
Application of Evolutionary Mechanism to
Dynamic Virtual Network Function Placement

Mari Otokura∗, Kenji Leibnitz†, Yuki Koizumi∗, Daichi Kominami‡, Tetsuya Shimokawa† and Masayuki Murata∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

E-mail: {m-otokura,ykoizumi,murata}@ist.osaka-u.ac.jp
†Center for Information and Neural Networks, NICT and Osaka University, Japan

E-mail: {leibnitz,shimokawa}@nict.go.jp
‡Graduate School of Economics, Osaka University, Japan

E-mail: d-kominami@econ.osaka-u.ac.jp

Abstract—Recently, communication network services have be-
come increasingly diverse and dynamic. Network Function Vir-
tualization (NFV) is an effective technique to deal with these
dynamic situations. Most related work on the VNF placement
problem does not consider the dynamics of requests, but only
static scenarios. The important goals of the dynamic VNF place-
ment problem include accommodating new requests following the
traffic dynamics and reducing the time to calculate solutions. To
tackle this problem, we utilize the concept of Modularly Varying
Goals (MVG), which is based on a genetic algorithm (GA) and
generates solutions that can easily adapt to time-varying goals in
short time. In this paper, we propose Evolvable VNF Placement
(EvoVNFP) that applies the concept of MVG to the dynamic
VNF placement problem to reduce the time to obtain solutions.
Results from numerical evaluations show that our method is able
to better follow the dynamics of VNF requests and also reduce
time until adapting to successive objectives.

I. INTRODUCTION

In recent years, communication services accessed by users
are becoming more diverse and dynamic. Considering the real-
ization of Internet of Things (IoT), these trends are expected to
become even stronger in the future. Previously, communication
service providers have been utilizing network functions, such
as firewalls and intrusion detection systems, implemented by
hardware to provide their services. However, it is becoming
more and more difficult to deal with the diversification of the
communication services through hardware solutions because
this requires large capital expenditure (CAPEX) and operating
expenditure (OPEX) to add and maintain new communication
services.

Network Function Virtualization (NFV) [1]–[3] is a suitable
way to deal with this situation. The basic idea of NFV is to
separate the network functions from their physical computa-
tional resources. These network functions are implemented in
software running on virtual machines (VMs), called Virtual
Network Functions (VNFs) and run on commodity physi-
cal computational resources. NFV enables to change the
performance of network functions dynamically. Furthermore,
NFV also provides the pipelining of virtual network functions
referred as Service Function Chaining (SFC) [4], [5].

In the field of NFV, many researchers have tackled the VNF
placement problem by deciding placements of VNFs according
to a specific objective [6]–[11]. The VNF placement problem

can be seen as an instance of the facility location problem
[12] which is known to be an NP-hard problem. Furthermore,
it is suggested in the ETSI NFV ISG specifications [13] that
a VNF can be broken into smaller parts, leading to a higher
complexity of the problem.

Moreover, we have to solve the VNF placement problem
dynamically when considering SFC to deal with dynamic
changes of requests from users [14]. Although there are many
proposals on the VNF placement problem, almost all of them
focus on a static situation. Whenever the requests for VNFs
arrive or depart in the dynamic VNF placement problem,
besides optimizing each placement according to the current
objective, we have to also generate new placements following
the dynamic changes of situations. Also, we should reduce the
time to calculate new placements in order to provide contin-
uous services. A simple way of dealing with this problem is
by solving an optimization problem every arrival/departure of
requests. However, this will be too computationally intensive,
since already the static VNF placement problem itself is NP-
hard.

To tackle this problem, we utilize knowledge from bio-
logical evolution: when organisms evolve towards varying
environments, they spontaneously have the adaptability to the
varying goals. Reference [15] proposes Modularly Varying
Goals (MVG) based on a genetic algorithm (GA) to introduce
the concept of biological evolution in varying environments.
GA is an algorithm which evolves the population of individu-
als every generation so as to fit the goals (environments). They
showed that genomes evolved under MVG form adaptable
structures to varying environments and also MVG itself can
speed up the evolution [16]. In our previous work, we proposed
Evolutionary Varying Goals (EVG) [17], where we already
showed that the basic MVG concept can be applied to a simple
VNF placement problem. EVG can generate individuals in the
GA which can adapt to varying goals with only a few genetic
changes.

