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Abstract—Software Defined Network (SDN) and Network
Function Virtualization (NFV) are effective techniques to deal
with dynamically changing network environments. Further-
more, the combination of SDN and NFV permits telecom-
munication service providers to offer sequences of virtualized
network functions to their users through Service Function
Chaining (SFC). In the context of SFC, the Virtual Network
Function (VNF) placement problem, i.e., determining where
the virtual functions should be located in the network, needs
to be solved dynamically whenever new function chains are
requested. In our previous work, we proposed an evolutionary
method for dynamic VNF placement problems named Evolv-
able VNF Placement (EvoVNFP). This current paper aims at
evaluating EvoVNFP in greater detail to clarify the influence
of the parameter settings on the performance of EvoVNFP.
Results from computer simulations show that appropriate set-
tings of sub-goal period lengths and number of mutations help
improve the adaptability and convergence speed of EvoVNFP.

Keywords-network function virtualization (NFV), software
defined networking (SDN), evolvability, dynamic placement
problem.

I. INTRODUCTION

Recently, researchers have been increasingly conduct-
ing studies about Software Defined Networking (SDN) and
Network Function Virtualization (NFV). SDN and NFV
enable the network operator to reduce the capital expenditure
(CAPEX) and operating expenditure (OPEX) and to flexibly
control the traffic paths and the deployment of virtual
network functions (VNFs). Service Function Chaining (SFC)
[1], [2], in which traffic of each user is transmitted according
to a sequence of requested VNFs, is realized by the combi-
nation of both technologies of SDN and NFV. The traffic
paths traversing the user-requested functions are referred
to as chains. Controlling SFC is equivalent to solving the
VNF placement problem [3]–[9], where the allocation of
VNFs to virtual machines (VMs) and VMs to physical
networks, respectively, is decided according to the current
network conditions. In terms of complexity, VNF placement
problems are NP-hard as they belong to the category of
facility location problems [10].

In the context of SFC, user requests for function chains
are often not static, but changing over time. Therefore,

the placements of VNFs need to be dynamically adapted
according to the environmental changes. We define such
type of problems as dynamic VNF placement problems [11].
For dynamic VNF placement problems, it is important to
reduce the time needed to determine new placements, i.e.,
to increase the adaptability of the method to the system’s
dynamics, in order to follow the dynamic changes of the
requests, as well as to improve the quality of the placements.
A simple, but impractical, solution would be to repeatedly
solve this optimization problem at every arrival or departure
instant of a request. However, when the request dynamics
change too frequently, this solution will fail to work well
due to the long time required to solve the NP-hard VNF
placement problem.

In our recent work [12], we proposed a faster method
for dealing with dynamic VNF placement problems named
Evolvable VNF Placement (EvoVNFP). EvoVNFP is in-
spired by biological evolution under varying environments
[13], [14]. It is shown that biological organisms can evolve
under such varying environments by forming modules that
remain stable over time and by adapting to the environmental
changes with only minimal changes among these modules.
Inspired by this behavior, EvoVNFP toggles between two
or more objectives by performing an evolutionary algorithm
(EA) to make convergence of individuals toward their com-
mon modules faster [12]. We showed in [12] that EvoVNFP
can outperform reference methods at a wide range of request
arrival rates. However, we did not fully discuss in [12] the
adaptability of EvoVNFP when offered loads and parameters
are changed.

In this paper, our goal is therefore to evaluate EvoVNFP
under different loads and parameter settings to discuss its
adaptability in greater detail. Evaluations through simula-
tions show that EvoVNFP performs better than the reference
methods, conventional evolutionary algorithm and Random
Immigrant Genetic Algorithm (GA) [15], in almost all of
the considered load conditions and we identify specific
parameter settings that can best enhance its adaptability.

The remainder of this paper is organized as follows. In
Section II, we briefly explain the underlying system model,
followed by the mathematical formulation of NFV systems



and the VNF placement problem. We then explain details of
the EvoVNFP method in Section III followed by Section IV,
where we present the results of the numerical evaluation and
discuss them. Finally, we conclude this paper in Section V.

II. SYSTEM MODEL AND DEFINITION OF VNF
PLACEMENT PROBLEM

In the following, we will use the same NFV model as in
[12] to briefly explain the underlying mathematical system
model. First, we will provide an overview of the system
itself which will be followed by the formulation of the VNF
placement problem on this system.

