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SUMMARY

Information-centric networking (ICN) has gained attention from network research communities due to
its capability of efficient content dissemination. In-network caching function in ICN plays an important
role to achieve the design motivation. However, many researchers on in-network caching have focused
on where to cache rather than how to cache: the former is known as contents deployment in the network
and the latter is known as cache replacement in an ICN router. Although the cache replacement has
been intensively researched in the context of web-caching and content delivery network previously, the
conventional approaches cannot be directly applied to ICN due to the fine granularity of chunks in ICN,
which eventually changes the access patterns.
In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements
in the design of a high performance ICN router. Then, we propose a novel cache replacement algorithm to
satisfy the requirements named Compact CLOCK with Adaptive Replacement (Compact CAR), which can
reduce the consumption of cache memory to one-tenth compared to conventional approaches. Copyright c⃝
0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Information-centric networking (ICN) was introduced as a future network architecture which is
optimized for content dissemination. ICN is built on the idea of name-based routing which enables
each ICN router to be aware of users’ requests as well as their counterpart responses. Thus,
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2 A. OOKA, ET AL.

individual ICN routers can be turned into caching devices by simply providing physical cache
memory for them.

This feature of ICN that all network devices have caching capability is called in-network
caching function, and several ICN architectures, CCNx[1], NDN[2], SAIL[3] and PURSUIT[4],
have already suggested utilizing the function to take several advantages of caching system such as
reducing network access latency, alleviating network traffic, balancing network load, and achieving
robustness against a single failure scenario. In this sense, ICN can be considered as a largely
distributed caching architecture whose performance depends on mainly two factors: where to cache
and how to cache contents. The former and the latter are known as content placement and cache
replacement problems, respectively.

While the problem of content placement has attracted much attention in ICN research
communities, that of cache replacement has been relatively ignored since many people believe
that the problem has already been investigated intensively in the context of web-caching and a
content delivery network (CDN). However, it is unclear that the conventional cache replacement
approaches are suitable for ICN due to following two reasons. First, core ICN routers are expected
to meet the speeds required for line-rate operation, especially by exploiting limited memory and
computational resources. However, the conventional cache replacement approaches are designed
for end-device operation rather than for core-device operation, which should be carried out in
parallel with forwarding operation. Second, the fine granularity of chunks in ICN, namely chunks
or segments, changes the traffic access patterns of request messages, which dramatically govern the
performance of a cache replacement algorithm.

In the light of the observation above, this paper studies the cache replacement problem in the core
ICN routers. First, we discuss the access patterns of contents to understand its relation to cache
replacement algorithms. Second, we focus on CLOCK, which is a classical cache replacement
policy to achieve low-complexity LRU approximation, to support the line-rate operation in core
ICN routers. Then, we propose a novel cache replacement algorithm named Compact CLOCK with
Adaptive Replacement (Compact CAR) to fulfill the requirements. The numerical simulation shows
that the proposed cache replacement algorithm can reduce the consumption of cache memory to
one-tenth compared to conventional approaches.

This paper is organized as follows. In Section 2, we review related research works. In Section
3, we describe the design considerations of a cache replacement algorithm for a core router of
ICN. This is followed by a detail description of our proposed method Compact CAR in Section 4.
In Section 5, we evaluate our protocol through extensive simulations. Then, we discuss on some
implementation issues of our proposal, especially for the design of high performance of ICN core
routers in Section 6. Finally, we conclude this article in Section 7.

2. RELATED WORKS

There are a considerable number of cache replacement algorithms, ranging from those available
in a computer system (e.g., CPU and I/O buffers) to those used in communication networks (e.g.,
web-proxies and CDNs). Thus, there are various requirements and methods suitable for individual
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COMPACT CAR FOR ICN ROUTER 3

environments. To understand the requirements of in-network caching in ICN, we review several
cache replacement algorithms that have been carried out in the different context.

Replacement algorithms are developed originally for the purpose of paging in the computer
system [5, 6]. The bottleneck of the systems is the latency of fetching pages from slow auxiliary
memory to fast cache memory. On the one hand, the hardware cache such as CPU commonly used
First-in, first-out (FIFO) and Not Recently Used (NRU) to reduce the memory and computational
cost because of the hardly limited resources. On the other hand, the software cache such as virtual
memory in OS commonly adopts LRU and LFU, which increase cache hit rate with cost maintaining
a data structure or/and statistical information (i.e., the number of references to a page).

As researchers uncover problematic access patterns that degrade the cache hit rate of the
algorithms, many variants of LRU and LFU are devised to overcome the problems. 2Q [7], ARC [5]
and LIRS [8] improve the hit rate by exploiting the advantages of LRU and LFU while their time
and space complexity are comparable to those of LRU. In contrast to them, CLOCK [9] reduces the
complexity of LRU by approximating its behavior with a fixed circular buffer while keeping the hit
rate. The complexity of CLOCK is comparable to that of NRU which has a low computational cost.
CAR [6] combines CLOCK with ARC to achieve both hit rate improvement and cost reduction.

Since web services became explosively popular, web-cache and CDN-cache were researched
intensively to improve the performance of them in terms of bottleneck, latency, overload and
robustness [10, 11, 12]. Because the resource constraints of them are more moderate than that
of computer systems, the cache replacement algorithms in a web and a CDN utilize statistical
information including not only recency and frequency but also several others including size, latency,
and URI [11]. However, the improvement was trivial or specific to particular environments in spite
of an abundance of caching algorithms [12].

In recent years, ICN has revived research on caching algorithms because ICN provides inherent
in-network caching feature. Unlike web-cache and CDN-cache employed in the application-layer,
all network devices in ICN have caching capability. Thus, caching related researches in ICN have
been carried out intensively, especially concerning the locations of content placements. Also, a few
of cache replacement algorithms were introduced in [13, 14].

Previous papers on caching use only LRU [15, 16] or claim that the effect on performance
of cache replacement is minimal [17]. However, the papers use only blunt cache replacement
policies and ignore the suitability for network traffic. In fact, there are studies that exhibit the
capability to improve the performance of a network [13, 14]. Cache replcement policy based on
content popularity (CCP) [13] can significantly decrease the server load and increase cache hit
rate compared to that of LRU and LFU. The work in [14] analyzed the effects of chunking and
proposed Highest cost item caching (HECTIC), which uses a utility-based replacement algorithm
and outperforms existing polices including LRU. Their statistical approaches are too expensive to
be employed in an ICN core router due to computational and memory costs. However, we propose
a low-overhead cache replacement policy that outperforms LRU-based and simple replacement
policies by coping with access patterns specific to ICN.

To realize ICN, especially an ICN core router, it is also required to implement a cache replacement
algorithm that can be operated with severe resource constraints instead of the statistical caching
algorithms for a web and a CDN with rich resources. The implementation cost of commonly used
approaches such as LRU and LFU is also prohibitive for router hardware, as pointed out in [18, 17].
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Looking back at the history of cache replacement algorithms, ICN core routers need a hardware
implementable approach whose complexity is comparable to that of FIFO or CLOCK.

3. DESIGN CONSIDERATIONS OF CACHE REPLACEMENT ALGORITHM FOR ICN

3.1. Access Patterns of Traffic in the Network

To understand cache replacement strategy suitable for network traffic without expensive
mechanisms (e.g, LFU and statistical approaches), we focus on an access pattern. An access pattern
is the important factor to govern the performance of cache replacement algorithms [5, 8, 7, 19].
It is well known that the popularity of contents follows a Zipf-like distribution: a large number of
contents are requested only once or just a few times [20]. Although the exact access pattern of the
network level traffic in ICN is not known due to the lack of available ICN traffic trace, such one-time
used contents occupy 60% or more in the network level traffic in IP networks [21].

