
Designing VNT Candidates Robust Against
Congestion Due to Node Failures

Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{a-onur,arakawa,murata}@ist.osaka-u.ac.jp

Abstract—When wavelength division multiplexing with path
(circuit) switching is used on an optical network, even the failure
of a single link may tear down many lightpaths and cause abrupt
and significant changes in the utilization of many links in the
corresponding VNT (virtual network topology). In this paper,
we propose an algorithm called MFLDA (Minimum Flow Logical
topology Design Algorithm) for designing VNT candidates, which
can accommodate a wide range of traffic patterns. Moreover,
we show that the variant called MFLDA-FO (MFLDA with
Failure Optimization) can design VNT candidates, which have
lower probability of congestion right after the failure of multiple
nodes compared to HLDA, which is one of the best performing
VNT design algorithms in the literature. Furthermore, we show
that when these VNT candidates are used as attractors in an
attractor selection algorithm, the average time to recover from
difficult failure scenarios is less than using the attractors designed
by HLDA algorithm. Unlike HLDA, our VNT design algorithm
and the attractor selection algorithm does not require the traffic
matrix and the topology information after the failure.

I. INTRODUCTION

In a wavelength division multiplexing optical network, a
fiber link may carry hundreds of wavelengths. However, it is
difficult to terminate each wavelength and moreover process
and switch each packet carried on each wavelength at each
node. Such networks are usually visualized by constructing
a VNT (virtual network topology), where only the physical
nodes, which are the transmitter and receiver edges of a light-
path, are shown as connected by a link. Modifying the VNT
allows adapting the network for changing traffic conditions and
new application layer services. There are many papers in the
literature on VNT configuration, but they may be classified
into two groups as online and off-line approaches [1], [2]
in general. Off-line approaches create VNTs suitable for a
set of possible traffic demand matrices. However, Internet
traffic is difficult to predict as new applications and services,
which can dramatically change the traffic, appear in time [3].
Moreover, it is difficult to predict the traffic changes due to
node/link failures, cyber-attacks etc. Online approaches sample
the traffic demand periodically and design a new VNT for
the current environment [4]. However, they require up-to-date
traffic demand matrix information, which can be challenging to
retrieve. Moreover, some of them cannot handle traffic changes
due to node or link failures and some of them need to know
detailed information like exact place of failures in the topology
in order to work.

Living organisms are well-known to adapt to the changes
in the environment. It is shown that an attractor selection
mechanism is adopted for using these genes to adapt to the
environment and recover in order to increase the probabil-
ity of survival. An attractor selection mechanism, which is
similar to the system used by living organisms, was pro-
posed in order to recover from topology failures and find a
VNT, which minimizes the maximum lightpath load in the
network [5]. Unlike most on-line methods in the literature,
attractor selection does not require a priori knowledge like
the place of failed nodes/links or detailed information about
the current environment like the up-to-date traffic matrix
information. Attractor selection requires only the maximum
lightpath utilization level, which can be retrieved quickly by
Simple Network Management Protocol (SNMP) [6]. Using the
maximum load level in the network as a simple feedback,
the attractor selection algorithm also recovers the network
from high congestion after multiple node/link failures. Many
papers on VNT failures in the literature concentrate only
on preventing the disconnection of the remaining nodes in
the VNT after a failure. Moreover, most off-line analytical
approaches in the literature propose protection against failure
of only one or two random nodes/links at a time or a regional
failure, where all failures are inside a single region. On the
other hand, attractor selection can solve complex problems
with randomly distributed multiple node/link failures, which
may occur due to a large scale distributed denial of service
(DDoS) cyber-attack.

In attractor selection, the system tries to find an equilibrium
point by evolving around the attractors where the conditions
are known or expected to be preferable. The attractor selection
algorithm uses a list of VNTs as attractors. Ref. [7] showed
that even when random VNTs are used attractors, attractor
selection has better performance than other algorithms in
general. However, when the attractor VNTs were not suitable
for the network, it took a long time to find a solution in
some cases. The first work on designing VNT candidates as
attractors was in [8], which showed that its attractors further
decrease the convergence time compared to attractors selected
in a random manner. While the proposed algorithm is good
for designing VNTs with low utilization for a wide range of
traffic matrices, it does not take the possible network failures
into account.

