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Abstract—Cloud bursting temporarily expands the capacity of
cloud-based service hosted in a private data center by renting
public data center capacity when the demand for capacity spikes.
This paper presents a cloud bursting approach based on long-
and short-term predictions of requests to a business-critical web
system to determine the optimal resources of the system deployed
over private and public data centers. In a private data center, a
dedicated pool of virtual machines (VMs) is assigned to the web
system on the basis of one-week predictions. Moreover, in both
private and public data centers, VMs are activated on the basis of
one-hour predictions. We formulated a problem that includes the
total cost and response time constraints and conducted numerical
simulations. The results indicate that our approach is tolerant of
prediction errors. Even if the website receives bursty requests and
one-hour predictions include a mean absolute percentage error
(MAPE) of 0.2, the total cost decreases to a half the current cost
while 95% of response time is kept below 0.15 s.

Index Terms—cloud bursting, hybrid cloud, request prediction

I. INTRODUCTION

Business-critical application systems in private data centers
are generally built to handle peak workloads, resulting in them
being underutilized most of the time. An effective approach
for maximizing the resource utilization to improve the cost
efficiency of such existing systems is cloud bursting [1]. In
this approach, an application system uses fixed resources in
a private data center for the majority of its computing and
bursts into a public data center and temporarily combines on-
demand resources when private resources are insufficient. We
take this approach to provision virtual machines (VMs) for
business-critical web systems. Our goal is to minimize the total
cost of a computing platform while satisfying response time
constraints. We thus focus on determining the right amount of
VMs in both private and public data centers (i.e., in a hybrid
cloud environment) in advance in order to adaptively adjust
VMs to meet the current workloads.

Research for automating cloud bursting is roughly divided
into two categories on the basis of whether workload demand
is known ahead of time. In the first category, the number of
tasks is known in advance, and there is a trade-off between
the completion time of the tasks and the amount of required
resources. Researchers have proposed solutions to adaptively
schedule resources to meet deadlines; this category includes
high-performance computing for scientific applications [2],

[3]. In the second category, future workload is unknown.
Accordingly, it is necessary to estimate future demand and to
optimally adjust the trade-off between application constraints,
such as response time and throughput, and computing resource
economics, such as cost and configuration overhead, e.g., in
the cases of enterprise applications [4], a video streaming
service [5], and production systems [6]. Our target falls into
the second category, in which an application platform is
dynamically reconfigured to optimize the trade-off on the basis
of predicting the demand for the application. Prediction errors
thus can greatly affect the optimization. This issue, however,
has not been sufficiently discussed in previous studies.

A business-critical application system is often assigned a
dedicated cluster of physical servers because availability of
the system is determined at the cluster to which redundancy
techniques for the VMs are applied [7]. We thus reallocate not
only VMs but also physical servers in a private data center.
This is made feasible by using a software-defined networking
(SDN) framework [8], although physical servers have a longer
reallocation interval than VMs in practical deployment. We
therefore propose a two-step approach to adjust computing
resources in a hybrid cloud environment: assigning physical
servers in a private data center on the basis of a long-term
(e.g., a week) prediction, and activating VMs in both private
and public data centers on the basis of a short-term (e.g., an
hour) prediction.

In this paper, we present a cloud bursting approach based
on long- and short-term prediction for physical and virtual
servers, respectively. The long-term prediction is, of course,
not as accurate as the short-term prediction. Our main contri-
butions are therefore to demonstrate that (1) the error of the
long-term physical server provisioning does not affect the total
cost much and (2) the short-term VM allocation can enable the
application system to satisfy response time constraints. Toward
this end, we describe a cost model of an application platform
in a hybrid cloud environment and evaluate our approach by
using trace data of actual websites.

The rest of this paper is organized as follows. In Sect.
II, we introduce an operational procedure. In Sect. III, we
define a cost model. In Sect. IV, we describe a method
for evaluations. Then, in Sect. V, we evaluate our approach.
Finally, in Sect. VI, we give conclusions.