A sequence of requests to such one-time used contents forms an access pattern called SCAN [5,
6]. SCAN makes the performance of an LRU-based approach much poor because such unpopular
contents occupy the whole cache. In particular, ICN is able to identify a chunk (its default size is
4K bytes in CCNx), which enables the chunk level caching in an ICN router. Thus, we conjecture
that the distribution of the “chunk popularity” would have heavier tail than Zipf-like distributions,
which renders the effect of SCAN more serious.

In addition, the distribution of content popularity changes frequently. The volatile popularity
is also a problematic access pattern because it hinders the strategies depending on statistical
information (including LFU) from replacing the out-of-date chunks that were accessed frequently.
We conjecture that these access patterns would be frequently observed in ICN due to the volatile
popularity observed in social networks that share user-generated contents as well as real-time
applications such as video chatting.

For the reason above, the cache replacement algorithm for ICN should be able to deal with the
access patterns described above. Among the conventional cache replacement algorithms, CAR is
able to efficiently deal with the access pattern [6]. CAR is resistant to SCAN traffic access pattern
due to its dual lists which enable to distinguish popular and non-popular contents. CAR is also
resistant to the volatile popularity because of strategy based on limited-frequency. Our proposal is
based on CAR to inherit these features.

3.2. Computational Power and Memory Limitations

In the design of the cache replacement algorithm, two of the performance metrics should be
considered. One is the cost that updates the table holding the information of cached items in an ICN
router. The other is the cost that holds the table in the memory according to a cache replacement
algorithm, e.g., prioritizing cached items. We call the former and the latter as a computational cost
and a memory cost, respectively.

The computational cost includes insertion of a new caching item into the table, deletion of an
existing cached item from the table, moving the location of cached items in the memory, and
updating relevant information in the caching table. The operations listed above should be taken
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into account in the design of a cache replacement algorithm, especially when it is applied for a high
speed ICN core router.

The memory cost increases as the number of cached items increases due to the increase of control
information for the maintenance of the table [22, 6, 18, 17]. For example, LFU has much higher
overhead to keep statistics of each cached item. In LRU using a doubly-linked list, this cost is
prohibitive due to the maintenance of double pointers to other cached items.

To reduce the computational and memory costs in conventional approaches, CLOCK was
introduced. CLOCK is a low-overhead approximation of LRU as mentioned in Section 2. We briefly
describe its operation although the detail operation will be explained in Section 4.2. CLOCK has a
circular buffer having a shape of a clock. It assigns each entry in a clock list with one-bit, which is
called a reference-bit and is set whenever the entry is accessed. CLOCK searches for a cached item
that needs to be replaced following a clockwise. While searching for a candidate for replacement,
it refers to the reference-bit. When the bit is unset, the cached item is discarded. Otherwise, the
searching process keeps on going because an entry with the bit is recently accessed. All bits skipped
over during the searching process are unset. Thus, CLOCK requires only a single bit per chunk and
a few repetitions of the searching process. Our proposed mechanism also adopts this mechanism of
CLOCK to reduce the computational and memory costs.

3.3. Adaptable Parameter Tuning

Some cache replacement algorithms need to tune parameters statically or dynamically according to
the access patterns of workloads. For instance, the parameters include the interval to obtain statistics
of request arrivals in LFU, the ratio between the number of popular and that of non-popular cached
items in LIRS, and the variable sizes of the lists used in ARC and CAR.

While some parameters in ARC and CAR can be tuned adaptively to the change of access
patterns, other parameters in LFU, LIRS and 2Q need to be defined in advance. However, the static
parameters are unfavorable due to 1) difficulty of finding the optimal value, 2) invalidity of the
optimal parameters in the change of access patterns, which causes performance fluctuation. For
this reason, we conjecture that a cache replacement algorithm that adaptively changes the system
parameters is preferable in the design of a cache replacement algorithm for ICN.

4. COMPACT CLOCK WITH ADAPTIVE REPLACEMENT (COMPACT CAR)

4.1. Data Structure of Compact CAR

Compact CAR has two stacks, denoted by L1 (unshaded) and L2 (shaded) as shown in Figure 1.
Each stack Li is partitioned into two lists: a left list and a right list in the figure, denoted by Ti and
Bi, respectively. Each list is implemented as a CLOCK list, which is known as the low-overhead
LRU. T1 consists of the entries of chunks that are initially cached. T2 consists of the entries of
chunks that have at least one cache hit as well as the entries of chunks are from B1 and B2. B1

and B2 act as “the losers bracket” providing an opportunity for discarded chunks to be re-cached.
Entries in Ti hold information to point to cached chunks, and entries in Bi hold information to keep
only the record of chunks discarded from Ti (i.e., the chunks do not exist in the cache memory).

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (0000)
Prepared using dacauth.cls DOI: 10.1002/dac



6 A. OOKA, ET AL.

𝑎1 𝑎2 𝑎𝑖 𝑏𝑐−𝑛 𝑏𝑗𝑎𝑛⋯ ⋯ ⋯

reference-bit (R-bit)

𝑳𝟏 (for chunks accessed only once)

0

0

1

0

1

0

0 𝑎1

𝑎3

𝑎𝑖−1

𝑎𝑛
𝑎2

⋯⋯

𝑏1⋯ 𝑥1 𝑥𝑘 𝑦𝑐−𝑚 𝑦𝑙𝑥𝑚⋯ ⋯ ⋯ 𝑦1⋯

𝑻𝟐 ( 𝑇2 = 𝑐 − 𝑛) 𝑩𝟏 ( 𝐵1 = 𝑚) 𝑩𝟐 ( 𝐵2 = 𝑐 −𝑚)

𝑎𝑖

1

0

0

1

0

1

0

0 𝑏1

𝑏3

𝑏𝑗−1

𝑏𝑐−𝑛
𝑏2

⋯⋯

𝑏𝑗

1

𝑥1

𝑥3

𝑥𝑘−1

𝑥𝑚
𝑥2

⋯

𝑥𝑘

𝑦1

𝑦3

𝑦𝑙−1

𝑦𝑐−𝑚
𝑦2

⋯

𝑦𝑙

𝑻𝟏 ( 𝑇1 = 𝑛)

𝑳𝟐 (for chunks accessed at least twice)

Physically 

contiguous 

memory

CLOCK list

Figure 1. Data Structure of Compact CAR

The records in B∗ are essential to adapt to the variety and dynamism of access patterns as explained
later.

T1 and T2 are arranged in physically contiguous memory. B1 and B2 are arranged in the
same manner (upper rectangles in Figure 1). Let T∗ denote T1 ∪ T2 and B∗ denote B1 ∪B2 for
explanation. T∗ has the fixed size of c, where c denotes the number of cacheable chunks in the
memory. T1 and T2 have n entries and (c− n) entries, respectively. In the same manner, B1 and B2

have m entries and (c−m) entries, respectively. Thus, the size of L1 ∪ L2 is 2c. In addition, we
define the maximum size of L1 as c (i.e., n+m ≤ c). ai, bj , xk, and yl represent the entries in T1,
T2, B1 and B2, respectively.

T1, T2, B1 and B2 are implemented as variable-sized CLOCK lists (lower circles in Figure 1).
CLOCK lists T1 and T2 have reference-bits (R-bits). Each R-bit indicates whether the entry has
been accessed, for example, R-bit is set to “1” when the chunk has been accessed, otherwise,
“0”. However, B1 and B2 do not have R-bits because they only contain the records of discarded
information. Each CLOCK list has a hand which points to the first entry that the CLOCK list
attempts to discard. The hand follows clockwise and moves only when it searches for a victim
entry that needs to be replaced. In Figure 1, for example, the hand of T1 points to ai−1; therefore,
T1 attempts to discard ai−1 when replacement is required.

