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ABSTRACT
Wireless sensor networks will be one of the fundamental
technologies for realizing the future Internet of Things (IoT)
environment. In IoT, the number of connected devices is
expected to increase drastically and there will be a wide
variety of requirements for application services, which will
lead to frequent modifications or construction/destruction
of topologies. In such situations, it is essential to know how
power-saving, low-latency, and highly efficient IoT network
topologies can be constructed. In this paper, we take inspi-
ration from the brain’s network of interconnecting neurons
is known for its efficient properties. We propose a virtual
IoT network construction method based on the Exponen-
tial Distance Rule (EDR) model that describes the connec-
tion structure of the areas in the cerebral cortex. Since the
original EDR model deals with large-scale networks with an
enormous number of neurons and generates links between
nodes considering physical distance constraints, the virtual
IoT network constructed by the proposed method is able to
achieve high scalability, low latency, and high communica-
tion efficiency at a relatively low cost.

Keywords
brain network; virtual network; Internet of Things (IoT);
wireless sensor networks (WSN); exponential distance rule
(EDR)

1. INTRODUCTION
Wireless sensor networks (WSNs) are ad-hoc type of net-

works on which wireless communication devices with sensor
functionality connect to each other for gathering information
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from the environment. With the recent progress in minia-
turization of wireless devices and the increased sophistica-
tion in function, WSNs are expected to serve as the basic
technology for the Internet of Things (IoT). In the future
IoT scenario, the number of connected wireless devices is ex-
pected to increase drastically and the types of applications
on those devices is going to diversify beyond the current role
as WSNs. However, in the current IoT situation, individual
networks are constructed according to each provider’s policy
and mainly transfer information through the Internet [8,22].

Virtualization of WSNs has also received a lot of attention
for the realization of IoT as a social infrastructure. There-
fore, we consider in this paper a virtualized IoT network,
which is composed of an infrastructure layer on which phys-
ical IoT resources are inter-connected and a service layer for
communication networking. We assume that each IoT net-
work is constructed based on its provider’s policies to fulfill
its purpose or specification of application service. In other
words, this paper deals with the construction of a virtual
IoT network topology by virtually interconnecting between
these individual physical IoT networks as subnetworks or
network modules. This virtual IoT network permits admin-
istrators on the service layer to provide the required function
to each user. For the construction of the virtual IoT net-
work, it is substantially important to reveal an appropriate
and efficient way to connect between each module and cre-
ate the network taking into account scalability, construction
cost, and communication efficiency.

As an inspiration to solve this problem, we focus on recent
results from the analysis of brain networks in neuroscience,
which has progressed remarkably in recent years. Brain net-
works are well known for their high communication efficiency
and low metabolic cost, i.e., the amount of consumed energy
needed for performing a given task, and thus the characteris-
tics of brain networks are very suitable to help in developing
efficient telecommunication networks. In recent work, brain
networks have been characterized by their small-world or
scale-free properties [2, 5, 20].

This paper utilizes another novel brain network model
with geometric constraints, the Exponential Distance Rule
(EDR) model, which was proposed by Ercsey-Ravasz et al. [6,
15, 16]. The brain’s cortex is composed of multiple areas



separated by their local functional roles. The EDR model
describes the inter-areal connectivity structure, where mul-
tiple neural links are generated between pairs of brain ar-
eas according to a probability function that decays with
distance between these areas. Comparison between corti-
cal networks obtained from measurements and artificial net-
works generated by the EDR model revealed that the EDR
model can generate networks with similar graph-topological
features [6].
In this paper, we propose a construction method of a vir-

tual IoT network based on the EDR model. We associate the
areas in cortical networks with the networks of wireless de-
vices (WSN modules) of different IoT networks, and neurons
in each of those areas with wireless devices in the WSN mod-
ules. We assume that if the distance between base stations
from any pair of modules is small enough, they can be inter-
connected. Over the infrastructure layer of inter-connected
WSN modules, we construct virtual networks based on the
EDR model and study the performance of the proposed vir-
tual IoT network topologies.
The structure of this paper is as follows. In Section 2,

we introduce related work on brain networks and virtualized
wireless sensor networks (VWSNs). Then, we propose our
novel method to construct VWSN based on the generative
brain network model in Section 3. In Section 4, we show the
results from simulations. Finally, we conclude our paper in
Section 5.