Fig. 1. Overview of cloud bursting approach

Fig. 2. Main parameters used for cloud bursting approach

II. OVERVIEW OF CLOUD BURSTING APPROACH

In accordance with the cost model of Weinman [9], we de-
crease fixed capacities to improve the utilization of application
systems in a private data center and add on-demand resources
in a public data center during the peak time. As shown in
Fig. 1, in the private data center, a dedicated set of physical
servers (i.e., a pool of VMs) is reallocated to an application
system on the basis of long-term workload predictions every
weekend. Moreover, the amount of VMs required in the system
is planned on the basis of short-term predictions every hour;
this interval is set corresponding to the billing interval of the
public data center. If the amount required is less than the
amount available in the private data center, the minimum VMs
alone are activated, and unnecessary VMs are powered off or
put to sleep. In contrast, when the required number of VMs is
more than the maximum number of VMs in the private data
center at that time, the shortage of VMs is compensated for
by additionally allocating on-demand VMs in the public data
center.

III. MODEL OF HYBRID CLOUD SYSTEM

In this section, we describe a cost model and response
time constraints of an application system in a hybrid cloud
environment (called a hybrid cloud system). We call VMs in
private and public data centers private VMs and public VMs.

A. Cost Model

The VMs in both private and public data centers are
controlled at fixed intervals called time slots, each of which
is indexed by t (t = 1, · · · , T ). A hybrid cloud system has
parameters that change with time slots t as depicted in Fig. 2

TABLE I
PARAMETERS CHANGING WITH TIME SLOT t

xt Average rate of requests to application system
nt, n′

t Numbers of VMs allocated and turned on for the application
system deployed over private and public data centers

λt, λ′
t Average rates of requests sent to VMs in a private data center

and a public data center, respectively (λt + λ′
t = xt)

Nt,Λt Capacity of the VM pool dedicated for the application system
in the private data center and its maximum average processing
rate (nt ≤ Nt, λt ≤ Λt))

TABLE II
CONSTANTS FOR DESCRIBING TOTAL COST OF APPLICATION PLATFORM

(a) Constants related to VMs assigned in private data center
cps Cost of renting a physical server per time slot (￥22.8 [10])
nvm Number of VMs per physical server (2)
cec Energy charge rate (￥16/kWh [11])
pps Energy consumed per physical server (550W [10])
e Energy-proportional coefficient [12] (0.6 [12])

(b) Constants related to VMs assigned in public data center
cvm Cost of an on-demand VM per time slot ($0.732/hour [13])
ctr Cost of forwarding requests per unit size ($0.14/GB [13])
d Average amount of transferred data per request (7800 bytes

for a campus website and 4100 bytes for a consumer website)

(c) Constants for defining the cost for operation and management
cst Personnel cost per VM per time slot (￥1250/h)
nst Number of VMs managed by a staff member (100 [14])
α Constant for specifying economics of scale (α ≤ 1) [15]

(0.6 [15])

*Values in brackets are used in evaluations in Sect. V.

and summarized in Table I. Here, the size (Nt) and processing
rate (Λt) of a dedicated VM pool are altered at the end of each
interval of w time slots.

Our objective is to minimize the total cost of an application
hosting platform, C, defined as the sum of the cost related to
the fixed private VMs, F , that related to the on-demand public
VMs, U , and that for the operation and management, O, over
a time horizon.
Objective: minimize

C =
T∑

t=1

(aF (Nt, nt) + a′U(n′t, λ
′
t) +O(Nt, n

′
t)) , (1)

where a is a constant for estimating the total cost including the
networks, storage, etc. from the cost related to the servers in
the private data center, and a′ is that in the public data center.
We summarize the constants in Table II to detail Objective (1).

First, the cost related to the private VMs is defined as

F (Nt, nt)=cps

⌈
Nt

nvm

⌉
+cecpps

(
(1−e)

⌈
nt
nvm

⌉
+e

nt
nvm

)
, (2)

where, on the right side, the first term is the cost of renting⌈
Nt

nvm

⌉
physical servers. The second term is the cost for

powering the physical servers [12], where
⌈

nt

nvm

⌉
physical

servers are needed for allocating and turning on nt VMs.