4.2. Operation of Compact CAR

Here, we explain the operation of Compact CAR. There are two cases when a new request arrives:
(1) the requested chunk is in the cache memory or (2) the chunk is not in the cache memory. In the
case (1), the entry of the requested chunk is in T1 or T2. If the R-bit of the corresponding entry is
“0”, it changes to “1”; otherwise, it remains “1”. In the case (2), Compact CAR firstly retrieves the
requested chunk from the source of the chunk. Then, Compact CAR verifies whether the requested
chunk has been cached previously or not by checking the entries in B1 or B2. If the entry exists, it
means it has been cached previsously but the chunk does not exist in the cache. Thus, the entry in
B1 (B2) is discarded and added to T2. If the entry is not found in B1 and B2, it means the requested
chunk has not been cached recently. Thus, a new entry for the chunk is added to T1.
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Then, we describe how the new entry is added to T1 by discarding an existing entry in T1. Compact
CAR searches for an entry to be discarded with a hand operation. Suppose that the hand currently
points to the entry ai−1 as shown in Figure 1. Because the R-bit of ai−1 is “0” (hereafter abbreviated
to R = 0), which indicates an evictable entry that is not recently requested, the hand discards the
entry ai−1. The discard event triggers following processes: First, the chunk corresponding to the
entry ai−1 is discarded, and then the entry itself moves to B1. If B1 is full, the entry xk−1, which is
currently pointed to by the hand in B1, is discarded for the entry ai−1. Then, the hands moves to the
next entry (i.e., the hand in T1 moves to ai and the hand in B1 moves to xk).

Now, let us consider the other case when the entry initially pointed to by the hand in T1 has a
R-bit of “1”, which indicates a recently re-requested chunk. The entry with R = 1 is removed from
T1 and inserted to T2. In this manner, the size of T1 is reduced by one and at the same time that of
T2 increases by one. This is why the sizes of the CLOCK lists are variable. We will elaborate this
operation in detail in the following section. At this point, we have not found an entry with R = 0,
which needs to be discarded. Thus, the hand keep moving to search for an entry with R = 0. Once
the entry is found, all necessary procedures described in the previous paragraph are carried out.

Until this point, we explain the case where an entry in T1 is discarded. However, the entry to
be discarded can be selected from T2 as well. This also changes the sizes of T1 and T2, which
enables Compact CAR to adapt to traffic access patterns dynamically. The sizes of T1 and T2

influence the caching behavior of Compact CAR: When the size of T1 increases, the number of
chunks that have been accessed only once increases. In other words, the operation behavior of
Compact CAR becomes suitable for the case where recently accessed content are important. This
behavior enables Compact CAR to deal with the volatile popularity by removing outdated chunks
quickly. On the other hand, when the size of T2 increases, the number of chunks that have been
accessed at least twice increases as well. It means Compact CAR becomes suitable for the case
where frequently requested content are important. This behavior enables Compact CAR to deal
with SCAN by removing one-time used chunks quickly.

To adaptively control the sizes of T1 and T2, Compact CAR defines the target size for T1. The
target size for T1 is represented as p (0 < p ≤ c). When the current size of T1, which is n, is larger or
equal to the target size p (n ≥ p), an entry in T1 is discarded; otherwise, an entry in T2 is discarded.
By adjusting p, the sizes of the CLOCK lists of T1 and T2 vary adaptively. In summary, the target
size p governs the behavior of Compact CAR. We will explain how the target size p is dynamically
adapted according to traffic access patterns in Section 4.4.

4.3. Design of Low-overhead Variable-sized CLOCK List

As mentioned in the previous section, Compact CAR varies each size of CLOCK list to adapt the
change in traffic access patterns. A typical CLOCK list, whose size is fixed, is known as low-
overhead because it simply replaces an old entry with new one, which does not change its size.
However, the variable-sized CLOCK list in Compact CAR is costly because it changes its size to
insert or delete an entry. For instance, when an entry of a new chunk needs to be inserted in T1,
the hand keeps moving to search for an entry with R = 0, which will be replaced with the new
entry. When the hand encounters an entry with R = 1, the entry is removed from T1 and inserted to
T2. This operation is expensive from the view point of computational and memory costs because it
varies the size of CLOCK lists.
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To understand the cost of a variable-sized CLOCK list, Figure 2 illustrates the operation of entry
insertion in a CLOCK list. Initially, as an example, the CLOCK list is capable of holding five entries
and only four entries are currently occupied, which are A,B,C, and D. These entries are stored in
fixed-size memory as shown bottom of the CLOCK list in the figure. The hand points to the entry
B.

Consider what happens when a new entry E is inserted to the CLOCK list. The entry E is
supposed to be inserted between A and B because the position is farthest from the hand. However,
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we must make a space for E in the physically contiguous memory, which currently four entries
occupy. In the bottom of Figure 2, we show three different approaches to insert the entry into the
memory from the viewpoint of computational and memory costs.

First, the most left case (a) illustrates a pointer operation with a doubly-linked list. The doubly-
linked list introduces additional pointers which manage the order of entries in a CLOCK list. When
a chunk is inserted in the middle of memory space, the chunk is inserted physically at the end
of the memory space. Then, the order of the chunks in the memory is arranged virtually using
the doubly-linked list. It involves two operational costs: computational cost which involves the
rearrangement of pointers in the doubly-linked list, and memory cost which involves the memory
space accommodating the doubly-linked list. Computational cost is not that expensive. However,
it consumes a decent amount of memory space to maintain the order by keeping two pointers per
entry (see also Section 6.1 for detail). The original CAR algorithm [6] adopts the pointer operation
to insert a new entry.

Second, the case (b) illustrates a case of a memory shift operation. In this case, a doubly-linked
list is not used but memory blocks are shifted when an entry is inserted. It does not require high
memory cost to maintain pointers because the order of entries in a CLOCK list is realized in physical
memory directly without a doubly-linked list in the first scenario. However, this scenario introduces
high computational cost caused by the shift of memory blocks (see also Section A.2 for more detail).

Third, the case (c) illustrates the operation of entry insertion in Compact CAR. To insert a new
entry at the position of the entry ’B’, Compact CAR moves the entry ’B’ to the end. Then, the new
entry ‘E’ is inserted to the location. The difference between our proposal and the second operation
is that the new entry ‘E’ and the old entry ‘B’ are swapped rather than shifting all entries. In this
manner, the computational cost can be reduced. Furthermore, it does not use a doubly-linked list to
create virtual order of entries in the memory space and so the memory cost can be reduced as well.

It may be concerned that the operation changes the order of recency, which may degrade the cache
performance of the proposal: the operation shortens a lifetime of a popular entry or vise versa. If
“B” is unpopular in this example, the unpopular entry will undesirably occupy the space for a longer
time. Thus, the operation mixing the order of a CLOCK lists may make its behavior close to random
replacement. However, the influence is not that serious: we will address the issue in Section 5.

Figure 3 gives an example of moving an entry ai within T∗ to realize the swap operation illustrated
in Fig. 2(c). Remember the example explained in Section 4.2, where an entry ai with R = 1 is
moved from T1 to T2. We realize the memory swap operation by exploiting the constancy of the
size of T∗ when the sizes of T1 and T2 change. Compact CAR swaps ai with the entry an at the
boundary between T1 and T2 in the physically contiguous memory. Then, Compact CAR just shifts
the boundary leftward to make ai be in T2. This simple swap operation enables the movement of an
entry between T1 and T2 without computational and memory costs.