In this paper, we propose a method named Evolvable
VNF Placement (EvoVNFP), which is an extended version
of EVG and inspired by MVG, for the realistic dynamic VNF
placement problem for SFC. In order to facilitate the conver-
gence toward “good” solutions, EvoVNFP uses small periodic



objective changes during adaptation. Evaluations show that
EvoVNFP can track the varying environments well and reduce
the time to adapt to new objectives.

The rest of the paper is organized as follows. In Section
II, we explain the modeling and formulation of NFV systems
for SFC. We then introduce the proposed method EvoVNFP in
Section III. In Section IV, we show the results of the evaluation
by simulations and discuss them. We conclude this paper in
Section V.

II. SYSTEM MODEL

A. Modeling of NFV Systems for SFC

In this section, we will explain the model of the NFV system
for SFC which is used in this research.

1) Schematic view of the system: Figure 1 shows a
schematic view of the considered system. In this system,
users request VNF chains from the system controller (Step 1)
that breaks the VNFs into components (Comps) (Step 2) and
then places them on the physical machines (PMs) in the
physical network (Step 3). Traffic of a user enters the physical
network through its ingress router, traverses components in
its chain in a specified order, and leaves through its egress
router. While the traffic passes through all components in the
physical networks, two kinds of delays will occur: propagation
delays and queuing delays. Propagation delay occurs when the
traffic passes through links. Queuing delay occurs when the
traffic is processed by network equipment, such as routers and
VMs for which we will use analytical approximations. In this
work, we regard only CPU as the computational resource. We
assume that the VMs occupy CPU cores of the PMs and the
components occupy CPU cores of the VMs. We can place
multiple components on a VM and multiple VMs on a PM as
long as there are sufficient remaining cores in the VM or PM.
A schematic view of the occupation of CPU cores is shown
in the lower right of Fig. 1.

2) Definitions related to performance of a component:
To relate the number of cores of a component with its
performance, we evaluate the performance of one core by
the processing amount, i.e., the number of instructions it
can process. We define the term processing capacity as the
maximum processing amount which cores can process per
time unit (seconds). We assume that the performance of a PM
and a VM are proportional to the number of cores. Then, the
processing capacity of a machine which has n cores is n ·C,
where we define C as the processing capacity of a core.

3) Definition of request flows: We define request flows
as flows of the traffic of the users who send requests to
the controller. A request Ru of user u is represented as
Ru = (srcu, dstu, chainu, bu): srcu is the ingress router,
dstu is the egress router, chainu is the chain of VNFs, and bu
is the requested transmission rate. Figure 1 shows an example
of two request flows Ru1 and Ru2 of users u1 and u2.. Note
that VNF components can be shared if multiple chains of
requests include the same VNFs.

���������

�

VNF1 VNF2�� ��

Request
of a user ��

Controller

(Step 3) Controller
places the components

on physical network

(Step 1)
Request arrives

PM7

VM3

VNF2

Comp1

VNF2

Comp2

: Core

��

��

��

��

��

PM1 PM2 PM3 PM4

PM6
PM5

PM10 PM9 PM8 PM7
VM 3

VNF2

Comp 1

VNF2

Comp 2

VM 1 VM 2

VNF1

Comp 1

VNF1

Comp 2

VNF1 VNF2

VNF1

Comp 1

VNF1

Comp 2

�� ��

����

(Step 2) Controller 
breaks down VNFs
into components

VNF2

Comp 1

VNF2

Comp 2

���
� ���� ���

���2 � ����

���
� ���� ���

���1 � ���2 �

����

Fig. 1. A schematic view of how VNFs are broken down into components
that are placed on virtual machines (VMs) at physical machines (PMs)

4) Calculating the delay of a placement: We assume that
queuing delay occurs in both routers and components in this
study. The queuing delay is not constant because it depends
on the current performance and load of the components. The
propagation delay on the other hand is assumed as a constant
delay when the request flow passes through a particular link.
We define request flow delay tu as the sum of all queuing
delays and all propagation delays of the request flow from
user u.