Second, we define the cost related to the public VMs as

U(n′t, λ
′
t) = cvmn

′
t + ctrdλ

′
t, (3)

where, on the right side, the first term is the cost for using on-
demand VMs, and the second term is the cost for transferring
requests to/from the VMs and synchronizing data storages.
Note that we do not count the cost for traversing a wide-area
network (WAN), i.e., the internet, between private and public
data centers, because we assume that the hybrid cloud system
shares the WAN with other application systems and that the
WAN is charged at a flat rate.

Finally, the cost for operation and management is

O(Nt, n
′
t) = cst

(
1

nst
(Nt + n′t)

)α

, (4)

where the management staff members are prepared to support
the sum of the maximum number of private VMs and the
average number of public VMs. We also assume economics
of scale [15].

B. Constraints on Response Time Performance

There is a trade-off between application latency and re-
source amount given to the application system. We thus
pose constraints on response time: in both private and public
data centers, qth percentiles of response time distribution for
each time slot (rq and rq′) are not more than a threshold
rc. Here, q is the target probability. When we define the
cumulative distribution function of response time (R defined in
Sect. III-D), the above relationship for the private data center
is replaced with an alternative relationship: the probability
determined by the number of private VMs (nt), the request rate
processed by these VMs (λt), and the threshold time (rc) is not
less than the target probability (q), as shown in Constraints (5).
The same relationship is also given to the public data center by
Constraints (6). Here, we add the notation ˆ to the parameter
of a predicted value.
Subject to:

rq ≤ rc

(
R(nt, λ̂t, r

q) ≥ q

100

)
(∀t) (5)

rq′ ≤ rc

(
R(n′t, λ̂

′
t, r

q′) ≥ q

100

)
(∀t) (6)

In these Constraints, the numbers of private VMs (nt) and
public VMs (n′t) are determined by using the predicted values
of request rates (λ̂t and λ̂′t). The actual qth percentiles (rq and
rq′) can exceed rc due to prediction errors.

C. Request Rate Prediction

We adopt the ARIMA model [16] to predict the request
rates. When defining the backward shift operator B by
Bxt = xt−1, the original time series, xt, is transformed
into a stationary time series yt = (1 − B)d(1 − Bs)Dxt by
applying the dth-order non-periodic differencing and the Dth-
order periodic differencing. This yt is then expressed as a
function of its past values and/or past errors, as follows.

yt =

p∑
i=1

ϕiB
iyt + (1 +

q∑
j=1

θjB
j)ϵt (7)

where ϕi, θj are the parameters, and ϵt is the error term
that follows ϵt ∼ N(0, σ2). The confidence interval of the
one-time-slot-ahead prediction is the standard deviation of the
errors (σ), which means yt+1 ∼ N(ŷt+1, σ

2). Moreover, when
yt+h is expressed as yt+h =

∑∞
τ=0 ψτ ϵt+h−τ (where ψτ is

the parameter calculated from the observed values and ψ0 = 1
), yt+h follows yt+h ∼ N(ŷt+h, σ

2
∑h−1

τ=0 ψ
2
τ ).

D. Estimation of Response Time Distribution
We define the cumulative distribution function of response

time at time slot t by applying the M/M/m queuing model [17].
Since a web system is supposed to be implemented asyn-
chronously so that it can respond quickly to a request without
waiting for the request to be completed, we adopt the waiting
time distribution, not the sojourn time distribution. Let r, r0,
and µ be the response time from the application system at
t, a constant network latency, and average processing rate
of requests per VM, respectively. The cumulative distribution
function R is defined as

R(nt, λt, r)=1−π(nt, λt)e−(ntµ−λt)(r−r0) (r ≥ r0), (8)

where π(nt, λt) is the probability of requests to be queued at
t. This probability is defined as

π(nt, λt) =
ntρ

nt
t

nt!(nt − ρt)

[
ntρ

nt
t

nt!(nt − ρt)
+

nt−1∑
l=0

ρlt
l!

]−1

ρt =
λt
µ
. (9)

This function is also applied for the public data center.