4.4. Replacement Algorithm of Compact CAR

Algorithms 1, 2, 3, and 4 show pseudocode of the cache replacement algorithm of Compact CAR.
The replacement process starts with Algorithm 1. There are three cases when a new request arrives
for a chunk whose entry is represented as x: (1) x is in T∗, (2) x is in B∗, (3) x is neither in T∗ nor
in B∗. The case (1) occurs on a cache hit. The cases (2) and (3) occurs on a cache miss. In the case
(1), the process sets the R-bit of x to “1” and terminates (lines 2–4).
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In the case (2), first, the process discards x from B∗ and updates the parameter p, which represents
the target size for T1 as mentioned in Section 4.2 (lines 7–13). At line 6, i stands for the index of the
list Ti into which x is to be cached; therefore, i is set to 2 as explained in Section 4.2. The process
of tuning p is important to make Compact CAR adaptive to changes in access patterns as discussed
in [5, 6]. This process needs to determine (a) whether to increase or decrease p, and (b) the amount
of increase or decrease in p.

In respect to (a), when x is in B1, p increases; otherwise, p decreases. As described in Section 4.2,
T1 and T2 are devised to effectively cache recently accessed chunks and frequently accessed chunks,
respectively. Since B1 and B2 correspond to T1 and T2, respectively, we can adaptively control the
behavior of Compact CAR by changing p according to accesses to B1 and B2. The tuning process
increases p when x is in B1 because the access indicates recently accessed chunks are becoming
important. On the other hand, when x is in B2, p decreases to place importance on frequency.

In respect to (b), we determine the amount of increase (decrease) δ according to the ratio of |B1| to
|B2|, where |Bi| represents the size of Bi, to adapt the changes of access patterns rapidly. To explain
the reason, let us consider the case where there is an access to B1 when |B2| is larger than |B1|.
Intuitively, the fact that |B2| > |B1| indicates frequently accessed chunks were more important than
recently accessed chunks until now; however, the current access to B1 indicates recently accessed
chunks are becoming important. Thus, when |B2| > |B1|, the tuning process sets δ = |B2|/|B1| to
rapidly adapt the access patterns where recency is more important; otherwise, δ = 1.

In the case (3), line 15 sets i to 1 to cache the new entry x in T1. Lines 16–18 ensure that there
is a room in B∗ because an existing entry in T1 (T2) is replaced by x and is moved to B1 (B2) at
lines 21–23. If the lists in Compact CAR are not full (i.e., |L1| < c and |L1 ∪ L2| < 2c as defined in
Section 4.1), the entry is simply inserted into B∗. If L1 is full (i.e., |L1| = c), the replacement process
discards an entry in B1 to insert the entry. If L1 is not full and L1 ∪ L2 is full (i.e., |L1 ∪ L2| = 2c),
the process discards an entry in B2.

After that, lines 20–27 cache the new entry x in Ti. If T∗ is not full, x is simply inserted to Ti (line
25). Otherwise, the process replaces an entry in T∗ with x (lines 20–23). The victim entry is selected
from T1 if the size of T1 is not less than the target size p; otherwise, the entry in T2 is replaced. The
discarded entry can move to B∗ because we have ensured that there is room in B∗ (lines 16–18).
Finally, x is cached at a position st in Ti, which has been ensured to be available (line 27).

Algorithms 2, 3, and 4 describe how to make a room for a new entry. The location pointed to by the
hand of Ti is represented as HandTi , and Bi is analogous. The DiscardBottom procedure (shown
in Algorithm 2) discards the entry x in Bi. The ReplaceBottom procedure (shown in Algorithm
3) discards an entry pointed to by the hand of Bi in the case (3) above. The ReplaceTop procedure
(shown in Algorithm 4) removes an entry pointed to by the hand of Ti when the cache is full. If this
procedure finds an entry with R = 1 in T1, it moves the entry to T2 in the manner described in Fig.
3. As shown in the figure, when the entry ai needs to be moved to the other list, the operation swaps
ai with the entry an at the boundary between the lists. EdgeEntry denotes the entry located at the
boundary and EdgeAddres denotes its address in Algorithms 2, 3, and 4.
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Algorithm 1 Compact CAR Replacement Algorithm

1: procedure CACHEREPLACEMENT(x) ▷ x is an accessed entry.
2: if x ∈ T∗ then ▷ Cache hit
3: x.R-bit← 1
4: return
5: else if x ∈ B∗ then ▷ Record of discard remains
6: i← 2 ▷ To cache x in T2

7: if x ∈ B1 then
8: δ ← max(1, |B2|

|B1| ); p← min(c, p+ δ)

9: DiscardBottom(1,x)
10: else ▷ x ∈ B2

11: δ ← max(1, |B1|
|B2| ); p← max(0, p− δ)

12: DiscardBottom(2,x)
13: end if
14: else ▷ Cache miss
15: i← 1 ▷ To cache x in T1

16: if Full(L1) & |B1| > 0 then ReplaceBottom(1)
17: else if Full(L1 ∪ L2) & |B2| > 0 then ReplaceBottom(2)
18: end if
19: end if
20: if Full(T∗) then
21: if |T1| ≥ max(p, 1) then st ← ReplaceTop(1)
22: else st ← ReplaceTop(2)
23: end if
24: else ▷ T∗ is not full.
25: st ← an available address in Ti

26: end if
27: Ti[st]← x ▷ x is cached as an entry in Ti.
28: end procedure

Algorithm 2 DiscardBottom() for Compact CAR

1: procedure DISCARDBOTTOM(i, x)
2: Swap(x,Bi.EdgeEntry)
3: Discard x (at the edge of Bi) ▷ Ensuring that the address next to the edge of Bi is free
4: end procedure

Algorithm 3 ReplaceBottom() for Compact CAR

1: procedure REPLACEBOTTOM(i)
2: Swap(Bi[HandBi ], Bi.EdgeEntry)
3: Discard Bi.EdgeEntry
4: Rotate HandBi ▷ Ensuring that the address next to the edge of Bi is free
5: end procedure

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Compact CAR compared to OPT (off-line optimal
algorithm with a priori knowledge of the stream of requests: absolute upper bound on the achievable
cache hit rate), FIFO, CLOCK, and CAR in various scenarios to demonstrate the fulfillment of the
design considerations discussed previously.
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12 A. OOKA, ET AL.

Algorithm 4 ReplaceTop() for Compact CAR

1: function REPLACETOP(i)
2: while Ti[HandTi ].R-bit= 1 do
3: Ti[HandTi ].R-bit← 0
4: if i=1 then
5: Swap(Ti[HandTi ], Ti.EdgeEntry)
6: ▷ Shift the boundary between T1 and T2.
7: end if
8: Rotate HandTi

9: end while
10: se ← an address next to the edge of Bi

11: Bi[se]← Ti[HandTi ]
12: Swap(Ti[HandTi ], Ti.EdgeEntry)
13: Discard Ti.EdgeEntry
14: Rotate HandTi

15: return Ti.EdgeAddr
16: end function

First, the performance of the proposed algorithm is evaluated with various access patterns
including synthetic traffic as well as real traffic trace. We investigate the cache performance of ideal-
cooperative caching and non-cooperative caching by using two topologies: a one-node topology
and a line topology. Then, the adaptability of our proposal to changing access traffic patterns
is demonstrated by comparing to the same approach without tuning a parameter. Finally, the
computational and memory costs of our proposal are theoretically analyzed to present its efficient
memory usage which is critical in the design of a high performance ICN core router.

5.1. Simulation Setup and Configuration

Two types of workloads are used in this simulation study: artificial workloads that follow a Zipf
distribution and real traffic traces of Video-on-Demand (VoD), e.g., YouTube, DailyMotion, and
NicoVideo, which are collected from a network gateway at Osaka University campus. The former
and the latter are denoted by AZipf(α) and by AReal, respectively. In addition, their superscript C and
P , e.g., AC

Zipf(a) and AP
Zipf(α) represent the workloads in units of content and chunks, respectively.