2. RELATED WORK
In this section we will briefly introduce existing research

in the two major areas that our paper is addressing: virtu-
alization of wireless sensor networks and brain networks.

2.1 Virtualized Wireless Sensor Networks
WSNs are currently being integrated into IoT and vir-

tualization of WSNs is attracting a lot of attention due to
its benefits: (i) new application services can reuse existing
network resources, (ii) heterogeneity between network units
can be abstracted away to overcome differences between in-
frastructure modules, and (iii) the separation of application
and infrastructure accelerates the development of new ser-
vices [11, 13]. These features allow WSNs to become more
flexible systems, and therefore virtualization is regarded as
key technology to realize future IoT networks.
The architecture for a Virtualized Wireless Sensor Net-

work (VWSN) is shown in Fig. 1, see [8]. In this architec-
ture, Sensor Infrastructure Providers (SInPs) deploy many
physical sensor network resources that form WSN modules.
Above that, Sensor Virtualization Network Service Providers
(SVNSPs) hire infrastructure resources from SInPs, and thus
create Virtualization of Sensor Network (VSN).
Such an architecture is certainly effective for efficient uti-

lization of resources and flexible network construction. How-
ever, it lacks some attention to the future IoT situation.
The expected increase in application service variety will also
cause frequent modifications, such as addition/removal of
nodes or links, or construction/destruction of virtual net-
works. Even though the construction of virtual networks is
easier than that of physical networks, it is still difficult to
determine the network topology which is best for each ap-
plication service. The rapidly increasing number of nodes
leads to higher complexity in future WSNs to collect the
latest information from the whole network. Therefore, com-
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Figure 1: Virtualized wireless sensor networks com-
posed of underlying physical networks

putational complexity and the cost for topology design will
be too high for frequent construction.

2.2 Connectivity Structure of Brain Networks
The connectivity structure of brain networks has been re-

cently studied from the viewpoint of complex networks and
discussions on the structure has progressed with regard to
the small-world or scale-free properties [2,5,19,20]. Network
models taking these properties into account can reproduce
the high modularity and low hop-counts found in brain net-
works, but most models ignore the physical lengths of links.
In a mammalian brain network, the metabolic cost to gener-
ate and maintain neural connections increases with the phys-
ical distance between neurons. On the other hand, for the
quick information integration over the whole brain network,
it is necessary to connect neurons that are far from each
other. Ultimately, brain networks are constructed based on
the trade-off between metabolic cost and communication ef-
ficiency [9]. Therefore, it is pointed out in [12] that the
models without distance constraints cannot adequately re-
produce the structural characteristics of brain networks.

In telecommunication networking, both wired and wireless
networks have to reduce communication distances: in wired
networks, the increase of link length directly causes an in-
crease of wiring cost, whereas in wireless networks, distant
communication requires high transmission power to over-
come signal attenuation and interference. However, long
connections are vital for information integration, suppres-
sion of communication delays, and robustness.

We focus on the similarity between brain and telecom-
munication networks regarding the relationship of efficiency
and distance constraints, and apply these mechanisms to
construct better topologies in terms of construction cost and
communication efficiency.

