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Abstract The Internet is rapidly developing toward the next generation of the Internet of Things (IoT), which accelerates the
emergence of interconnected network architectures even further. However, the way to design interconnected networks that can
meet various changes in environment and service demands remains an important issue that has not been addressed yet. The
interconnected networks should suppress or prevent diffusion of malicious information, whereas they should enhance diffuse
urgent information around the whole networks. In this study, we propose an Network of Networks (NoN) model inspired by
the nature of modular interconnected networks in the brain. Our proposed NoN model can prevent malicious information to
diffuse one subnetwork to another, but not that takes place on interconnecting links. In order to find a strategy to change the
speed of information diffusion, we further configure the connectivity within and between subnetworks of the interconnected
networks that matches our proposing model. Through simulation experiments, we confirmed that our proposing model can
diffuse information as fast as a purely interconnected networks, that prevent no information on the interconnecting links. The
results also show that our proposed model reduce the speed of the information diffusion almost the same as that of the worst
case in a independent subnetwork, that has no interconnecting links.
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1. Introduction

Modular inter-connected networks, often referred to as Network
of Networks (NoN), have been observed in many complex systems
in biology, society, science and technology, as well as the Inter-
net [1,6]. In contrast to more static types of complex systems, the
Internet is rapidly developing toward the next generation of the In-
ternet of Things (IoT), which permits connecting various kinds of
interconnected devices in everyday life via the Internet protocol and
is expected to accelerate the emergence of modular architectures
even further.

An example of the modular architectures in the future Internet is
the functionally interconnected networks in smart cities [7]. In the
future IoT society, the number of connected devices to the Internet
and the type of services provided through the Internet are expected
to show an explosive and continuous increase. Smart cities automat-
ically collect data from those IoT devices and intelligently integrate
them for improving services for healthcare, surveillance, infrastruc-
ture, public utilities, etc., resulting in the realization of smart homes,
smart grid, and more. To give simple examples in smart homes,
air conditioning systems captures temperature, humidity, and circu-
lation from IoT devices and provide best services responding to a
variety of situations. In these situations of smart cities, a process-
ing halt in one service module stops the functions in other interde-
pendent modules. Adding to the situations we can predict at the
moment, the number of such automated and independent service
systems over the IoT infrastructure is expected to increase in future
smart cities.

However, the way to design an NoN architecture that can meet
various changes in environment and service demands remains an
important issue that has not been addressed yet. Therefore, we
first focus on interdependent models in NoN that have been among
the topics in the research field of modular interconnected net-
works [8,9]. Many biological systems have high robustness against
network failures, and Morone et al. [9] proposed another NoN
model from the perspective of neuroscience, i.e., brain networks.
This NoN model, termed as Brain NoN hereafter, considers the
characteristics of activation rules of neural firing in brain networks,
which is well-known for its high robustness [10, 11]. The robust
interdependency in Brain NoN can be applied to emerging inter-
connected Internet services, due to the similarity with the intercon-
nected information networking services. Application of the acti-
vation rule of Brain NoN for services in information networking,
however, has not been considered so far. Moreover, there are two
important questions yet to be answered in those interconnected in-
formation networks regarding structural connectivity: (i) how is the
connectivity within modules? and (ii) how is the connectivity be-
tween modules?. In this study, we attempt to answer those ques-
tions from the viewpoint of influential nodes and nodal correlations.
Influential nodes in networks are defined as those nodes that have a
large influence for controlling the influence over the whole networks
with a tiny fraction of nodes [12-17] . Nodal correlation [18, 19] is
formulated based on the correlation of nodal degrees of two nodes
and termed as assortativity.

The aim of our work is to design an NoN architecture for infor-
mation networking that meets environmental changes and service
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Figure 1 Activation rule in Brain NoN model [9]

demands, which can be summarized as high robustness and com-
munication efficiency, of each service module. For this aim, we
first propose an NoN model inspired by the Brain NoN that matches
situations in information networking with service interdependency.
Second, by taking the nodal influence and nodal correlation into
account, we propose a method to configure the intra-modular and
inter-modular connectivities and evaluate the performance of the
NoN. Evaluation results reveal that our proposed NoN model can
realize both fast and slow diffusion by changing its topological con-
nectivity, and, unlike the conventional NoN model without module
interdependency, it can achieve robustness against epidemics and
efficient communication. At the same time, we also show the strate-
gies for enhancing robustness against epidemics and communica-

tion efficiency in our proposing NoN model.