The popularity of Internet content (e.g., VoD, web pages, file sharing, and user generated traffic)
has been reported to follow the Zipf distribution with 0.6 ≤ α ≤ 1.2 [23, 21]. Thus, we use these
values to generate synthetic traffic requests from the Zipf distribution for this simulation study.

To justify the results using synthetic traffic, we also use the real traffic traces. The traces are
gathered from July 26th 2013 to February 26th 2015. The number of unique contents is 2,428,880;
the number of contents requested at least twice is 918,545; and the number of total accesses is
13,004,868. The popularity distribution of the real traffic trace follows the Zipf-like distribution, as
depicted in Fig. 4. We also show the statistics of the real traffic traces in units of chunks in Table II.

As stated in Section 3.1, the fine granularity of chunks in ICN, namely chunks or segments,
changes the access patterns of request message, which dramatically governs the performance of
cache replacement algorithm. Unfortunately, ICN traffic traces are not available yet. Thus, we
generate synthetic requests for chunks, which simulates the access pattern of ICN in the following
manner. We determines the inter-arrival time between requests to content according to our observed
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COMPACT CAR FOR ICN ROUTER 13

Table I. Number of Chunks Per Second [pck/s]

Chunk size 1.5 KB 15 KB 60 KB
Standard Definition (600kbps) 50 5 1.25

High Definition (1.2Mbps) 100 10 2.50

Table II. Statistics of Workloads in Units of Chunks

Workload # of total
accesses

# of observed
unique
chunks

# of chunks
requested
at least
twice

A
P (1.5KB)
Real 17,955,409 5,465,044 440,254

A
P (15KB)
Real 14,557,548 5,321,617 552,631

A
P (60KB)
Real 16,606,810 8,006,084 1,769,759

real trace. On the other hand, the inter-arrival time for chunks is constant according to Table I, which
is determined by the statistics of our observed real traffic. The generated requests are superimposed
to simulate the aggregation of request messages in the network.

This simulation studies the cache performance of ideal-cooperative caching and non-cooperative
caching† by using two topologies: the one-node topology and the line topology. One is the topology
in which there is only one ICN router between clients and a server. The other is the line topology that
includes ten ICN routers between them. As mentioned previously, the cache hit rate is governed by
two factors: one is a cache replacement algorithm (how to cache), and the other is a cooperative
caching algorithm (where to cache). Because the purpose of our simulation is to evaluate the
performance of the former, we do not investigate the performance of the latter in detail but rather
we consider its best and worst case performance to make the analysis complete.

For explanation, we start to discuss the worst case. The line topology represents the worst case
without any cooperation. This is because the cache capacity of a whole network is considerably
wasted by redundant caches, especially when every nodes in the line topology attempt to cache
contents being downloaded from one end to the other. Thus, the simulation using the line topology
clarifies the lower bound of the performance caused by cooperative caching mechanisms. On the
other hand, we can assume that the one-node topology represents the best case, where a cooperative
caching algorithm works ideally. If the caching capacity of one node is equivalent to the total n
nodes, the one-node topology can be considered as the n-node topology that has an ideal cooperative
caching mechanism. In other words, the result with the one-node topology shows the upper bound
of the performance where cooperative caching works ideally. Thus, the results of our simulation
using the two types of topologies clarify the upper and lower bound of the performance caused by
cooperative caching mechanisms.

Each cache at ICN router has same capacity c ranging from 101 to 106 chunks which are adjusted
according to the traffic trace we adopt. Also, the transmission delay of each chunk on links and the
unnecessary computation in the protocol stacks are ignored to simplify the simulation.

†A cooperative caching algorithm distributes chunks in the network to improve cache hits as well as to reduce the usage
of network resources.
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Figure 4. Popularity Distribution of Real Trace
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Figure 5. Results for Synthetic Traffic in Units of Content
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Figure 6. Results for Synthetic Traffic in Units of Chunks
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Figure 7. Results for Real Traffic Trace

5.2. Cache Hit Rate with a SCAN Access Pattern using Synthetic Traffic

Figure 5 depicts the cache hit rate of each cache replacement policy in the one-node topology with
synthetic traffic described previously: AC

Zipf(α) changing α from 0.6 to 1.2. Our proposal, Compact
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(a) Different Types of Workloads in
Units of Content

(b) Artificial Workloads (α = 1.0) in
Different Units

(c) Real Traces in Different Units

Figure 8. CDF of RD in Various Workloads
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Figure 9. Results for Simulation with the Line Topology
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Figure 10. Comparison between Non-cooperative Caching and Ideally-cooperative Caching

CAR, achieves a hit rate comparable to that of CAR, which is contrary to our speculation. We
conjectured that the operation mixing the order in the Compact CAR would degrade its performance
because the operation makes its behavior close to random replacement. The result is promising
because we can achieve the performance as good as CAR even with much less memory cost. The
memory cost of Compact CAR including several others is theoretically analyzed in Section 5.6
in detail. In addition, the results show that Compact CAR can achieve the same cache hit ratio
with one-tenth of cache size compared to simple cache replacement algorithms such as FIFO and
CLOCK in the best case. This is because the two-stack approach of Compact CAR prevent popular
content from being removed from the cache by SCAN.

In addition to the simulation using traces in units of contents, Figure 6 shows the cases when the
sizes of chunks change from 60 KB to 1.5 KB with the parameters of the Zipf distribution α at 1.0
and 1.2, which are denoted by, e.g., AP (60KB)

Zipf(0.6) to A
P (1.5KB)
Zipf(0.6) . As the value of α increases, the hit rate

increases. This means that a high popularity bias results in a high hit rate as known in the previous
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studies. As depicted in Fig.6(d), we observe that the cache hit rate decreases substantially as the size
of chunks becomes small, e.g., from a whole content to chunks.

5.3. Cache Hit Rate with a SCAN Access Pattern using Real Traffic Trace

Figure 7 presents the simulation results in the one-node topology with real Video-on-demand
(VoD) traffic which was collected at Osaka University. Because the original traces are in units of
content, we divide each content into small sized chunks to simulate the traces in units of chunks
in ICN networks. The cache hit rate in Fig. 7 are similar to those in Fig. 5 and Fig. 6. In Fig.
7, one interesting observation is that the cache hit rate of our proposed algorithm suddenly soars,
e.g., when cache size is 104 in Fig. 7(c) compared to conventional cache replacement algorithms:
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the performance becomes outstanding. This phenomenon correlates to the Reuse Distance (RD);
therefore, we discuss it below.

Figure 8 plots the cumulative distribution functions (CDFs) of RD. RD represents the number
of requests between two consequtive requests for the same chunk. For example, consider what
happens when the value of RD is larger than the size‡ of cache. The cache of the chunk requested
by the first request has a high probability to be discarded from the cache before the second request
arrives. If this case keeps happening due to a large amount of one-time contents (e.g., SCAN), only
non-popular contents remain in the cache. This situation is called cache pollution that non-popular
contents occupy whole cache causing low-cache hit rate. Thus, a cache hit almost occurs when RD
is smaller than cache size, and vice versa.

As mentioned in Section 4, Compact CAR maintains two link lists: one for non-popular contents,
and the other for popular contents. Thus, the cache pollution only affects to the link list that
maintains non-popular contents. In other words, Compact CAR is robust to the cache pollution
scenario caused by a large amount of non-popular contents.