In this paper, we propose an algorithm called MFLDA (Min-
imum Flow Logical topology Design Algorithm) for designing
VNT candidates, which can accommodate a wider range of
traffic patterns compared to a random VNT. Moreover, we
present an extended version called MFLDA-FO (MFLDA with
Failure Optimization), which is more robust against traffic
changes after failure of multiple nodes. We show that right
after a network failure a VNT designed by MFLDA-FO has a
lower congestion probability compared to a VNT designed
HLDA (Heuristic Logical topology Design Algorithm) [2],
which is one of the best performing VNT design algorithms
in the literature. Furthermore, we show that when the VNT
candidates designed by MFLDA-FO are used as attractors in
an attractor selection algorithm, the average time to recover
from difficult failure scenarios is less than using the attractors
designed by HLDA. Unlike HLDA, our VNT design algorithm
and the attractor selection algorithm does not require the traffic
matrix and the topology information after the failure

The paper is organized as follows. In Section II, we present
the algorithm for designing VNT candidates. In Section III,
we present the architecture of attractor selection. Section IV
shows the simulation results and discusses the performance of
the architecture. Section V concludes the paper.

II. VNT CANDIDATE DESIGN ALGORITHM

Ref. [8] showed that it is possible to design VNT candidates,
which give low maximum link utilization for a wide range of
traffic matrices. However, the VNTs designed by [8] were not
robust against network failures as it did not take the physical
topology into account. In this paper, our aim is to design VNTs
robust against both wide range of traffic matrices and network
failures, so it is more challenging.

Let’s denote the traffic from a source to destination node as
a flow. The flows are carried over the lightpaths established
on the physical topology. The probability of a congestion on a
lightpath increases with the increasing number of flows pass-
ing through. In order to minimizes the number of flows on the
lightpaths, we propose an algorithm called MFLDA (Minimum
Flow Logical topology Design Algorithm) for designing VNT
candidates, which can accommodate a wide range of traffic
patterns. Moreover, we extend it to MFLDA-FO (MFLDA with
Failure Optimization) variant, which minimizes the number of
flows on the lightpaths after node failures.

The pseudocode code of the main algorithm is shown in
Fig. 3. First, the parameters are initialized and the initial
VNT is established as shown in Fig. 1. n denotes the number
of nodes in the network. The number of transmitters and
receivers available on each node are stored in tra and rec
arrays. When choosing the node pairs for new lightpaths,
we give priority to the nodes, which have highest number
of available transmitters/receivers, so we apply a token based
priority scheme. The transmitter and receiver tokens on each
node are stored in token tra and token rec arrays and
first initialized to the number of transmitters and receivers
available. In the FOR loop on line 8, initially the VNT is set to
the physical topology by establishing lightpaths on the fibers

1: function INITIALIZE
2: n← number of nodes
3: stop all← 0
4: for k ← 0 to n do
5: tra[k], token tra[k]← number of transmitters on k
6: rec[k], token rec[k]← number of receivers on k
7: end for
8: for each fiber from src to dst on physical topology do
9: if tra[src] > 0 AND rec[dst] > 0 then

10: establish a lightpath from src to dst
11: decrease tra[src], rec[dst], token tra[src],

token rec[dst] by one
12: end if
13: end for
14: token← MIN(MAX(token tra), MAX(token rec))
15: for k ← 0 to n do
16: token tra[k]← token tra[k]− token+ 1
17: token rec[k]← token rec[k]− token+ 1
18: end for
19: return n, tra, rec, token tra, token rec, stop all and

initial VNT
20: end function

Fig. 1. The initialization of parameters and setting the initial VNT

between adjacent nodes. The reason is that as the number of
physical hops a lightpath traverses increases, the probability of
being hit by a failure increases, so priority is given to establish
single hop lightpaths. In case the nodal degree is higher than
the number of transmitters/receivers in a node, priority is given
to the links that make the topology connected. This initial VNT
serves as a substrate for adding new lightpaths. If network
failures are not considered, it is also possible to use another
substrate like a simple random ring topology passing through
all nodes as the initial VNT. The initial VNT should be fully
connected, so all nodes are reachable. On line 14 and in the
next FOR loop, the number of tokens are normalized.