2. Related Work

2.1 Models of Network of Networks

In the Brain NoN model, nodes can have three different states:
active, input, and no-input. Each node can be active only when its
own and its neighbors’ input satisfy a certain condition. These three
states of node ¢ are determined by two variables, input variable n
and activation variable o, as follows:

@ : active (n; = 1,0, = 1)

@ :input (n; = 1,0, = 0)

O: no-input (n; = 0, 0; = 0)
The patterns of each circle represent nodal states corresponding to
Figure 1, which shows an example of state transition in a Network
of 2 Networks (2-NoN) of the Brain NoN model. The values for the
input variable n are assumed as given and they sequentially deter-
mine the values for the activation variables . Node 7 can be active
only when its own input and the input of at least one node in the
other modules exists, the value of o is defined as follows:

IT a —nj)], (1)

o = Ny {1 —
JEF (1)

where F () denotes the set of nodes connected to node ¢ via inter-
modular links.

2.2 Identification of Influence in Networks

Our study also focuses on the vital nodes in order to control accel-
eration and suppression of information diffusion in interconnected
networks. Identification of a set of nodes that maximizes the influ-
ence over a network is known as NP-hard problem [13], and a great
number of heuristic solutions have been proposed so far [17].

We focus on one of recent works [16] which proposed the Col-
lective Influence (CI) algorithm to identify influential nodes. CI of
node ¢ represents its influence on other nodes in the same network
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centered around node ¢, e.g. betweenness centrality, pagerank, or
k-core. The CI algorithm showed superior performances for the
identification of influential nodes to other methods using conven-
tional centrality measurements by finding the smallest set of nodes
that totally collapses the connectivity of the networks. CI of node ¢
is defined as follows:

CL() = (ki —1) >

j€OBall(il)

(kj —1) @3

where k; denotes the degree of node ¢, Ball(z, 1) denotes the set of
nodes within / hops centered around node 4, and 9Ball(, [) denotes
the set of nodes on the edges of Ball(i, ).

2.3 Universal Assortativity

Assortativity, i.e., the correlation of nodal degrees, is firstly pro-
posed by Newman [18]. Furthermore, universal assortativity coef-
ficient was introduced to analyze the assortativity of any part of a
network in [19].

Newman proposed measuring the assortativity of a network with
the assortativity coefficient [18]. The assortativity coefficient is cal-
culated from the remaining degree distribution ¢(k) defined as fol-

lows:
(k+1p(k+1)

Ej ip(5) 7

where p(k) denotes the probability that a randomly selected node

q(k) = (3)

has nodal degree of k.

Then, the universal assortativity coefficient p; on a link / can be
introduced given ¢(k). The definition of the universal assortativity
of link [ is as follows:

(U = Ug)(k —Uq)

4
77— )

pr =
where j and k denote the remaining degrees of the two endpoints of
link /, which have the same expected value of the remaining degree
Ug = 32, 7q(j). The term M denotes the number of edges in the

whole network, and the term o2 = 3~ 7%q(j) — (Zk kq(k))2 de-
notes the varince of the remaining degree distribution g(k). When
pi > 0, the link is called an assortative link; otherwise when p; < 0,
a disassortative link.

3. Information Diffusion Model for Intercon-
nected Networks

Although input to nodes and activation as the result of this input
were considered in the Brain NoN model [9], effects of nodal acti-
vation on its neighbor nodes have not been considered. We expand
the activation rule of the Brain NoN model to express the commu-
nication flow in interconnected networks.

First, we change the interpretation of the nodal states in the Brain
NoN model to states of nodal interfaces (network devices) in infor-
mation networks NoN, termed as IN NoN. The activation of inter-
connecting links is coupled with the activation of endpoint nodes
of the interconnecting links in the Brain NoN model. In informa-
tion networks, however, even if one endpoint node is deactivated
and thus the interconnecting link is also deactivated, the other end-
point node should maintain its process within the module the node
belongs.