5.4. Simulation with the Line Topology

Figure 9 presents the cache hit rate of individual nodes on the line topology. We omit the graph of
CAR because the hit rate of CAR are almost identical to Compact CAR. Compact CAR improves
the hit rate in the second and succeeding routers, whereas the hit rate of FIFO and CLOCK decreased
to approximately zero. Figure 10 shows the upper and lower bound of the performance achieved by
cooperative caching. The performance of ideally cooperative caching is denoted by “ideal-coop”,
which specifies the upper bound. The result denoted by “non-coop” means the total cache hit rate of
nodes in the line topology, which is the performance of non-cooperative caching and specifies the
lower bound. We also show the hit rate of the only first node of the line topology as “1st-node” to
understand how CLOCK is inappropriate for the environment without cooperative caching. There is
less difference between the upper bound and the lower bound of Compact CAR than that of CLOCK.
This result indicates Compact CAR can exploit resources in a network by reducing redundant caches
caused by the cooperation failure.

It is interesting to analyze the performance under an environment with a certain cooperation or
a cache decision algorithm; however, we do not show the analysis because the main purpose of
this paper is proposing the cache replacement algorithm that is feasible and appropriate for an ICN
router. In future, we will investigate the effects of various cache placement and decision algorithms
on a network and communication quality.

5.5. Dynamic Parameter Tuning

As explained in Section 4.3, Compact CAR dynamically adapts to changing traffic access patterns
by varying the parameter p. There is no one-size-fits-all parameter and it is necessary that the
parameter should be tuned to maximize cache hit rate under any circumstances.

Here we evaluate the parameter tuning strategy for the proposed Compact CAR whose parameter
p represents the target size for T1. The parameter p ranges from zero to the cache size c. As the

‡Its unit is the number of chunks
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value of p increases, the operational behavior of Compact CAR becomes similar to the case where
recently accessed content becomes important. On the other hand, as p decreases, Compact CAR
behaves similar to the case where frequently requested content becomes important.

Thus, depending on the variation of access patterns, the parameter p should be tuned. To compare
the difference between dynamical tuning and statical tuning, we introduce Clock with Fixed
Replacement (CFR) algorithm which corresponds to our proposal Compact Clock with Adaptive
Replacement (Compact CAR). CFR has the fixed value of q = p/c (0 ≤ q ≤ 1) which is determined
in advance.

Figure 11 shows that Compact CAR adaptively changes the parameter: the trends of q and the
cache hit rate of CFR(q). The x-axis shows the virtual time t, which is equivalent to the total
number of requests. The cache hit rate of CFR(q) are shown as relative value with that of Compact
CAR being 1.0 in Fig. 11 (b). When 0 < t < 6× 106, CFR(q) with high q achieves the high hit
rate, and vice versa. When t = 6× 106, we can observe the rapid increase in the cache hit rate of
Compact CAR. This increase is due to an arrival of many popular contents. Thus, the value of q
decreases to adopt the access patterns, where frequently accessed content becomes important, and
the corresponding hit rate of CFR(q) increases. The results show that Compact CAR can adaptively
change the parameter. In addition, q of Compact CAR continues to follow the optimal value at any
time as evidenced by the fact that the best relative hit rate among CFR(q) are at most nearly 1.0.
By contrast, the relative hit rate of the parameter fixed algorithms become at worst nearly 0.1. Thus,
we can confirm that the parameter tuning algorithm of Compact CAR are necessary and greatly
adaptive.

5.6. Analysis on Space and Time Complexities of CAR and Compact CAR

We analyze the time and space complexity of Compact CAR. The complexity is analyzed from the
viewpoint of an additional process or memory required for the algorithms. In the evaluation of time
complexity, we calculate the number of memory access as a dominant factor when a cache hit or a
miss occurs. Because the actual value is typically unsteady, we study the worst-case and average-
case complexity in the two different cases (i.e., a cache hit and a cache miss). Space complexity
depends on the amount of additional bits needed to maintain a data structure, and so we calculate
the amount of bits. We also express them with big O notation. Our analysis does not calculate the
amount of memory to keep records of discarded chunks since it should be compared with the amount
of memory required for cache data rather than control information.

In this analysis, we define the following notations and variables. n is the number of cache entries.
Some policies use P -bit pointers to cache entries. P requires at least ⌈logn⌉ [bit] to identify n

individual entries. For the analysis of the time complexity of variants of CLOCK, let us assume hi

denotes the number of content accessed at least i times in a certain range, β and γ represent h2/h1

and h3/h1, respectively. Note that β and γ satisfies the inequality 0 ≤ γ ≤ β ≤ 1 since hi+1 ≤ hi.
We basically express time complexity of an algorithm as order of the function of n or β. If the
complexity of a algorithm is O(1) and can be accurately calculated, we describe the complexity with
read time tr, write time tw and negligibly small time δ, which is required for the other processes,
instead of big O notation, because the memory access time is a dominant factor in caching algorithm
execution time.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (0000)
Prepared using dacauth.cls DOI: 10.1002/dac



COMPACT CAR FOR ICN ROUTER 19

Table III. Time Complexity of Cache Replacement Algorithm’s Overhead

worst case average case
policies hit miss hit miss
FIFO δ tr + tw + δ δ tr + tw + δ

LRUDLL 3tr + 6tw + δ 3tr + 6tw + δ 3tr + 6tw + δ 3tr + 6tw + δ
LRUS O(n) O(n) O(n) O(n)
LRUC O(1) O(n) O(1) O(n)
LFUH O(logn) O(log n) O(logn) O(logn)

ARC (with LRUDLL) O(1) O(1) O(1) O(1)
LIRS (with LRUDLL) O(m) O(m) O( 1

β
) O( 1

β
)

CLOCK tw + δ O(n) tw + δ O( 1
1−β

)

CAR (with LRUDLL) tw + δ O(n) tw + δ O( 1
1−β

)

Compact CAR (our proposal) tw + δ O(n) tw + δ O( 1
1−β

)

Table IV. Space Complexity of Cache Replacement Algorithm’s Overhead

Space Complexity
policies memory [bit] order number of history
FIFO logn O(logn) -

LRUDLL 2n logn+ 2 log n O(n logn) -
LRUS δ O(1) -
LRUC n logn+ logn O(n logn) -
LFUH n · C O(n · C) -

ARC (with DLL) 4n logn+ 7 log n O(n logn) n
LIRS (with DLL) 4n logn+ 2n+ 2m logn+ 4 log n O(m+ n logn) m

CLOCK n+ log n O(n) -
CAR (with DLL) 4n logn+ n+ 9 logn O(n logn) n

Compact CAR (our proposal) n+ 9 log n O(n) n

Although we analyze only two cache replacement algorithms: CAR and Compact CAR in this
section, Table III and IV summarize the analytical results of space and time complexity of not only
the two algorithms but also other cache replacement algorithms including FIFO, LRU, CLOCK,
ARC and LIRS for the purpose of comparison. The detail explanations on the complexity analysis
for the other than CAR and Compact CAR are presented in Appendix A.

5.6.1. Space Complexity First, we analyze the space complexity of CAR and Compact CAR.
Compact CAR maintains four CLOCK lists shown in Fig. 1. Our simple swapping renders Compact
CAR free from the additional costs of memory or process for maintaining the order of sweeping
the CLOCK list. Furthermore, B1 and B2 do not need R-bits and the total length of the other two
CLOCK lists, T1 and T2, is n. Thus, Compact CAR consumes (n+ 9P ) bits for the two normal
CLOCK lists whose total length is n, the two CLOCK lists without a R-bit, four information of the
size of the lists, and a parameter of a target size for T1.

On the other hand, CAR has two variable-sized CLOCK lists and two LRU lists. The variable-
sized CLOCK list must support insertion (deletion) of a chunk into (from) an arbitrary position in
a list allocated in physically contiguous memory. The implementation of variable-sized CLOCK
needs the same data structure as LRU to keep the order of sweeping the CLOCK list. CAR is
implemented with a doubly-linked lists as illustrated in Fig. 2(a). The space complexity of two
CLOCK lists and two LRU lists is comparable to that of four doubly-linked lists whose maximum
total length is 2n. In addition, total n R-bits are required for two CLOCK lists. CAR also uses
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an adaptively tuned parameter called a target size, which costs at least P bits. Thus, the memory
overhead is (4Pn+ n+ 9P ) bits.