In order to select and add new lightpaths, the algorithm
starts the main loop on line 2 in Fig. 3. In order to select the
s-d pairs for establishing lightpaths, the algorithm collects data
on the current logical topology as shown in Fig. 2. In order
to analyse the effect of node failures, the algorithm simulates
single node failures in the FOR loop on line 2 in Fig. 2 and
stores the data about the lightpath stats after the failure. The
f variable is set to ID of the nodes, which may fail. In the
last loop, the stats are calculated for the VNT without any
failure by setting f to n, which prevents node failures. As
MFLDA creates a VNT without considering any failures, f is
set to only n in MFLDA. The algorithm is called MFLDA-FO,
when f includes the set of nodes that may fail, which allows
the created VNT to be more robust against the failures at these
nodes. If f loops over IDs of all nodes, the algorithm creates
a VNT, which is robust against all possible node failures.

As a first stat, the routing algorithm is run to determine the
paths on line 6 in Fig. 2. When there are multiple possible

1: function COLLECTDATA
2: for f ← ID of nodes, which may fail, and finally n do
3: if f < n then
4: simulate failure of node f
5: end if
6: routing[f]← new routing table
7: for each node pair src and dst do
8: hop[f][src][dst]← number of hops from src to dst
9: end for

10: for each lightpath from src to dst do
11: pass[f][src][dst] ← number of s-d pairs on light-

path from src to dst
12: end for
13: for each src, dst pair without a direct lightpath do
14: decrease[f][src][dst] ← number of node pairs

whose hop count will decrease if a lightpath is established
from src to dst

15: end for
16: if f < n then
17: node f recovers
18: end if
19: end for
20: return routing, hop, pass, decrease
21: end function

Fig. 2. Collecting data on the current logical topology

paths, the selection varies with the implementation of the
algorithm, so the exact behavior of the routing algorithm
must be known. Using the routing information, the hop count
distribution among s-d (source-destination) pairs is calculated
on line 7. Then the number of total number of s-d pairs on
each lightpath is calculated on line 10 and stored in the array
pass. On line 13, we find the number of node pairs whose
hop count will decrease if a lightpath is established between
a s-d node pair and store it as a metric for this s-d pair in an
array denoted by decrease.

After collecting the stats, the main algorithm starts selecting
the s-d pairs for establishing lightpaths in Fig. 3. Among the
possible candidates, the algorithm gives priority to the ones,
which will decrease the number of s-d pairs on the lightpaths,
which are carrying the highest number of s-d pairs. Therefore,
the values in the pass array is sorted in descending order with
corresponding (f, src, dst) on line 5. By the FOR loop on
line 7, the algorithm loops over pass list with corresponding
(f, src, dst) in order to decrease the number of s-d pairs
on the lightpath from src to dst with the failure scenario
f , until a new lightpath is established or pass is empty. In
order to decrease the s-d pair count on the selected lightpath,
the algorithm tries to establish a direct lightpath between one
of the s-d pairs on this lightpath. Therefore, the algorithm
creates a list of s-d pairs passing through this lightpath and
stores them in the array impact with an impact factor metric,
which is the amount of decrease in total hop count between
all node pairs after a lightpath is established between this

1: INITIALIZE()
2: repeat
3: COLLECTDATA()
4: stop pass← 0
5: sort pass[f][src][dst] in descending order
6: repeat
7: repeat
8: get next (f, src, dst) in the sorted pass list
9: set the routing table to routing[f]

10: for each node pair src2 and dst2 whose route
includes the lightpath from src to dst do

11: impact[src2][dst2] ← decrease[f][src2][dst2] ∗
(hop[f][src2][dst2]− 1)

12: end for
13: sort impact[src2][dst2] in descending order
14: repeat
15: get next (src2, dst2) in the sorted impact list
16: if token tra[src2] > 0 AND token rec[dst2] >