3. PROPOSED VIRTUAL IOT TOPOLOGY
CONSTRUCTION METHOD

3.1 Cortical Inter-Areal Connectivity Model
The Exponential Distance Rule (EDR) model is a network

model which is derived from the anatomical connectivity
structure of the macaque monkey [6]. For the construction



of the EDR model, Ercsey-Ravasz et al. used in [6] a par-
cellation of the entire macaque cortex into 91 cortical areas,
i.e., areas consisting of similar types of neurons, and pro-
posed a network graph whose nodes represent each cortical
area. They picked 29 of the spatially distributed 91 cortical
areas, so that the subgraph of these 29 areas can provide
a complete estimation of the entire network. Retrograde
tracer injections into those 29 areas revealed 6,494,974 neu-
ral connections and 1,615 inter-areal connections and that
the existence probability p(d) of neural connections expo-
nentially decays with the inter-areal distance, see Eq. (1).

p(d) = c exp (−λd) (1)

The term c is a normalization constant, d is the physi-
cal distance between areas, and λ is an intensity parameter
(λ = 0.180mm−1 used in [6] to approximate the cortical
connectivity of macaques). Regarding the creation of neural
links, physical distance becomes a very critical constraint
since the establishment and maintenance of neural connec-
tivity requires significant metabolic cost [9]. Therefore, neu-
rons tend to form connections with other closer neurons and
locally create dense clusters, while having very few long-
distance connections to remote neurons to accelerate infor-
mation integration. Equation (1) expresses the existence
probability of a neural link with inter-areal distance d. Even
though EDR is a very simple model with only a single pa-
rameter λ, it can reproduce various properties of cortical
inter-areal networks, such as communication efficiency, dis-
tribution of cliques, eigenvector spectra, existence of core
structure, etc. [6].
A similar graph model to EDR by Waxman [21] is some-

times used for modeling the Internet topology. However,
while a vertex in the Waxman model represents a network
node, it represents a module containing multiple nodes in
EDR. The idea of constructing a topology among modules
is the starting point of our proposed method. Unlike the
Waxman model, which only runs a single trial on every ver-
tex pair whether to form a link during construction of the
binary graph, vertex pairs are repeatedly and randomly se-
lected in EDR while creating weighted connections between
vertices. Besides, only a single parameter is used for EDR,
while a combination of two parameters is used in the Wax-
man model.

3.2 Construction of Virtual IoT Network
WSNs are considered as the basic technology for IoT [14,

23] and, in combination with network virtualization, they
can construct flexible and efficient virtual IoT networks on
distributed wireless network devices [8, 10]. In our model,
we assume a network that consists of two layers: Infrastruc-
ture Layer (Infra-Layer) and Virtualized Service Layer (VS-
Layer), see Fig. 2. We assume that the devices on Infra-layer
are supplied as physical resources, where wireless network
devices physically connect to each other and form network
modules. Then, gateway nodes in Infra-Layer modules vir-
tually connect to each other and form the VS-Layer. In this
context, we assume that any node has the ability to serve
as a gateway node and its role depends on whether it is
connected to an Inter-VL or not.
We now propose a method to construct a network topol-

ogy on VS-Layer in this virtual IoT network model. In our
method, we slightly modify Eq. (1) from the EDR model
that defines the probability of generating connections for the
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Figure 2: Virtual IoT network model

VS-Layer. The EDR model does not specify how nodes are
connected by Inter-module Virtual Links (Inter-VLs), there-
fore we now describe the algorithm to construct the virtual
IoT network model in our proposed method.

3.2.1 Infra-Layer
The Infra-Layer is composed of multiple WSN modules.

When constructing the Infra-Layer, we first deploy N nodes
randomly in the area and then connect all nodes located
within a certain communication range r of each other. Next,
we partition the network into modules with the InfoMap
method [18]. Finally, we remove connections between mod-
ules and obtain the resulting topology at Infra-Layer.

3.2.2 VS-Layer
In the process of InfoMap module division, a gateway node

is determined for each module, through which the flow of
random walks between all node pairs in each module is max-
imal. We define the coordinate of this representative node
as the coordinate of the module. Modules connect to each
other via these representative nodes according to the prob-
ability function in the EDR model and form Inter-VLs. In
this manner, the VS-Layer is constructed.