5.6.2. Time Complexity Then, we elaborate the time complexity of CAR and Compact CAR. Since
many of the analysis is overlapped, we first elaborate the time complexity of CAR, followed by that
of Compact CAR. CAR as well as CLOCK incurs tw + δ complexity at a cache hit since it requires
only to update R-bit. The worst-case complexity at a cache miss is O(n) because the hand must
move n times to go around the clock in the worst case where R-bit of all entries in CLOCK is set.

The average number of hand movements at a cache miss ω is represented as n/s, where s is
the number of cache misses during n hand movements. Because we aim to calculate the order of
ω, our analysis can be simplified by considering the extreme case where ω is maximized in the
steady state. Therefore, we consider two cases where n is maximized, and where s is minimized.
For brevity, we do not show how to maximize n and minimize s here, which is obtained by the
same calculation as CLOCK discussed in Appendix A.3. The difference between CLOCK and CAR
is that we must count not only the first and second accesses to a chunk but also the third accesses
should to maximize n since the accesses turn on R-bits of entries in T2. According to the calculation,
ω satisfies the following inequality:

ω =
n

s
≤ h1 + h2 + h3

h1 − h2
=

1 + h2

h1
+ h3

h1

1− h2

h1

=
1 + β + γ

1− β
.

Thus, the average-case time complexity depends on the characteristics of accesses rather than the
cache size n, and O(ω) = O( 1+β+γ

1−β ) = O( 1
1−β ) because 0 ≤ γ ≤ β ≤ 1. The time complexity of

Compact CAR can be calculated in the same way as CAR. The time complexity at a cache hit is
tw + δ. The worst-case complexity at a cache miss is O(n) and that of the average-case is O( 1

1−β ).

6. DISCUSSION ON THE IMPLEMENTATION OF COMPACT CAR FOR HIGH
PERFORMANCE ICN CORE ROUTER

6.1. Feasibility of Hardware Implementation

The throughput and capacity of a cache are the most serious obstacles to realize an ICN core router.
Assuming 10 Gbps of traffic and with 64-byte data packets, a single-line card has the throughput
of approximately 20 million accesses per second at maximum (equivalently, 50 ns access time
at a minimum). Since routers typically contain many line cards, a cache mechanism in a router
must realize a level of throughput in linear proportion to the number of line cards. In practice, the
existence of interest packets, data packets larger than 64 bytes, and skipping cache accesses by cache
hit may ease the required access time several-fold.

Figure 12 shows a memory overhead of CAR and Compact CAR. As explained in Section
5.6.1, CAR using a doubly-linked list consumes (4Pn+ n+ 9P ) bits. Assuming a router holds 20
million cache entries, the memory cost of CAR becomes 2 Gbit to hold 20 million entries because
P ≥ ⌈log n⌉. This cost is prohibitive according to the constraint of SRAM, whose available size is

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (0000)
Prepared using dacauth.cls DOI: 10.1002/dac



COMPACT CAR FOR ICN ROUTER 21

100

103

106

109

100 101 102 103 104 105 106 107 108 109

20M

Sp
ac

e 
co

m
pl

ex
ity

 [
bi

t]

Number of entries (10n)

210Mbit
CAR (with DLL)

CLOCK, Compact CAR

Figure 12. Space Complexities of CAR and Our Proposal(Compact CAR)

210 Mbit [24]. On the other hand, Compact CAR requires a memory overhead of one bit per entry.
Compact CAR consumes 20 Mbit; therefore the memory cost of Compact CAR is feasible.

6.2. Computational Overhead of Variants of CLOCK

In Section 5.6.2, we analyzed the computational cost of Compact CAR, which provides the
complexity of O(1/(1− β)) in terms of β. It may be arguable that the complexity could be
extremely large as the parameter β becomes close to 1.0. In fact, the β values of content-level
and packet-level workloads used in our simulation ranges from 0.38 to 0.71 and from 0.08 to 0.22,
respectively. 1+2β

1−β showing average-case time complexity of Compact CAR is less than only 2.0

when β < 0.2. 1+2β
1−β grows 6.0, which is the computational cost of LRU, when β becomes 0.625.

1+2β
1−β < 8.0 even if β < 0.7. Although the space complexity of CAR can be reduced by using a

memory shift operation instead of a doubly-linked list, the memory shift operation makes the time
complexity prohibitive as illustrated in Fig. 2(b).

If SRAM access time is 0.45 ns [24], the router can handle about 278 million accesses per second
even if eight hand movements per access are required as discussed above. Assuming 64-byte data
packets, this throughput is 142 Gbps. In conclusion, the computational cost of Compact CAR is
acceptable in the design of high performance ICN core router.

However, the data of the chunks must be kept in a scalable memory, such as dynamic RAM or a
solid-state disk. Since such memory is slow, we plan to consider a hierarchically structured cache
memory and a pipelined process to ensure a high average speed for read/write accesses. We will
eventually evaluate the router performance in a hardware implementation of the router, combining
Compact CAR and a name lookup entity [25], to demonstrate the feasibility of the router.

7. CONCLUSIONS

A few researches have been done for cache replacement algorithms in the context of ICN because
they have been intensively researched in the fields of web-caching and a CDN previously. This paper
argued that the conventional cache replacement algorithms cannot be directly applied to the design
of a high performance ICN core router.
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For this reason, we proposed a novel cache replacement algorithm named Compact CAR which
would be an important component in the design of a high performance ICN core router. Compact
CAR outperforms compared to conventional cache replacement algorithms in terms of cache hit
rate and memory usage in the design of ICN router. In detail, the proposed algorithm can achieve
the same cache hit rate with only one-tenth of memory usages that simple conventional algorithms
consume. In addition, the cache hit rate by the proposed algorithm is only 10% less than the optimal
case over the various simulation scenarios. In particular, the difference becomes negligible when
we use real traffic traces whose RD values are similar to the cache size. This result provides a clue
that a high cache hit rate can be achieved if the cache size adaptively changes according to the
distribution of RD value in real traffic. Furthermore, Compact CAR can dynamically adapt itself to
the network environment whose traffic access patterns change dynamically, which is important to
deal with various traffics in ICN.

ICN has been researched nearly 10 years and it may be the time to consider its deployment issue
in Internet-scale where the design of a high performance ICN core router becomes critical. We
believe that the proposed cache replacement algorithm plays a key role in the design of such a high
performance ICN core router in near future.
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A. TIME AND SPACE COMPLEXITY OF THE REMAINING POLICIES

We analyze the time and space complexity of policies which are skipped in Section 5.6.
We analyze them in the same manner as described in Section 5.6. In addition to the notations in Section

5.6, we define the following notations and variables. m is the number of records of discarded chunks in
LIRS. Statistical policies assign C-bit information (as a counter used in LFU) to every entry.

A.1. Complexity of FIFO

In FIFO, only a P -bit pointer to remember the head of the queue is required. When a cache hit occurs, no
additional operations are necessary (except for common operations such as reading the accessed chunk).
When a cache miss occurs, there are two additional operations: reading the pointer to discard the entry at
the head of the queue and updating it. Thus, the space complexity is P bits. The time complexity at a cache
hit and miss are δ and (tr + tw + δ), respectively.

A.2. Complexity of LRU

LRUDLL(Pointer Operation with a Doubly-linked List) To implement LRUDLL, it is necessary
to maintain a sorted doubly-linked list, where each entry has two P -bit pointers and the most recently used
(MRU) entry is at the front of the list. In addition, two pointers are needed to remember MRU and LRU
entries. Thus, LRUDLL totally requires (2Pn+ 2P )-bit memory overhead.