0 AND tra[src2] > 0 AND rec[dst2] > 0 then
17: establish a lightpath from src2 to dst2
18: decrease tra[src2], rec[dst2], token tra[src2],

token rec[dst2] by one
19: stop pass← 2
20: end if
21: until stop pass is 2 OR impact list is empty
22: if stop pass is 0 AND pass list is empty then
23: if MIN(token tra)≤0 OR MIN(token rec)≤0

then
24: increase token tra, token rec of nodes by one
25: stop pass← 1
26: else
27: stop all← 1
28: end if
29: end if
30: until stop pass > 0
31: re-initialize pass to last sorted list
32: until stop all is 1 OR stop pass is 2
33: until stop all is 1

Fig. 3. The main algorithm

s-d pair. After sorting the impact factor list in descending
order with corresponding (src2, dst2), the algorithm tries to
establish a lightpath among s-d pairs (src2, dst2) in the list in
a loop starting on line 14. Before establishing the lightpath, the
algorithm checks whether the lightpath satisfies the conditions
like the node pair has enough number of tokens, transmitter
and receivers. It may also need to satisfy other conditions like
the maximum number of wavelengths.

While not mandatory, checking whether the congestion
probability decreases after establishing the lightpath can fur-
ther decrease the congestion probability. If the distribution of
the traffic matrix is known, the non-congestion probability
for a given of s-d pairs on a lightpath can be estimated
by a simulation. As a comparison metric, the overall non-

congestion probability of a VNT can be roughly approximated
by multiplying the non-congestion probability of all lightpaths
and the lightpath is established only if it decreases.

If a new lightpath is established, the algorithm stops trying
establishing new lightpaths and goes back to the beginning
of the main loop on the line 2. When pass is empty and no
new lightpaths are established, the algorithm checks the tokens
of all nodes. If there is a node with token less than one, the
algorithm increases the tokens of all nodes by one so that more
nodes can establish a lightpath and re-runs the loop after re-
initializing the pass array to the last sorted list. Otherwise,
the algorithm stops and outputs the designed VNT. As many
(f, src, dst) give the same value in pass and impact arrays, it
is possible create different VNTs by random shuffling the order
of (f, src, dst) sets before sorting the pass and impact arrays.
Due to the token based architecture, it is difficult to state an
order of complexity to the algorithm. As a reference, it takes
around 40 minutes to design a VNT on a Waxman topology
with 100 nodes and 400 optical fibers with 16 transmitters and
receivers per node, using a not-so-optimized single-threaded
C++ simulator on a single core of Intel 3960x CPU. Speed
improvement of several orders of magnitude seems possible
using an optimized and multi-threaded program.

III. ATTRACTOR SELECTION CONTROL

In biological systems, the interaction between metabolic
reaction network and gene regulatory network controls the
growth of cells. The gene regulatory network produces the
proteins necessary for the cell growth. In the metabolic reac-
tion network, proteins use the nutrition in the environment and
produce the substances necessary for the growth. When the
system conditions are preferable, the deterministic behavior
drives the system to converge to an attractor. If the conditions
are not preferable, the stochastic behavior dominates the
system. The system searches for a new attractor by randomly
changing the state by adding noise.

A. VNT Control

As the number of receivers and transmitters in a node is lim-
ited, it is not possible establish lightpaths on each wavelength
between adjacent nodes. Therefore a virtual network topology
can be drawn by considering the lightpaths as direct links
between their receiver and transmitter nodes. As the maximum
number of lightpaths on a fiber or node is limited, a VNT
control is necessary to choose the optimum set of lightpaths
in a network. In a biological system, the gene regulatory
network adapts to the changing environment by taking the
growth rate as a feedback as a result of the metabolic reaction
network. In our work, we tried to adapt to the changing IP
network conditions by reconfiguring the VNT, so we interpret
the VNT as the gene regulatory network and the IP network
as the metabolic reaction network. Our aim is to minimize the
congestion on the highest utilized lightpath in order to decrease
the packet drop rates and buffering delays. When node/link
failures occur, the capacity of available lightpaths may no
longer enough to carry the traffic and cause high congestion in

the IP network. The VNT control method takes the maximum
congestion level as a feedback and reconfigures the VNT until
the maximum utilization in the IP network decreases below a
threshold value.