Regarding the formation of Inter-VLs, we modified the
variable and parameters in Eq. (1) to the following Eq. (2)
and generate Inter-VLs with probability p(dn) in order to
widen the application range of the EDR model from cortical
inter-areal connectivity to IoT.

p(dn) = exp (−dn/α) (2)

In Eq. (2), dn is the relative distance between two specific
modules, i.e., dn = d/dmax where d is the actual Euclidian
distance and dmax is the largest of all inter-module distances.
To define a control parameter between 0 and 1 so that Eq. (2)
becomes adaptive to any scale of networks, we replace λ by
a new parameter α = (λdmax)

−1. Thus p(dn) represents
the probability whether to form a connection between these
two modules. Since we repeat the procedure for generating
Inter-VLs until a certain number of links is reached, we set
the normalization constant c = 1 in Eq. (1).

In the construction of the VS-Layer, we repeat the forma-
tion of Inter-VLs according to the probability p(dn) between
randomly chosen modules until we reach a predefined num-
ber of L Inter-VLs. At this time, L = mM , where M is the
number of modules and m is a parameter that determines
the density of Inter-VLs among all module pairs. As a char-
acteristic of our proposed method, multiple Inter-VLs can
be assigned between the same module pair. When we finish
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Figure 3: Inter-connected IoT network model

generating the VS-Layer, we next assign edges of Inter-VLs
to nodes in the modules.

3.2.3 Assigning Endpoints of Inter-VLs
Inter-VLs are connected to nodes in modules at the Infra-

Layer, passing through the VS-Layer. There are various
ways to assign Inter-VL edges to nodes and in this paper we
select them in the order of the node degrees. This means
that endpoint nodes of Inter-VLs are chosen so that the sum
of the degrees becomes highest among all possible pairs of
endpoints. By this assignment, we exclude pairs of end-
points on which Inter-VLs already exist.
It is one of features of the EDR model that one or more

links can connect two modules. We define the weight be-
tween two modules as the number of links between them.
Figure 3 shows an example network as the outcome of the
above procedure, where each link is unweighted and undi-
rected.

4. SIMULATION RESULTS
In this section, we discuss the results from computer sim-

ulations to evaluate the performance of the virtual IoT net-
work constructed by our proposed method.

4.1 Reference Network Topologies
We generate a virtual IoT network topology using Eq. (2),

which is inspired by the EDR model. This equation can vary
the ratio of inter-module links by adjusting the parameter
α. In the following evaluation, we prepared several EDR
networks with different α, as well as some reference net-
work models: Random model, Barabási-Albert (BA) model,
Full-Link model, and Minimum-Link model, which we will
explain in the following subsections.

Random Model
For the construction of the Random model, we repeat ran-
domly choosing a pair of modules and connecting them.This
procedure stops when L Inter-VL are generated.

BA Model
The Barabási-Albert (BA) model [1] is one of the most well-
studied complex network models that have the scale-free
property and they are often used in the field of informa-
tion networking to generate Internet-like topologies. When

constructing a topology based on the BA model, we first
choose 5 modules and create an initial full-mesh topology.
Then, we repeatedly add a new module to the initial topol-
ogy, and at each time we probabilistically choose m′ other
modules from the existing topology for generating a connec-
tion between those modules. At this time, the probability
that module i is chosen is given by pi = ki/Σjkj , where
ki is the degree of the virtual node representing module i
and m is chosen so that the same number of Inter-VLs are
generated with the EDR model, and approximately m′ = m.

Full-Link Model
The Full-Link model constructs a topology with links be-
tween all pairs of modules. As a result, this model is the
most costly, but most efficient in terms of path length and
hop count.

The Minimum-Link Model
The Minimum-Link model constructs a topology with the
minimum total length of links having the same number of
Inter-VLs as the other models except the Full-Link model.
For the construction, we first generate a minimum spanning
tree topology and then add links between the closest pair of
modules until a sufficient number of Inter-VLs is generated.
In contrast with the Full-Link model, this model realizes the
smallest cost while communication efficiency is considerably
low.