A. Overview of the System

When a user requests a chain from the system’s controller,
the controller converts the chain to a format which can
be physically placed on the servers; the VNFs are split to
several functional parts which are denoted as components.
Then, the controller tries to find an assignment of the
components to VMs and further determines where these
VMs should be located on physical machines (PMs) in the
physical network, see Fig. 1. The components and VMs
occupy CPU cores of the VMs and PMs which they are
placed on, respectively. Multiple components can be placed
on a VM (and VMs on a PM, respectively), as long as the
VM or the PM has a sufficient number of remaining CPU
cores. After the placement of components is completed, the
service for the user who requested this chain will begin.
Traffic of the user passes through the components consisting
of the requested VNFs in a specific order. It enters the
physical networks through an ingress router and exits from
an egress router. In the considered system, two kinds of
delay may occur, propagation delay on physical links and
queuing delay in the VMs and components. We define the
total delay of a chain as the sum of all propagation delays
and queuing delays occurring on this chain.

B. Formulation of VNF Placement Problem

As shown in [12], we can formulate the VNF place-
ment problem as an integer linear problem given below by
Eqs. (1)–(4).

minimize d̂+W ·
∑
i,k

mi,k (1)

subject to Ta ·
va
S

≤ nk,j,a · C ∀k, j, a (2)∑
k

mi,k ≤ Ni ∀i (3)∑
j,a

nk,j,a ≤ mi,k ∀k, i (4)

variables mi,k, nk,j,a, p
u
(r,r′)

The term d̂ in Eq. (1) is the average delay of all chains in the
system, W is a weighting coefficient for the sum of cores,
and mi,k is the number of cores that the VM k occupies
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Figure 1. Example solution of the VNF component placement problem for
two users. Each user’s traffic flow passes through a chain of VMs hosting
VNF components and located on physical machines (PMs).

on PM i. Constraint (2) represents that the controller must
determine the number of cores nk,j,a for each component a
of VNF j occupying VM k in such way that it has enough
performance to process all the request flows which pass
through it. C is the maximum number of instructions that a
core can process per time unit (seconds), Ta is the processing
amount needed by VMs with components of VNF a to
process a packet, va is the traffic arrival rate at VNF a and
S is the size of a packet. Constraint (3) means that the sum
of the total number of cores for VMs on a PM must not
exceed the total available number of cores Ni of the PM,
and Constraint (4) indicates that the sum of the number of
cores for components on a VM must not exceed the total
number of cores of the VM.

Since it is an NP-hard problem, solution of this VNF
placement problem is computationally intensive. For this
reason, we will in the next section describe our proposed
EvoVNFP method, which can heuristically solve this prob-
lem.

III. DYNAMIC VNF PLACEMENT METHOD: EVOVNFP

In this section, we will briefly explain the behavior of
EvoVNFP as a solution method for the VNF placement
problem given in Section II. For more details, the interested
reader is referred to [12].

A. Overview of EvoVNFP

EvoVNFP is our proposed method for solving dynamic
VNF placement problems. It uses a special Evolutionary
Algorithm (EA), which is an algorithm imitating evolution
in biological systems to generate solutions for an optimiza-
tion problem. Similar to conventional EAs, our method is
also composed of four major function steps: initialization,
evaluation, selection, and crossover/mutation.

A single generation consists of performing the latter 3 of
these 4 steps, and EAs are repeated over several generations



Top layer (representing PMs)

Middle layer 

(representing 

VMs) 

Bottom layer (representing components)

PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM9 PM10PM5

Request of Request of 

VM1 VM4VM2 VM3 VM5 VM6 VM7 VM8

VNF1
Comp1

VNF1
Comp2

VNF2
Comp1

VNF2
Comp2

VNF1
Comp1

VNF1
Comp2

VNF2
Comp1

VNF2
Comp2

m1,1 m4,3m2,2 m6,4 m8,5 m10,6 m8,7 m9,8

u1 u2

n1,1,1 n2,2,1 n4,1,2 n4,2,2 n4,1,1 n4,2,1 n6,1,2 n7,2,2

Figure 2. Example encoding of an individual in EvoVNFP. Three layers
from top to bottom represent PMs, VMs, VNF components and links
between nodes indicate how they are allocated to each other.