Let ei denote the i-th most recently accessed entry in LRUDLL (i = 1, 2, · · · , n), that is, smaller i means
that the entry is more recent. In addition, pprevi and pnexti denote the pointers that point the previous and next
entry, respectively. If ei is accessed, ei is moved to the front of the list. This process updates six pointers:
two pointers of ei, pnexti−1 , pprevi+1 , pprev1 and a MRU pointer. To find ei−1, ei+1 and e1, it is necessary to read
three pointers. On the other hand, if there is a cache miss, en is discarded and a new entry is cached as a
previous entry of e1. After reading the addresses of first, n-th and (n− 1)-th entries, it is required to write
a new entry and update pnextn−1 and pprev1 and MRU and LRU pointers. Consequently, (3tr + 6tw + δ) gives
an estimate of time complexity imposed by LRUDLL in the case of both a cache hit and a cache miss.

LRUS(Memory Shift Operation) LRUS introduces no additional memory cost because its data
structure maintains all control information needed to perform the algorithm. The LRU entry, which is
discarded when a cache miss occurs, resides at the bottom of the stack. When a cache miss occurs, a new
entry stored at the top of the stack.

However, LRUS requires shifting a large amount of entries to insert or move an entry just like the
algorithm described in Section 4.3. If ei is accessed, all entries from e1 to ei−1 must be shifted. If there
is a cache miss, it is required to shift entries from e1 to en−1 and write a new entry at the top of the stack.
In the worst case, n entries are moved. On average, n/2 entries are moved at a cache hit if all entries are
uniformly referenced. Thus, time complexity of LRUS is O(n). This process in a small-scale computer
system is typically supported by special hardware for the shifting operation; however, it is infeasible for use
in an ICN router because of an excessive amount of entries.

LRUC LRUC assigns each entry with a C-bit counter, which remembers the count of accesses and acts
as time-stamp. In addition, a C-bit counter is necessary to remember the total number of accesses. Thus,
LRUC imposes (Cn+ C)-bit space complexity.

The time complexity at a cache hit is O(1)in accordance with processes updating a counter and writing
the value at a new entry. The time complexity at a cache miss is O(n) because of the look-up process to
retrieve an entry with the minimum counter value from the unsorted list.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (0000)
Prepared using dacauth.cls DOI: 10.1002/dac



COMPACT CAR FOR ICN ROUTER 25

𝑖

4

3

2

1

content ID
⋯

#
 o

f 
a
c
c
e
s
s
e
s

⋯

⋯

ℎ𝑖 ℎ4 ℎ3 ℎ2 ℎ1

A cache miss occurs and a hand moves.

A cache hit occurs and R-bit is set.

A cache hit occurs and nothing happens.

ℎ1 + ℎ2
= [# of hand movements in the worst case]

ℎ1 − ℎ2
= [# of cache misses in the worst case]

Figure 13. Description of calculating ω of CLOCK

A.3. Complexity of CLOCK

To store n R-bits and a position located by a clock hand, the space complexity of CLOCK is (n+ P ) bits.
The time complexity at a cache hit is (tw + δ) since it requires only to update R-bit. The worst-case time
complexity at a cache miss is O(n) because a hand must move n times to go around the clock in the worst
case where R-bit of all entries in CLOCK is set. However, such a case rarely happens.

Let s denote the average number of cache misses during one cycle of a hand (i.e., n hand movements) to
calculate the average-case time complexity ω = n/s, which can be defined as the number of hand movements
per cache miss on average. Fig. 13 gives an intuitive understanding of how to calculate n and s according to
hi defined in the time interval [1, n] during n hand movements.

Because we aim to calculate the order of ω, our analysis can be simplified by considering the extreme
case where ω is maximized in the steady state. Therefore, we consider two cases where n is maximized, and
where s is minimized.

First, we discuss the case where n is maximized. It is obvious that the first access to a chunk causes a
cache miss and rotation of a hand. A cache hit by the second access to a chunk set R-bit of the accessed
entry. This entry whose R-bit is set causes a movement of a hand because the hand ignores the entry only
resetting the R-bit. Even if a chunk is accessed three or more times per cycle, the accesses do not cause a
hand movement. Therefore, the number of hand movements to go around CLOCK’s circular list is at most
h1 + h2 as illustrated in Fig. 13 (a red area).

Second, we determine the minimum number of cache misses s. It is clear that s = 1 at the minimum in the
worst case where (h1 − 1) chunks have been already accessed and their R-bits are set before our considering
time interval [1, n]. However, assuming the steady state where the popularity distribution of chunks (i.e. the
distribution of hi) is stable, there is at most h2 chunks that is accessed before the beginning of the interval.
Therefore, the number of cache misses is at least h1 − h2 as illustrated in Fig. 13 (a blue area).

According to the above discussion, ω satisfies the following inequality:

ω =
n

s
≤ h1 + h2

h1 − h2
=

1 + β

1− β
.

Thus, the average-case time complexity depends on the characteristics of accesses rather than the cache size
n, and O(ω) = O( 1+β

1−β ) = O( 1
1−β ) because 0 ≤ β ≤ 1.

A.4. Complexity of LFUH

Because LFUH is implemented with a heap, the complexity of LFUH accords with that of a heap. If a heap
is arranged in an array, (Cn)-bit space complexity is necessary because each entry holds a C-bit counter.
The operation performed at a cache hit is moving an accessed entry, which is less expensive than adding
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a new entry. The operation performed at a cache miss is comparable to the cost of adding and deleting an
entry. Both of the operations require O(logn) time complexity.

A.5. Complexity of ARC

ARC has two LRU lists and each LRU list contains n entries, therefore, the space complexity of ARC
implemented with LRUDLL is twice as much as that of LRUDLL. In addition, the LRU list is partitioned
into two portions. To remember the partitioned location, each LRU list must maintain a P -bit pointer. ARC
as well as CAR has the P -bit parameter. Thus, memory overhead of ARC grows 4Pn+ 7P bits. The time
complexity is O(1) as well as LRUDLL because there is no repetition in ARC’s algorithm.

A.6. Complexity of LIRS

LIRS uses two LRU lists which are called LRU stack S and Q. The maximum size of LRU S and Q is
(n+m) and n, respectively. In addition, two bits are assigned to each entry to mark a hot chunk§ and
a record of a discarded chunk. Thus, the space complexity is (4Pn+ 2n+ 2Pm+ 4P ). m is practically
smaller than 4n [8] although the length of m, which is determined by the length of a sequence of one-time
content such as SCAN, is theoretically unlimited.

Time complexity can grow significantly since there is an operation called stack pruning in LIRS. In the
worst case, m records of discarded caches are removed by only a single stack pruning operation, therefore,
worst-case complexity is O(m). Especially, if there is a long SCAN, this overhead becomes extraordinarily
large according to the length of the access pattern.

The average-case time complexity of stack pruning can be calculated in accordance with the average
number of deleted entries by stack pruning, ω. Assuming n entries (i.e., the same amount of entries as the
cache size) are removed by stack pruning while stack pruning is conducted s times, ω can be defined as
n/s. Specifying the time interval of hi accordingly, h1 accesses causes cache misses, h2 accesses render the
accessed entry hot switching the LRU hot chunk into a cold chunk and trigger stack pruning. Because the
other

∑
i≥3 hi accesses treated as accesses to hot entries, stack pruning is not conducted by the accesses.

According to the above calculations, the average-case time complexity is O(ω) = O(h1/h2) = O(1/β). The
more one-time accesses occupy the traffic, the larger this complexity becomes.

§LIRS classifies chunks into two types: a hot chunk and a cold chunk. Briefly, ‘hot’ means to be popular and ‘cold’
means to be unpopular. They have similar features to the two lists T1 and T2 in Compact CAR.
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