4.2 Evaluation Metrics
We will now describe the network metrics that will be used

to compare the topologies.

Average Path Length (APL)
APL is a metric which calculates the average path length
between all node pairs. In this context, the path length is the
smallest sum of all link lengths on the route between a node
pair. Each path is composed of two types of links: intra-
module links from a node to a gateway node on Infra-Layer
and inter-module links between gateways on VS-Layer.

Average Hop Count (AHC)
AHC is a metric which calculates the average hop count
between all node pairs. Similar to APL, we also use here
the route that minimizes hop counts between node pairs.

Wiring Cost (WC)
We determine WC to estimate the cost needed to construct
a certain topology. Since we focus on wireless networks,
WC is calculated as the sum of squares of the lengths of all
Inter-VLs on VS-Layer based on the Friis transmission equa-
tion [7], which predicts that energy consumption on wireless
signal transmission increases with the square of distance.

Modularity
Modularity is the metric that expresses the degree of com-
munity structure found in a network topology [17]. When
we determine modularity, we divide a network into a parti-
tion of modules and modularity is expressed by the fraction
of the edges that fall within the given groups minus the ex-
pected fraction if edges were distributed at random. The



calculation of modularity Q follows Eq. (3).

Q =
∑
i

(eii − a2
i ) (3)

In Eq. (3), eij is the proportion of links between modules
i and j divided by the total number of all links and ai =∑

j eij . In other words, eii is the proportion of links within
a module i to all links, ai is the proportion for an endpoint
of a certain link to be contained in a module i, and a2

i is the
proportion for both edges of a certain link to be contained in
module i. In our evaluation, we regard a single WSN module
as a node in this equation, i.e., we evaluate modularity of
topologies on VS-Layer. Then, we use InfoMap [18] to divide
a VS-layer topology into modules for calculating Eq. (3).

Information Spreading Speed
In order to evaluate the efficiency of the virtual IoT net-
work topologies for spreading information, we perform sim-
ulations of flooding and measure the time needed for data
packets to spread over all nodes on each topology. Since it
still remains unpredictable what type of traffic patterns will
appear in future, we perform flooding in our simulation to
measure the average time of information diffusion. When a
data packet arrives at an arbitrary node, the node forwards
this packet to each of its neighboring nodes. In this context,
an adjacent node means that the nodes are connected by
one hop on Infra-Layer or VS-Layer. When a node receives
a packet, it drops the packet if it had previously received
one in the past, otherwise it passes the packet to its neigh-
bors. In this flooding simulation, two types of delay will
occur: (i) the service delay on each node according to the
exponential distribution with service rate µ = 1/D s−1 and
(ii) the propagation delay over each link which takes D s per
100m. These two types of delay were selected in such way
that the service delay on a node becomes on average equal
to the propagation delay on an 100m link. In this manner,
we investigate the average time for a single packet to spread
over the entire topology.

4.3 Evaluation Results

4.3.1 Structural Properties of Models
We compared the structural properties of the generated

virtual IoT networks and summarized the results in Table 1.
We assume a 300×300m2 square area and deployN = 4, 000
nodes, each having r = 8m communication range. The In-
foMap algorithm generates M = 223 modules on average in
all simulations. All models use a link density of m = 5 and
all models except the Full-Link model have the same num-
ber of links L = mM . All values shown in Table 1 are the
average results from 100 computer simulation runs.

Average Path Length (APL).
The Full-Link model minimizes APL, since it generates

Inter-VLs between all possible pairs of modules, while the
Min-Link model shows the worst score, since it specializes
in reducing the cost by sacrificing efficiency. Remarkably,
EDRα=0.025 has the second smallest APL, which is very close
to that of the Full-Link model, where the EDR model gen-
erates numerous short Inter-VLs and only few long links to
construct the VS-Layer. The long distance Inter-VLs con-
tribute to a short APL because they are mostly included
in the minimum paths between distant nodes. On the other

hand, the short Inter-VLs contribute to decreasing the possi-
bility of making detours on the topologies. From the result
of EDRα=0.025, we can tell that the proportion of long to
short Inter-VLs makes the parameter EDRα=0.025 decrease
APL. We will provide further investigation on the effect of
this parameter α in Section 4.3.3.