until a good solution in terms of the fitness function is
obtained. The objective of the EA in this study is to generate
as good as possible solutions for allocating the requests
(chains) to the system’s resources. While conventional EAs
maintain the same objective function throughout operation
and continuously evolve the individuals toward this single
objective, our approach EvoVNFP toggles between multiple
(sub-)objectives every fixed number of generations (epoch)
when it evolves the individuals towards a main objective.
The objective is continuously switched between the two
following cases:

• generate a solution for the main objective which con-
siders all of the current requests,

• generate a solution for the objective which considers all
the current requests except for one randomly selected
request.

Switching between these two types of objectives causes
the formation of a modular structure corresponding to the
specific subgoals, which in turn results in a faster adaptation
of EA to the main objective. We will use the term period
Tp for describing the interval (in generations) that the same
goals remain active.

B. Design of Evolutionary Algorithm in EvoVNFP

We will now explain the key evolutionary concepts of
EvoVNFP through the definition of individuals, the defini-
tion of the fitness function, and the mutation operator.

1) Individual: An individual of the EA is designed as a
fixed-length 3-layered graph as shown in Fig. 2, representing
a placement, i.e., the allocation of the VMs and components.
The nodes in this graph represent physical and virtual
network devices; the nodes in the top, middle, and bottom
layer represent the PMs, VMs, and components, respectively.
The nodes in the VM layer and component layer have in-
formation of the number of cores they occupy. Furthermore,
the links between nodes represent their allocation; the links
between the top and middle layer represent the allocation
of the VMs to the PMs, and the links between the middle
layer and the bottom layer represent the allocation of the
components to the VMs. The white nodes in the bottom layer

of Fig. 2 indicate that the VNF components corresponding
to these nodes are currently not used in this placement. Such
nodes and the dashed lines connecting them are ignored
when the individual is converted to an actual placement.

2) Fitness Function: The fitness function F of the EA
indicates how suitable an individual is for a specific goal.
We define F in our case as

F =


(

d̂

dmax
+

W (
∑

i,k mi,k)

cmax

)−1
if the
individual
meets (2)–(4)

(5a)

αZ otherwise (5b)

where dmax is the maximum delay, i.e., the delay of a
request flow with the maximum possible number of compo-
nents, each component is performing at 80% utilization, and
the hop length is the maximum hop length in the physical
network plus three because the paths of the chains can have
loops and then we cannot define the maximum hop length as
maximum chain length. Furthermore, cmax is the maximum
possible number of cores, Z is the number of violations
against the constraints, and α is a negative constant, e.g.,
chosen as α = −0.1.

This fitness function F will return a positive value if the
individual can be converted to valid placements, otherwise
F will be negative.

3) Mutation: The mutations in this EA consist of four
operations as follows:

• selecting one link between the top and middle layer
randomly and changing the PM node of this link
randomly,

• selecting one link between the middle and bottom
layer randomly and changing the VM node of this link
randomly,

• changing the number of cores of a node in the middle
layer,

• changing the number of cores of a node in the bottom
layer.

In this work, we only focus on the above mentioned types
of mutation operations and do not perform crossovers.

IV. NUMERICAL EVALUATIONS

In this section, we will first explain the simulation set-
tings we assumed, the reference methods we will use for
comparison, and the evaluation metrics. Then we will show
the results and discuss them.

A. Simulation Settings

We consider a physical network composed of five routers
where each router is connected to two PMs as shown in
Fig. 1. Each PM is equipped with sixteen CPU cores and
the propagation delays over the physical link between two
adjacent routers is 20 ms. Since we assume a discrete time
system with time units in generations, the inter-arrival and



sojourn time of the requests in the system follow geometric
distributions.

Usually, there are policies to decide the order of VNFs in
a chain [16]. Therefore, all requests in this evaluation use
one of the four chains in the following:

• {VNF1},
• {VNF1 → VNF2},
• {VNF1 → VNF2 → VNF3}, and
• {VNF1 → VNF2 → VNF3 → VNF4}.
The parameters of the evolutionary algorithms are selected

as follows:
• number of individuals: 1000
• number of elites: 100
• mutation probability: 0.8

The other parameters are chosen based on realistic values
and summarized below:

• value of bu(t): 200 Mbit/s
• processing capacity of a core: C = 3.0 GHz
• size of a packet: S = 1500 bit
• service rate of router r: Mr = 3.0 Gpacket/s
• weighting coefficient: W = 1.0

B. Reference Methods

To evaluate the performance of our proposal, we compare
EvoVNFP to the following reference methods: conventional
EA and Random Immigrant GA.