B. Analytical Model of VNT Control

Each lightpath is controlled by a gene, so i-th lightpath has
an expression level of xi, which is calculated by

dxi

dt
= α ·

f

∑
j

Wij · xj − θ

− xi

+ η. (1)

The α is the growth rate, which is calculated according the
maximum utilization level in the IP network as a feedback.
The η is the Gaussian noise term showing the strength of
stochastic behavior. If the maximum utilization level is high, α
decreases, so η dominates the equation, which causes the VNT
to change randomly to find a new attractor. The rate of change
in the expression level by the deterministic behavior is given
by the sigmoidal regulation function f(z) = tanh(µz), where
µ is the gain parameter. W is the regulatory matrix, which
shapes the system to convergence to an attractor state when
the growth rate is high. θ is the threshold value for expression
level. The maximum utilization level umax is converted to α
by

α =
1

1 + exp(δ · (umax − ζ))
, (2)

where δ is the gradient and the ζ is the threshold utilization
parameter. When the umax surpasses ζ, the value of α con-
verges to zero, which means low growth rate. In this case,
the noise term η dominates the control and the VNT changes
randomly, until the VNT control finds a VNT with low umax.
After each iteration, the xi values are sorted from highest to
lowest and the corresponding lightpaths are established in this
order.

The regulatory matrix W is a Hopfield neural network
containing a set of possible attractors [9], [10]. We use it
as an associative memory to store the attractors by using
orthogonal projection [11], [12]. Let’s assume that we have
m attractors, where attractor k has the VNT expression vector
x(k) = (x

(k)
1 , . . . , x

(k)
i). The VNT lightpaths are coded

according bipolar coding by setting xi to 1 if the lightpath
is established and -1 otherwise. Let X be a matrix whose
rows are the attractors. Using the pseudo-inverse matrix X+,
the regulatory matrix is calculated by W = X+X .

IV. PERFORMANCE EVALUATION

We evaluated the performance of the proposed algorithm
against network failures by a simulation study. We used
Waxman model with default parameters in BRITE tool [13]
to create a physical topology with 100 nodes and 400 optical
fibers, one optical fiber for each direction. We also tried other
topologies like Erdős-Rényi model available in BRITE tool
and got similar simulation results. The number of transmitters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013

C
o
n
g
e
s
ti
o
n
 p

ro
b
a
b
ili

ty

Traffic multiplier (k)

MFLDA-FO
MFLDA
HLDA
RLDA

Fig. 4. The congestion probability when there is no failure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013

C
o
n
g
e
s
ti
o
n
 p

ro
b
a
b
ili

ty

Traffic multiplier (k)

MFLDA-FO
MFLDA
HLDA
RLDA

Fig. 5. The congestion probability after 5 nodes fail

and receivers in a node was limited to 16. As the trans-
mitter/receiver count was the main limit, there were enough
number of wavelengths on a fiber to carry the lightpaths. The
amount of traffic per s-d node pair had a LogNormal(-0.5,1)
distribution. In order to show the effect of traffic intensity, the
traffic matrix was multiplied by k. A VNT was marked as
congested if the utilization of one of its lightpaths was more
than 50%. The attractor selection algorithm parameters were
µ = 10, δ = 50, and ζ = 0.5. The variance N of the noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013

C
o
n
g
e
s
ti
o
n
 p

ro
b
a
b
ili

ty

Traffic multiplier (k)

MFLDA-FO
MFLDA
HLDA
RLDA

Fig. 6. The congestion probability after 10 nodes fail

η was 0.15. Shortest path routing is applied on both physical
and logical topologies.