As we increase the value of α in EDR, the proportion
of long Inter-VLs increases and its topological shape ap-
proaches that of the Random model where the lack of short
links causes detours between pairs of nodes and therefore
APL increases. The BA model ignores the geometric fea-
tures when constructing a topology and its APL becomes
almost the same as that of the Random model.

Average Hop Count (AHC).
For the same reason as APL, the Full-Link model has the

highest decrease for AHC and the Min-Link model visibly
increased its AHC, rendering the topology no longer usable.
The model which showed the second smallest value was the
BA model. This is the effect of the existence of hub nodes in
the BA model, which is the unique feature of this model. By
passing through these hub nodes, the BA model can decrease
hop counts among nodes. Meanwhile, EDRα=0.025 showed
the largest AHC value except for the Min-Link model. This
is because it has the smallest number of long Inter-VLs and,
therefore, in order to reach a certain node, the route has to
be composed of many short Inter-VLs.

Wiring Cost (WC).
The Min-Link model creates a connected topology with

the possible minimum WC forming L Inter-VLs. Note that
the Full-link model generates Inter-VLs between all mod-
ule pairs and results in generating a MC2/mM ≈ 22.3 times
larger number of Inter-VLs than other models. On the other
hand, EDRα=0.025 has a much smaller value compared to the
others except for the Min-Link model, having 0.027 times for
the Randommodel and 0.0012 times for the Full-Link model.
From these results, we can definitely say that EDRα=0.025

can considerably decrease the wiring cost of a topology ap-
proaching to the Min-Link model. The Random and BA
models ignore geometric constraints as we mentioned in the
APL paragraph and their WC is higher than the other mod-
els except for the Full-Link model.

Modularity.
The Full-Link model appears to be here a special case,

since maximum modularity of 1.0 is reached by having the
whole network as a single large module. EDRα=0.025 showed
the second largest value. This may be since EDRα=0.025

locally generates many dense topological structures by nu-
merous short Inter-VLs and a few long Inter-VLs connecting
that local structure. In this manner, EDRα=0.025 can create
high modularity. Compared to the Random model, the BA
model showed a slightly lower value. This is because the BA
model creates a topology that can be separated into a core
and periphery [3, 4], and therefore the resulting topology
lacks a homogeneous community structure.

4.3.2 Differences Between Network Sizes
We next investigate the effect of the different network

models on the number of modules in the virtual IoT network.
Previously, we deployed N = 4, 000 nodes on a 300×300m2

square area. In addition to the results discussed above, we



Table 1: Comparison of structural properties between network models (N = 4,000)
Min-Link EDRα=0.025 EDRα=0.10 EDRα=0.40 Random BA Full-Link

APL [m] 504 193 197 247 297 296 171
AHC 35.3 9.53 7.01 6.86 6.91 6.57 4.15

WC [105m2] 0.00594 0.0583 0.492 1.51 2.19 2.17 47.6
Modularity 0.365 0.690 0.426 0.285 0.285 0.255 1.00

also evaluated the same metrics as in Section 4.3.1, where
N = 8, 000 nodes are deployed on a 300