1) Conventional EA (Conv): Similar to EvoVNFP, the ob-
jectives of conventional EA change every time the requests
arrive or depart at the system. However, the differences
from EvoVNFP are that the individuals are re-initialized at
every objective change (arrival/departure of requests), and
there are no periodic objective changes as in EvoVNFP. We
use conventional EA as a reference method to clarify that
entirely forgetting past information is not a good strategy
for this dynamic VNF placement problem.

2) Random Immigrant GA (RandImm): In random immi-
grant GA [15], similar to EvoVNFP, the objectives change
every time the requests arrive or depart and there are no
re-initializations of the individuals. The differences from
EvoVNFP are that RandImm re-initializes some individuals
at a predefined rate called replacement rate after every
generation and thus the objective changes are not periodic
as in EvoVNFP. We include this method for comparison as
it aims at generating diversity in the population to adapt to
the varying environments.

C. Evaluation Metrics

We use three evaluation metrics to compare the perfor-
mance among the considered methods: failure probability,
number of generations until obtaining the first feasible
solution, and performance of generated placement. Before
we show the numerical results, we will first explain some
further details on failure probability and the performance of
generated placement in the following.
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1) Failure probability: We evaluate failure probability
over the cases where the methods cannot obtain any feasible
solutions until the next change of the objectives. Here, a
feasible solution refers to the individuals having positive
fitness, i.e., individuals which can be converted to valid
placements.

2) Performance of generated placement: We evaluate
two measures for computing the performance of generated
placements. The first is the number of cores in a placement,
which we evaluate through the number of physical cores
used by VMs in each placement. This metric evaluates the
placement from the system’s viewpoint. On the other hand,
we also include the user performance by considering the
delay of a placement.

D. Results and Discussions

In this subsection, we present the results from the simula-
tions and discuss them. We first show the comparison among
EvoVNFP and its two reference methods. The results of
EvoVNFP, conventional EA (Conv), and random immigrant
GA (RandImm) are the averages of the individual results
from at least 100 simulation runs. After these compar-
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isons between methods, we focus on the performance of
EvoVNFP. We consider different period lengths in order to
discuss the impact of fluctuating goals on the adaptability.
Finally, we show the results of EvoVNFP using different
number of mutations in order to discuss their impact on
adaptability.

We focused only on the above mentioned parameters and
do not further discuss other parameters at this point, such as
the number of individuals or the number of elites, because
it is expected that these will not have a significant effect on
the dynamics of the method. Moreover, we do not modify
the mutation probabilities because our previous studies have
shown that they don’t have a significant impact on the
results.

The replacement rate of RandImm is selected as 0.3. Each
simulation run is performed over 10000 generations and we
left out the first 5000 generations for the computation of our
metrics as warm-up phase. Updates for improving the place-
ments are performed only if the newly computed solution is
at least 10% better than the current placement. Such checks
are performed every 40 generations. Each simulation starts
with initially 5 requests and any new requests exceeding the
maximum number of ten are rejected.

Since the system is operating in discrete time units

Figure 7. Failure probability of request acceptance, i.e., the ratio of the
number of cases where the methods cannot obtain any feasible solutions
until the next change of the objectives to the total number of changes of
the objectives

Figure 8. Number of generations until obtaining the first feasible solution

(generations), the simulation is performed over discrete time
steps and we specify for each evaluation two parameters,
TA and TB , denoting the average interarrival time and the
average sojourn time of the system, respectively. Both values
are obtained from geometrically distributed random numbers
for which we give the mean durations E[TA] and E[TB ].

1) Evaluation with varying system load: We first show
the comparison of EvoVNFP and the reference methods
under different load situations of the system in Figs. 3–
6. The x-axes in these figures represent average loads of
the system, i.e., the average number of requests in the
system, and the y-axes represent the metrics explained in
Section IV-C. In this study, we show the results when the
average number of the chains ranges from 1 to 5, which
are calculated using E[TA] = 5000, 2500, 1666, 1250, and
1000, and E[TB] = 5000 time steps. Furthermore, we use a
fixed number of periods of Tp = 20 in these evaluations.