For this reason, the meaning of the states defined by o in the

Brain NoN are re-interpreted as shown in Table. 1, where the ac-
tivation of nodes is replaced with outer-interfaces. In this context,
the input variable n in the Brain NoN represents the input state of
information. It should be noted that inner-interfaces are always ac-
tive independent of the value of ¢ or n. Adding to IN NoN, we note
a basic model that does not consider the interdependence between
modules as Pure NoN in Table. 1. Pure NoN always diffuses at the
maximum speed the topological connectivity can produce.

Second, in order to express the flow of information, IN NoN
adopts the notion of time-scale. In this model, the value of variables
n and o at current time step ¢ is given by the previous states at time
step ¢ — 1. We then introduce a probability function p; for nodes
to decide whether to have input or depending on the states of neigh-
bor nodes. Here, we suppose that each node can pass information
at probability d through active outer- and inner-interfaces whenever
they have inputs. Therefore, the probability function p;(¢) for node
1 to judge whether to have input is written as follows:

pe(i) =1- J] @-onf™) (5)
jes()
x [ t=6doi op  my ),
keF (i)

where S(7) denotes the set of neighbors of node ¢ within the same
module, and F (i) denotes the set of neighbor nodes in the other
modules. It should be noted that all inner-interfaces are active, while
outer-interfaces are active only when ¢ = 1. An important point
this equation expresses is that when § < 0, node 7 can behave dif-
ferently depending on the number of inputted neighbor nodes: the
more input neighbors node ¢ has, the more likely node ¢ has input.

Then, activation state of node ¢ is rewritten based on the rule in
Eq. (1) of the Brain NoN model as follows:

Uf:nﬁ{l— 11 (1—n§~)] (6)
JEF (D)

This equation shows that the inter-modular interface of node ¢ be-

comes active only when node 7 and at least one neighbor node via

inter-modular link has input.

4. Method for Configuring Connectivity of Inter-
connected Networks

4.1 Changing Nodal Influence in Single Networks

In order to increase/decrease the power of influential nodes in
terms of information diffusion speed in a single network, we expand
conventional preferential attachment method and generate topolo-
gies with controlling parameter . Given a seed network, we suc-
cessively add nodes with m links and connect the links to existing
nodes. The probability for each link of new node to be connected to
a existing node ¢ is defined as follows:

kY
p(i) = <"77> @)
=, E
Table 1 Re-interpretation of variables of Brain NoN for information net-

working
variables Brain NoN IN NoN

o = 0 | node is inactive | outer-interface is inactive

oc=1 node is active outer-interface is active
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Figure 2 Single network topologies with various connectivity

where k; denotes nodal degree of node 7. The process finishes when
all IV nodes are added to the network. Figure 2 shows topological
shape of single networks with changes in the parameter v. When
v decreases, topology will go to have uniform degree distribution
with average degree k ~ 2m and variation of degree approaches
zero, and thus nodal influence is also distributed. Whereas when
~ increases, more highly influential node emerges and influencer
shrinks. As a result, topologies will show nodal degree distribution
following power-law p(k) ~ k~°.

4.2 Configuring Connectivity between Networks

When adding an interconnecting link to an NoN, we consider two
points: (i) dependency on centrality of both endpoint nodes within
each module, and (ii) dependency on correlation of the centrality of
the two endpoint nodes. All the possible pair of nodes with a certain
centrality value can be expressed by changing these two dependency
respectively, Based on this idea, we investigate which nodes should
be preferentially selected as endpoint nodes of interconnecting links
for achieving an NoN topology with fast/slow information diffusion.
In the following part of this section, we formulate each dependency
as Dependency Coefficient (DC).

4.2.1 Nodal Centrality within Each Network

To begin with, we define the DC' of the dependency on centrality
itself as DCen:. Here, we consider the dependency on centrality of
each endpoint nodes of interconnecting links independently, DCl,,+
is simply defined as sum of centrality of each endpoint nodes as fol-
lows:

DCcnt(h, 7,) =cp + ¢, 8)

where ¢, denotes an any centrality value of node h within each mod-
ule the node belongs to. The value of c;, and c; respectively varies
in the range of [0, 0.5]: the high value represents high centrality, and
vice versa.