√
2 × 300

√
2m2

square area, while keeping all other settings the same, see
Table 2. When N = 4, 000, the number of modules is
M ≈ 223, whereas for N = 8, 000 the number of modules
becomes M ≈ 422 on average for 100 repetitions of the com-
puter simulation. Additionally, we calculated the ratios of
the values in Table 2 divided by those in Table 1, as shown
in Table 3, in order to see the change in performance for
each model when it scales larger or smaller in terms of the
number of modules.
According to Table 3, AHC and modularity show almost

no difference, but APL and WC show remarkable features.
Regarding APL and WC metrics, EDRα=0.025 showed the
lowest values of all models. Thus, when constructing topolo-
gies with a larger number of modules, EDRα=0.025 can keep
APL and WC smaller than the other models, while AHC
does not increase at all. We can attribute this to the high
modularity of EDRα=0.025, because a higher community struc-
ture enables the topology to easily shift to a larger scale. The
Full-Link model has the highest modularity among all mod-
els. However, it lacks sparseness and plasticity, and therefore
it cannot adapt to a larger scale. Another important finding
is that although the Min-Link keeps WC the smallest when
the network becomes larger, AHL and AHC become much
worse and lose their community structure.

4.3.3 Trade-off for Cost and Efficiency over α

In Sections 4.3.1 and 4.3.2, we revealed novel characteris-
tics of the virtual IoT network topology based on the EDR
model with small parameter α. Therefore, in this Section 4.3.3
we focus only on the EDR model and observe the effect of
its parameter α. Figures 4–6 show APL, AHC, and WC,
respectively, for N = 4, 000 on the y-axis, and the x-axis
represents α. The results are averaged over 50 simulation
trials and error bars show confidence intervals for the 95%
confidence level.
Among the three figures, only APL shows non-monotonic

characteristics as seen in Fig. 4. We already mentioned in
Section 4.3.1 the importance of the proportion of long and
short Inter-VLs which depends on the parameter α. From
Fig. 4, it can be said that if α is increased, APL increases
due to the detour on routes between nodes, and at the same
time if α decreases too much, APL increases again because of
the lack of shortcuts between distant nodes. Therefore, the
best parameter for reducing APL is about α = 0.05, which
provides the best proportion of long and short Inter-VLs.
Observing Fig. 5, we can easily find that AHC does not

change much in the range of 0.1 ≤ α ≤ 0.8 and drastically
increases as the parameter α is smaller than 0.1. From this
result, we can conclude that the lack of long Inter-VL does
not have much influence on AHC in the range of α ≥ 0.1 and
below this value, the topology lacks long Inter-VLs and dis-
tant areas become difficult to reach, leading to an increase
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Figure 4: Average Path Length over α
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Figure 5: Average Hop Count over α

of AHC. Figure 6 tells us the most basic tendency of the
topology: as we decrease the parameter α, WC exponen-
tially decays, reflecting the exponential feature of Eq. (2).

As we have shown above, there is a trade-off between cost
and efficiency depending on the parameter α: APL keeps
the lowest value around 0.025 ≤ α ≤ 0.10, while AHC and
WC show drastic increase and decrease as α approaches 0.
Therefore, in summary, we can conclude that our proposed
method can create a topology that satisfies the best perfor-
mance of cost and efficiency for each user by only adjusting
the parameter α at around 0.05.

4.3.4 The Effect of Weight Assignment on Informa-
tion Spreading Speed

In the previous section, we have shown that our proposed
method performs best with the parameter α ≈ 0.05. Thus,
we set this parameter fixed to 0.05 and investigate the effect
of the weight assignment by the EDR model. A small α is
also preferable to study this effect, since multiple Inter-VLs



Table 2: Comparison on structural properties between models (N = 8,000)
Min-Link EDRα=0.025 EDRα=0.10 EDRα=0.40 Random BA Full-Link

APL [m] 793 250 276 361 454 436 236
AHC 54.6 10.5 7.72 7.66 7.64 7.24 4.29

WC [105m2] 0.00815 0.133 1.28 3.92 5.70 5.71 228
Modularity 0.337 0.701 0.429 0.292 0.291 0.247 1.00

Table 3: Ratio of properties small to large scale of networks (Table 2/Table 1)
Min-Link EDRα=0.025 EDRα=0.10 EDRα=0.40 Random BA Full-Link