We compared four different VNT candidate sets. The VNT
candidates denoted by MFLDA were designed by the proposed
algorithm without optimization for node failure, by setting f
to only n on line 2 of the pseudocode, which prevents an
optimization for failures. The VNT candidates denoted by
MFLDA-FO were designed by the proposed algorithm with
optimization for possible node failures by looping f from
0 to n. A lightpath is established only if it decreases the
overall non-congestion probability. For comparison, the VNT
candidates denoted by RLDA (Random Logical Topology
Design Algorithm) and HLDA (Heuristic Logical topology
Design Algorithm) [2] were also simulated. In RLDA, the
VNTs were created by establishing lightpaths among randomly
chosen node pairs. In HLDA, the VNTs were created by
establishing lightpaths among the s-d pairs with the highest
traffic according to the traffic matrix. In order to maximize the
performance of HLDA in failure scenarios, HLDA is applied
to the topology after failure with the knowledge of the failed
nodes. Therefore, the VNTs created by HLDA were specially
designed for the topology after failure. On the other hand, we
simulate MFLDA and MFLDA-FO under harsher conditions
without providing the traffic matrix information and the place
of failed nodes. As the exact place of failed nodes are not
known to the network, when the transmitters/receivers of failed
lightpaths become idle, these idle transmitters/receivers were
used for establishing new lightpaths among randomly chosen
node pairs.

Each VNT candidate set was simulated with 500.000 traffic
matrices and failure patterns to estimate their congestion
probability. A set of 10 VNTs were designed by both MFLDA-
FO and MFLDA. In each simulation one of the 10 designed
VNT candidates was randomly selected and simulated. In
order to increase the randomness, a different VNT was used by
RLDA in each simulation. As HLDA optimizes the VNT for a
given traffic matrix and failed node set, again a different VNT
was designed and used by HLDA in each simulation. When
a node fails, the lightpaths passing through its fibers fail at
the same time. Instead of rerouting the failed lightpaths, the
traffic on the failed lightpaths is rerouted to other available
lightpaths like in [7].

Fig. 4 shows that when there was no node failure, HLDA
gave the lowest probability of congestion. As HLDA has the
traffic matrix information and it designs a specific VNT for
each traffic matrix, this is an expected result. However, our aim
is to design VNT candidates without traffic matrix information.
In Fig. 4, MFLDA gave lower congestion probability than
MFLDA-FO. The reason is that the failure optimization causes
the VNT to include backup paths against possible failure
scenarios. These lightpaths may not be so useful when there is
no failure, so the congestion probability of MFLDA-FO was
a bit higher than MFLDA. In all simulations RLDA gave the
highest congestion probability.

Fig. 5 and 6 show that when 5 and 10 nodes failed, MFLDA-
FO gave lower congestion probability than the others unless

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Number of iterations until convergence

MFLDA-FO
MFLDA

HLDA
RLDA

Fig. 7. The CDF of convergence time to a solution after 5 nodes fail

the traffic was too high. While HLDA had both the traffic
matrix and failed node list information, it could not create
direct lightpaths among some of the s-d pairs with high traffic,
whose lightpath route pass through failed nodes. As HLDA
does not provide any optimization for these s-d pairs, they
may end up using multiple lightpaths and concentrate on some
lightpaths and cause congestion. On the other hand, MFLDA-
FO optimizes the VNT by taking failures into account to
prevent hot-spots, so it gave lower congestion probability
unless the traffic was too high. As many lightpaths become
unavailable and the characteristics of the topology greatly
changes after multiple node failures, the optimizations by
MFLDA no longer work, so the VNTs designed MFLDA gave
similar congestion probability to RLDA.

While MFLDA-FO had lower probability of congestion
right after failure, not all possible failure scenarios could be
solved by VNT optimization only. In such cases, attractor
selection mechanism allows solving complex failure scenarios
after some iterations. However, the convergence time to a
solution depends on the performance of the attractors used.
Fig. 7 shows the cumulative distribution function (CDF) of
the number of iterations by attractor selection algorithm until
it finds a VNT which has maximum lightpath utilization less
than 50%. The VNT candidates designed by MFLDA-FO,
MFLDA, HLDA and RLDA were set as the attractors of the
attractor selection algorithm and the initial VNT. Each attractor
set was simulated with 2000 different failure patterns and
traffic matrices. The traffic intensity k was set to 0.0083. Five
randomly chosen nodes fail before the first iteration. The x-
axis is the number of iterations until convergence. As seen in
the figure, the attractors designed our MFLDA-FO gave much
faster convergence than both RLDA and HLDA algorithms,
even though HLDA had both the traffic matrix and failed
node list information that were not available to MFLDA-FO.
Around 10% of the simulations could not converge as there
was no solution or the solution domain was too small.