4.2.2 Correlation of Nodal Centrality between Networks

We measure the correlation of nodal centrality based on the ideas
of universal assortativity we mentioned in Section 2. 3. The univer-
sal assortativity is introduced to measure the correlation of nodal
degree centrality between networks as follows.

(U —Uqg)(k —Uy)

4
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On the calculation of the universal assortativity of an inter-
modular link using Eq. 4, the expected value Uy = 3, jq(j) is
based on the remaining degree. Here, we assume that interconnect-
ing links are generated between two different networks independent
of the connectivity within each network. Probability for nodes in

each network to be selected as a endpoint node is all the same. Set-
ting p(c) as a any kind of nodal centrality distribution of a single
network, the expected value of the centrality on an endpoint node
of an interconnecting link is also expressed as p(c). Therefore, we
define another generalized universal assortativity pj of an intercon-
necting link [ between network 1 and 2, modifying Eq. 4, as follows

P; _ (cll - Um) (012 - UPI) 7 9)

Op10ps

where ¢;; and ¢;, denote nodal centrality of endpoint nodes in net-
work 1 and 2 respectively. Up, and Up, denote the expected value
of nodal centrality, defined as Up = >~ jp(j). o2, and o, denote
the variation of nodal centrality distribution p(c), given as follows
2
op =3, p(l)— (Zm mp(m)) . Particularly, if network 1 and 2
have the same nodal centrality distribution p(c), Eq. 9 can be rewrit-
ten as follows:
c, —Up)lc, = U,
o = e = Ul = Uh) (10)

Op

Finally, we define DC.,, of the dependency on correlation of
nodal centrality of the two endpoint nodes slightly changing the
generalized universal assortativity, as follows:

ch —Up)(ci — U,
= O)le=b) -y

Op

DCeor(h,i) =

where h and 7 are just indexes of nodes.

4.2.3 Coefficient for varying interconnectivity

To configure the connectivity between networks, we consider two
aspects as mentioned above: (i) dependency on centrality of both
endpoint nodes, and (ii) dependency on correlation of the centrality
of the two endpoint nodes. That is, we combine DClp: and DCleor
and express various interconnectivity between networks, using DC,
defined as follows:

. T cos 6
cnt T cnt
. 7 sin 6
DCeor(h,i) — DO
— - +1 13
DCcor — DCRIn (13

where the parameter 6 varies in the range of [—1, 1], and the param-
eter 7 takes {0,1}: r = 0 for random connectivity, and r = 1 for
various connectivity. Each dependency coefficient is normalized by
average so that the effect of the both coefficients becomes the same
on average. We then added 1 to both coefficient so that the mini-
mum dependency coefficient among all pair of nodes always stays
1 as a standard value independent of the value of 6.

Fix r = 1, and when 6 € (0, 7), interconnecting links become
assortative; otherwise when 6 € (m,2m), the links become dis-
assortative. When 6§ € (3w/2,7/2), high centrality nodes tend
to be selected as endpoints of interconnecting links, while when
0 € (m/2,3m/2), low centrality nodes are preferred. These vari-
ability is shown in Figure 3.

5. Simulation Evaluation

In this section, we evaluate the performance of NoN models and
topologies.
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Table 2 Parameter settings
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m 2 parameter for number of links in preferential attachment

r 1 parameter for connectivity between networks

0 [0,2r]  parameter for connectivity between networks 5.3 Simulation of Information Diffusion

N 100 number of nodes in a single networks In this subsection, we investigate the performance of NoN mod-
E 2 num.ber of inter-modular h[,lks . els, IN NoN and Pure NoN, through the simulation of information
kaw 25 maximum nodal degree of intra-modular links . . . . . . .

kmaz | maximum nodal degree of inter-modular links diffusion. Information diffusion selects influential edges as a source

5.1 Simulation Settings

We evaluate performances of NoN models changing their topo-
logical connectivity. We use IN NoN model as our proposal and
Pure NoN as a basic comparison. Their behaviors are described in
Section 3.