Figure 3 shows that the failure probability of EvoVNFP
is lowest among the 3 considered methods. It means that
EvoVNFP can follow the dynamics of the request ar-
rivals/departures. Figure 4 shows the reason for the low
failure probability, where EvoVNFP can evolve the indi-
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viduals towards the objective faster than the other methods
due to the small fluctuation of the objective in the EA.
EvoVNFP generates an individual for a simpler problem and
then extends it to the main problem. We can also see that the
failure probability increases when the average load increases.
This is because the problem becomes more difficult when
there are many chains are in the system.

In terms of performance, i.e., delay (Fig. 5) and number of
cores (Fig. 6), EvoVNFP is roughly the same as RandImm
and both are lower than conventional EA. This means that
EvoVNFP does not sacrifice the performance in order to
adapt to the dynamics.

2) Evaluation of different period lengths: Next we com-
pare EvoVNFP at different congestion levels of the system
represented by different period lengths Tp in Fig. 7 and
Fig. 8. The period is the interval of smallest fluctuation of the
objective. The x-axes represent the Tp values in generations
(Tp = 1, 3, 5, 7, 10, 20, 50, 100, 200) and the y-axes illustrate
failure probability and the number of generations until the
first feasible solution, respectively. In these simulations, we
set the average inter-arrival time to E[TA] = 1000 and
sojourn time to E[TB] = 5000 generations. In the legend

of Fig. 7 and Fig. 8, we denote by R the number of the
chains in the system.

In Fig. 7, the failure probability at Tp = 5 in R = 3 and
R = 5 becomes smallest among all values of Tp. However,
the result at Tp = 5 in R = 1 is not minimal in Fig. 7, but
it is smallest in Fig. 8. This is because it is easy to generate
solutions when R is small. Then EvoVNFP can quickly
obtain solutions at all Tp and therefore Fig. 7 does not show
this difference. However, the speed to evolve the individual
is faster at Tp = 5 than for the other Tp, which is illustrated
in Fig. 8. In conclusion from these two observations, Tp = 5
is the best setting for the considered traffic conditions.

3) Evaluation for different degrees of mutation: Finally,
we compare EvoVNFP at different system loads using
different degrees of mutation in Fig. 9 and Fig. 10. In
normal EA, solutions are obtained faster when the number
of mutations becomes large. However, when there are too
many mutations, an EA step approaches a random search
in the solution space and the performance becomes lower.
We define the magnitude of a mutation as the number of
elements that mutation can change in one individual. In
this study, we realized the difference of the magnitude of
a mutation by repeating the mutation operation explained in
Section III-B3. The x-axes in Fig. 9 and Fig. 10 represent the
number of repeated mutations in one iteration step and the y-
axes represent the metrics of failure probability and number
of generations until first feasible solution, respectively. We
consider that in a single generation there may be 1, 3, 5, 7, or
9 mutations and we again define R as the number of chains
in the system. In these simulations, we set E[TA] = 1000,
E[TB ] = 5000, and Tp = 20 generations.

Figure 9 shows that the smaller the number of mutations
per step are, the lower the failure probability is. This
is because these small fluctuations of objectives can be
regarded as another mechanism of searching. On the other
hand, Fig. 10 shows that the best results are achieved for 3
mutations. However, we consider that a smaller number of
repetitions is preferential because Fig. 10 is the conditional
result depending on the condition in Fig. 9. These results
indicate that EvoVNFP does not need a large number of
mutations to achieve a good performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we evaluated EvoVNFP under different
loads and parameter settings to discuss its adaptability under
various conditions. The results of the evaluations showed
that EvoVNFP is better than the two reference methods in
terms of the adaptability without sacrificing the quality of the
generated placements. Moreover, the results show that there
are specific parameter settings of EvoVNFP which make its
adaptability even better; the lengths of the periods for goal
fluctuation should be about 5 generations and the magnitude
of mutations should be kept small. Our future work includes



determining further metrics for comparing EvoVNFP with
other methods to demonstrate its good performance.
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