V. CONCLUSION

In this paper, we proposed an algorithm called MFLDA
for designing VNTs, which can accommodate various traf-

fic patterns. We also presented an extended version called
MFLDA-FO to design VNTs robust against congestion due the
traffic changes after network failures. The simulation results
showed that the VNT candidates designed by MFLDA-FO can
accommodate a wide range of traffic both before and right after
a failure of multiple nodes. Moreover, the simulations showed
that the converge time is faster when these VNTs are used as
attractors in an attractor selection algorithm, compared to the
attractors designed by HLDA algorithm. Unlike HLDA, our
VNT design algorithm and the attractor selection algorithms
do not require traffic matrix information and failed node list.
While it is easy to estimate the routing stats used in our
algorithm when shortest path routing is applied, it may be
difficult with some routing algorithms. As a future work, we
will investigate the possible implementation issues with other
routing algorithms and evaluate their performance.

ACKNOWLEDGMENT

This research was supported in part by Grant-in-Aid for
Scientific Research (A) 15H01682 of the Japan Society for
the Promotion of Science (JSPS) in Japan.

REFERENCES

[1] B. Mukherjee, D. Banerjee, S. Ramamurthy, and B. Mukherjee, “Some
principles for designing a wide-area WDM optical network,” Network-
ing, IEEE/ACM Transactions on, vol. 4, no. 5, pp. 684–696, Oct 1996.

[2] R. Ramaswami and K. Sivarajan, “Design of logical topologies for
wavelength-routed optical networks,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 14, no. 5, pp. 840–851, Jun 1996.

[3] Y. Liu, H. Zhang, W. Gong, and D. Towsley, “On the interaction between
overlay routing and underlay routing,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 4, March 2005, pp. 2543–2553 vol. 4.

[4] A. Gencata and B. Mukherjee, “Virtual-topology adaptation for WDM
mesh networks under dynamic traffic,” Networking, IEEE/ACM Trans-
actions on, vol. 11, no. 2, pp. 236–247, Apr 2003.

[5] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and
M. Murata, “Adaptive virtual network topology control based on at-
tractor selection,” Lightwave Technology, Journal of, vol. 28, no. 11,
pp. 1720–1731, June 2010.

[6] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on Internet traffic identification,” Communica-
tions Surveys Tutorials, IEEE, vol. 11, no. 3, pp. 37–52, rd 2009.

[7] Y. Koizumi, S. Arakawa, S. Kamamura, D. Shimazaki, T. Miyamura,
A. Hiramatsu, and M. Murata, “Adaptability of virtual network topology
control based on attractor selection against multiple node failures,” in
18th OptoElectronics and Communications Conference / Photonics in
Switching (OECC/PS), June 2013.

[8] T. Ohba, S. Arakawa, Y. Koizumi, and M. Murata, “Scalable design
method of attractors in noise-induced virtual network topology control,”
J. Opt. Commun. Netw., vol. 7, no. 9, pp. 851–863, Sep 2015.

[9] J. J. Hopfield, “Neurons with graded response have collective compu-
tational properties like those of two-state neurons,” Proceedings of the
National Academy of Sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

[10] Y. Baram, “Orthogonal patterns in binary neural networks,” Technical
Memorandum 100060, NASA, 1988.

[11] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities.” Proceedings of the National Academy
of Sciences of the United States of America, vol. 79, no. 8, pp. 2554–
2558, Apr. 1982.

[12] Y. S. Hanay, Y. Koizumi, S. Arakawa, and M. Murata, “Virtual network
topology control with oja and apex learning,” in Proceedings of the 24th
International Teletraffic Congress. International Teletraffic Congress,
2012, p. 47.

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Proceedings of MASCOTS ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 346–353.

