa, the RTT of all
the categories was large.

• In Africa and South America, both the average RTT to
object servers and the average object count obtained from
each object server equally affected ex, and the category
rank of ex was unique. In comparison, in other areas, the
RTT had a stronger impact on ex, and the category rank
of ex was almost identical with the world rank. In these
areas, the effect of edge computing tended to be large
for webpages of global categories, whereas it tended to
be small for webpages of local categories.

• The effect of edge computing was high in all the areas
except North America and Europe, and the web response
time was expected to be reduced by about 1.5 to 2.5
seconds in Russia, Oceania, Japan, and South America
and about 4.5 seconds in Africa.
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