IV. METHOD FOR RESOURCE ALLOCATION

As explained in Sect. II, we use long- and short-term VM
provisioning. At the end of each w-time-slot interval, the size
of a VM pool in the private data center over the next w-time-
slot interval ({Nt+h | h = 1, · · · , w}(Nt+1 = · · · = Nt+w))
is determined so as to minimize Objective(1), which is counted
up by using nt+h and n′t+h(h = 1, 2, · · · , w) calculated on
the basis of the w-time-slot predictions of request rate {x̂t+h |
h = 1, · · · , w}. Moreover, at each time slot, the numbers of
private and public VMs at the next time slot (nt+1 and n′t+1

) are recalculated by using the one-time-slot-ahead prediction
x̂t+1 and Nt+1 determined above.

V. EVALUATION

We evaluate the total cost and response time of a web system
and analyze the affect of prediction errors on them. In the
evaluations, each time slot is set to one-hour long.

A. Simulation Settings
1) Datasets: We used the arrival traces collected from two

actual web application systems.
• 5-month access log (from April 1 to August 26, 2014)

for a campus website of a university with about 30,000
students and staff members (called a campus web).

• 2.5-month access log (from April 30 to July 16, 1998)
for the 1998 World Cup website [18] (called a consumer
web).



2) Cost model: The parameter settings for constants are
noted in brackets in Table II. All physical servers in the
private data center (which have 8 CPU cores and a 32-GB
memory [10] each) were assumed to be used on a three-year
lease. A single server price was set to ￥600,000, resulting in
cps =￥600, 000/(3× 365× 24) =￥22.8 per physical server
per hour. On the other hand, each public VM was assumed to
be a m4.2xlarge instance at Amazon EC2 [13]. The processing
rate of each private and public VM (µ) was set to 5.5 requests/s
for the campus web and 275 requests/s for the consumer web.
Note that the above µ of the consumer web was set so that
the maximum number of VMs for the consumer web was
similar to that for the campus web. Moreover, the cost for
operation and management (cst) was set to ￥900,000 per
month /(30 × 24) = ￥1250 per hour per staff member. In
addition, a = 2 [14] and a′ = 1.25 [13] in Objective (1). We
convert dollars into yen at an exchange rate of ￥120 to $1.

3) Response Time Constraints: In Constraints (5) and (6),
target probability q was defined as 95%, and the threshold of
response time (rc) was set to 0.15 s [19]. Furthermore, the
sums of latency of a WAN and a data center network (r0 in
Eq. (8)) were set to 0.001 s for the private data center and
0.14 s for the public data center.

4) Request Rate Prediction: Based on the observation of
the trace data, we had weekly, i.e., 24 × 7 = 168 time slots,
periodicity in the datasets. To make the original time series xt
stationary, we applied the transformation of yt = (1−B)(1−
B168) log10 xt. We convert the time series into a logarithmic
scale for counteracting the effect of the rapid increase and
decrease. At each time slot, we extracted the last three weeks,
i.e., 24×21 = 504 time slots, of data and identified the values
of p and q of ARIMA(p, 1, q) [16].

B. Evaluation Results

1) Prediction Error of Request Rate: We performed the
allocation process 48 times by changing the starting time
slot of a time horizon. Fig. 3 shows an example of bursty
requests and their predictions. Fig. 4 shows the prediction
accuracy, where we analyzed the mean absolute percentage
error (MAPE) defined as 1

T

∑T
t=1

|xt−x̂t|
xt

. For the 168-time-
slots, i.e., one-week, predictions, the campus web showed
relatively small error (0.34 on average) because it had regular
predictable patterns, while the consumer web showed a large
error (0.94 on average) because it sometimes received unex-
pected request spikes. In contrast, the one-time-slot-ahead, i.e.,
one-hour, predictions indicated relatively small errors in both
webs (0.2 and 0.1 on average).

2) Sizing of VM Pool in Private Data Center: Fig. 5 shows
the Objective (1) value of a certain week as a function of the
size of the private VM pool (Nt) in the case of the consumer
web, where the Objective (1) value is expressed in terms of
the cost relative to that when the application is deployed by
using a current provisioning approach (denoted by Ccurrent).
This Ccurrent is calculated for when the system is assigned
private VMs able to handle the maximum request rate of the
time horizon and all VMs always stay active in the private

Fig. 3. Example of bursty requests and predictions (for consumer web)

Fig. 4. Prediction errors Fig. 5. Total cost as function of Nt

data center. As shown in Fig. 5, Objective (1) was minimized
when Nt was 2 and almost unchanged till Nt = 4.