APL 1.57 1.29 1.40 1.45 1.52 1.47 1.38
AHC 1.54 1.11 1.10 1.12 1.10 1.10 1.03
WC 1.37 2.28 2.59 2.58 2.60 2.63 4.78

Modularity 0.92 1.02 1.00 1.02 1.02 0.96 1.00
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Figure 6: Wiring Cost over α

are easily found in nearby modules. In this context, weight
corresponds to the number of Inter-VLs between modules
and the EDR model creates a topology where the weight be-
comes larger as the distance between the modules becomes
smaller. For comparison, we also prepare two types of ran-
domized models with the same wiring cost.
The first is the Random Weight model, where we ran-

domly reassign the weights between the modules while keep-
ing the total lengths of Inter-VLs. At this time, we do not
generate Inter-VLs between modules if they aren’t connected
among each other by Inter-VLs. The other model is the Ran-
dom Shape model, where we generate a random VS-Layer
topology that has the same total length of Inter-VLs as the
original EDR model. Rather than keeping the number of
Inter-VLs fixed, we believe it is more important to keep the
total wiring cost constant in this evaluation because it shows
the performance difference at the same construction cost. If
we ignore this cost, the rewired topology has much higher
cost and efficiency at the same time and is not suitable for
comparison. For the evaluation of the effect of the weight
assignment, we run a flooding simulation and evaluate the
information spreading speed. Each topology has N = 5, 000
nodes on a 200 × 200m2 area and divided into M ≈ 102
modules by InfoMap on average. We used m = 25 so that
the effect of weight assignment becomes clearer. The com-
munication range of each node is r = 8m and is the same
value as in the previous evaluation. We run the simulation
on 20 topologies and for 10 packet flows on each topology.
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The result is shown in Fig. 7, where the x-axis represents
the number of nodes N over which a data packet is spread
and the y-axis represents the time it takes to spread over N
nodes.

Figure 7 shows that the Random Shape model spreads
data packets slowest among the three methods. This implies
that the topological shape of the EDR model is reasonable
for efficient information spreading. The more interesting
and notable point is that the original EDR model is supe-
rior to the Random Weight model. This means that gener-
ating many Inter-VLs between nearby modules is preferable
for quick information spreading over costly long Inter-VLs
between distant modules. From those results, we can say
that the weight assignment method of the EDR model is
efficient in terms of information spreading and, therefore,
our proposed method can provide a high performance when
parameter α is adjusted to a small value around 0.05 and
applied to a network where each module consists of a large
number of nodes.

5. CONCLUSION
In this paper, we proposed and evaluated a method to

construct a virtual IoT network that has similar structural
features as the brain’s cortical network. For α ≈ 0.05, the
generated network showed a good performance in the trade-
off between cost and efficiency. Furthermore, our method
did not degrade its performance in comparison with other



models when the number of modules became larger. Be-
sides, when the number of sensor nodes in each module in-
crease, the unique weight assignment of EDR produced a
better performance than other methods. Now we can con-
clude that our proposed brain-inspired method can produce
a virtual IoT network topology, which utilizes features that
originate from brain networks with the best performance in
the trade-off between cost and efficiency, as well as high scal-
ability. Furthermore, our proposed method will bring more
benefits when we apply the method to the future IoT situa-
tion, whose traffic pattern is considered to require modules
in close proximity to communicate and cooperate with each
other.
However, in this paper we only considered structural prop-

erties. We can further improve our method by including
other constraints when constructing a topology for a better
community structure. For example, the BA model showed
better evaluation in AHC over EDRα=0.025 and, therefore, a
combination with the preferential attachment method may
improve our method.
Besides, performance limitations of sensor nodes are so far

unconsidered in our method. For a more realistic situation,
the upper limit of processing performance of a node has to
be considered. In relation to that, we need to define how
our method can share the same node among different ap-
plication services when multiple VS-Layers are constructed.
Further evaluations with more strict simulation settings are
necessary to investigate these issues.
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