To conduct the evaluation, we configure the parameter settings on
NoN models and topologies according to Table 2. In the evaluation,
we measure the required time-steps for an information to diffuse
over the entire NoN topologies to know whether the NoN diffuses
information quickly or slowly. The starting points of the diffusion
are (i) the highest loaded inter-modular links, and (ii) randomly se-
lected inter-modular links. Starting the diffusion from an intercon-
necting link matches both our research objective the natural behav-
ior of information networking. Although it is an original behavior
in IN model that nodes become empty after passing its information,
we designate the source inter-modular link, i.e., the source endpoint
nodes, to continuously send the information. This is because the
diffusion is following an probabilistic method and it is possible for
the diffusion to disappear from the network in the first few steps.

5.2 Evaluation on Basic Properties of an Independent Sub-

network

Before we start evaluating the information diffusion efficiency,
we investigate the basic properties of single networks, that will
allow deeper understandings on evaluation of interconnected net-
works in the following section. Figure 4 shows maximum collec-
tive influence required steps for information diffusion in single net-
works. We can confirm that as the parameter - increases, maximum
collective influence successively grows up and the required steps
decreases. This result implies the power of influential nodes can be
summarized and distributed by changing the parameter . However,
we can also find that there is a limitation on the feasible values of
maximum collective influence and required steps. We can also find
an straightforward tendency that the speed of information diffusion
increases when -y increase.

of the diffusion. Such interconnecting links are selected based on
the average collecting influence of both endpoint nodes.

In Figure 5, required time for information to completely diffuse
all over the network is described. Shapes of the lines in Figure 5 is
basically the same as the blue lines in Figure 4, which describes the
information diffusion in a single network. As « increases, influen-
tial nodes gradually appears and they minimizes diameter of each
subnetwork in the interconnected network. However, the behavior
of lines differ with each other, depending on the types of NoN mod-
els and the parameter 6.

The most conspicuous point is that solid lines of IN NoN vary
more extensively than the dotted lines of Pure NoN. Rather than
larger parts of the horizontal axis, ~, the diffusion speed greatly
slows down with smaller v. When + is small, each subnetwork
becomes uniformly connected as we confirmed. In such stretched
networks, the endpoints of interconnecting links in each network is
located faraway. The activation rule for outer-interfaces of IN NoN
model requires both endpoint nodes of an interconnecting link to
have input when the outer-interfaces needs to be activated. There-
fore, the outer-interfaces tend to be turned off in interconnected net-
works composed of such stretched subnetworks.

On the other hand, IN NoN achieves almost the same speed of
information diffusion with Pure NoN. This nature can be seen when
v = 2 and 0 is around 0. In this range of parameters, the source
interconnecting link is assumed to connect highest centrality nodes
in each subnetwork. Therefore, the strong diffusion sources enabled
quick information diffusion for IN NoN.

6. Conclusion and Future Work

In this study, we proposed an NoN model called IN NoN inspired
by the Brain NoN model, which reproduces the activation rule of
neurons of different modules that are connected via interconnecting
control links. We then investigated the configuration of connectiv-
ity within and between subnetworks, so that IN NoN can change the
speed of information diffusion.

As a basic characteristic, IN NoN does not allow malicious or un-
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accepted information to path through interconnecting links. How-
ever, it is conceivable that such bad information diffuses from inter-
connecting links. Otherwise, in case of emergency, we can also
start the diffusion from the interconnecting links. Therefore we
simulated information diffusion starting from interconnecting links,
changing connectivity within and between subnetworks. The results
showed that IN NoN can diffuse information as fast as Pure NoN,
which does not consider the prevention of information diffusion be-
tween modules and thus proposes maximum diffusion speed with a
given topology. We also found that even if malicious information
spread outs from interconnecting links, we can reduce the diffusion
speed as slow as the worst case of a independent subnetwork.

In the evaluation, we focused on the information diffusion start-
ing from interconnecting links and did not investigate the diffusion
starts from a node within a subnetwork, or interconnected networks
The current IN NoN
model never transmits information from a subnetwork to another,

composed of three or more subnetworks.

unless the opponent subnetwork has some traffic by other informa-
tion and nodes are partially activated. Indeed, it is preferable to
prevent malicious diffusion, whereas preventing urgent important
information is not preferable. Therefore, our future work would be
to modify IN NoN or to configure a more complicated settings.
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