3) Total Cost and Response Time: Fig. 6 indicates the
evaluation results of the total cost, which is expressed as the
ratio of the optimized one (C) to the current one (Ccurrent).
Each ideal assumes a case in which the future requests are
known a priori. For the campus web, the relative total cost
corresponded to its ideal, and the response ratio of more than
the threshold rc (0.15 s) was totally below the (transformed)
target probability of 0.05 (= 1 - q (0.95)), because both one-
hour and one-week predictions had high accuracy.

For the consumer web, the total cost was slightly larger
than its ideal, while the response ratio of more than 0.15
s was much more than 0.05 and reached 0.23. The slight
difference in the total cost was mainly caused by errors of
the one-week predictions. In this case, these errors shifted in
the positive side, resulting in an over-provisioned VM pool
in the private data center. On the other hand, the response
time was degraded by errors of the one-hour predictions. The
consumer web sometimes received bursty requests exceeding
estimated values of the one-hour predictions (see arrows in
Fig. 3); these errors made VMs under-provisioned, resulting
in delaying the response time. To prevent this delay, we thus
use the upper bound of the interval estimate instead of the
point estimate. Fig. 7 shows the total cost and the response
ratio as functions of the upper bounds of the confidence
interval for the one-hour predictions. The error bar indicates
the maximum and minimum of the 48 trials. Here, we still
used the point estimates for the one-week predictions. Fig. 7
indicates a trade-off between the total cost and the response-
time performance. When we provisioned with the upper bound
of a 99.9% confidence interval, the response ratio was below
the target probability (0.05) and the total cost increased but
still remained half that of Ccurrent. The errors of the one-
hour predictions were relatively small, which suppressed the



Fig. 6. Evaluations of total cost Fig. 7. One-hour error handling for consumer web Fig. 8. Impact of one-week prediction error

increase of the total cost.
4) Impact of One-Week Prediction Errors on Total Cost:

On the x-axis of Fig. 8, positive and negative values mean
the upper and lower bounds of the confidence interval for the
one-week predictions. Zero on the x-axis means that the point
estimates are applied. E.g., 50 and -50 on the x-axis mean that
the private VM pool is over- and under-provisioned with using
the upper and lower bounds of a 50% confidence interval,
respectively. We evaluated up to a 95% confidence interval
for the one-week predictions. Here, to make the response ratio
less than the target probability, for the one-hour predictions,
the point estimate was applied to the campus web and the
upper bound of a 99.9% confidence interval was applied to
the consumer web. Fig. 8 reveals that the underestimate of the
size of the private VM pool had little effect on the total cost.
This was also true for the overestimate, until we used up to the
upper bound of a 50% confidence interval. Although the one-
week prediction values, of course, included larger errors, the
total cost was tolerant of the prediction errors for the following
reasons. When we predicted the request rates, we converted
them into a logarithmic scale. Owing to this, lower bounds
of the confidence interval had smaller fluctuations than upper
bounds. Furthermore, the total cost stayed at an equilibrium
while Nt was in the range of up to two from the value
making the cost optimal (see around Nt = 3 in Fig. 5). These
advantages come from the VM pool in the private data center
being provisioned for the average rate of requests, not for the
maximum rate.

VI. CONCLUSION

This paper presented a cloud bursting approach in which
we assign a dedicated VM pool for a system in a private data
center on the basis of one-week predictions and determine
the active VM in private and public data centers on the
basis of one-hour predictions. Prediction errors become large,
particularly for bursty requests. However, when the upper
bound of a 99.9% confidence interval was used for the one-
hour predictions to satisfy the response time constraints, the
total cost was still half the current cost. Furthermore, the
total cost was nearly unchanged when the VM pool in the
private data center was under- or over-provisioned for the
one-week predictions. Finally, the length of time slots and the

performance of a single VM were fixed, which may impose
limitations on this study. A future topic is therefore to improve
by controlling variable time slots and various VM instances.
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