In order to consider the queuing delays analytically, we have
to define arrival and service rates at routers and components.
Service rate of router r is assumed as a constant value Mr

packet/s and of component j is µk,j,a = (nk,j,a · C)/Ta

packet/s, where nk,j,a is the number of cores which the
component j of VNF a occupies on VM k and Ta is the
processing amount needed by VMs which have components
of VNF a to process a packet. Arrival rate at router r is
λr =

∑
r′ p

u
(r,r′) · bu bit/s, where λr is the sum of the

transmission rates of all request flows arriving at the router
r and pu(r,r′) is a binary indicator variable which is 1 when
the request flow of a user u passes through a link between
routers r and r′, and otherwise 0. Arrival rate at component
j is the sum of the transmission rates of all the request flows
which request VNF a and it is represented as va bit/s. For the
sake of simplicity, we assume that each component behaves
like an M/M/1 queuing system.

The delay of the entire placement is calculated after the
paths of the request flows have been decided. The delays of
each traffic flow are calculated first and then they are averaged
with weights corresponding to the transmission rates. Finally,
the total delay of a placement d̂ is calculated as the average
of request flow delays tu weighted with the transmission rates



bu of each user u as:

d̂ =
∑
u

bu∑
u bu

· tu.

B. Formulation of VNF Placement Problem

The considered VNF placement problem is formulated as
follows as an integer linear problem.

minimize d̂+W ·
∑
i,k

mi,k (1)

subject to Ta ·
va
S

≤ nk,j,a · C ∀k, j, a (2)∑
k

mi,k ≤ Ni ∀i (3)∑
j,a

nk,j,a ≤ mi,k ∀k, i (4)

variables mi,k, nk,j,a, p
u
(r,r′)

The term mi,k is the number of cores which the VM k
occupies on PM i, W is a weighting coefficient for the sum of
cores, and Ni is the number of cores of PM i. Constraint (2)
means that the controller must determine the number of cores
for each component such that it has enough performance to
process all the request flows which pass through it. Constraint
(3) means that the sum of the total number of cores for VMs
on a PM must not exceed the total number of cores of the PM.
Constraint (4) means that the sum of the number of cores for
components on a VM must not exceed the number of cores
of the VM.

III. PROPOSED DYNAMIC VNF PLACEMENT METHOD

In this section, we will propose a method named Evolvable
VNF Placement (EvoVNFP) for the dynamic VNF placement
problem. We assume a situation where requests arrive at the
system, receive service for a certain time, and then depart from
the system.

A. Overview of Proposed Method

EvoVNFP is based on EVG, which changes the objective
of GA without re-initializing the population with every ar-
rival/departure of requests and otherwise maintains the same
objectives. EvoVNFP is different from EVG when there are
more than two requests in the system; EvoVNFP changes its
objective periodically as shown in “EvoVNFP simulation” in
Fig. 2. We define the interval between the periodic changes of
the objective as period. The initial state of the state transition
is S1 and it corresponds to when EvoVNFP considers all of
the requests in the system. The other states correspond to
when EvoVNFP considers requests excluding one randomly
selected request. These state transitions are inspired by MVG
in [16]. We include them to speed up the evolution of GA to
obtain the placements for current objectives. The updates of
real placements are done in state S1 at two kinds of timings.
One is when the first feasible solution for all of the requests at
the time is obtained after the change of the objective, shown
in Fig. 2 as the think black arrows between “Real placement”

���������

�

S1

�

�

�

time

in
itEvoVNFP

simulation

Real
placement

R3
arrives

R1
departs

R1

R2

R3

R1+2 R1+2+3 R2+3

S1 S2 S1 S3 S1 S2 S1 S3 S1 S4 S1 S3 S1 S2 S1 S1 S3 S1 S3 S1 S2

S1

R1+2

S2

R1
S3

R2

�
�

�

�

�

�

S1

R1+2
+3

S3

R2+3

S4

R1+3

�

�

�

�

S2

R1+2

�

�

State
transition
probability

…

1 period

= Fixed number of generations

�

�

S1

R2+3

S2

R2
S3

R3

�
�

�

�

...

...

...

...

...

Fig. 2. A schematic view of EvoVNFP processing time-dependent arrivals
and departures of requests. Ri denotes request i and Si denotes state i.

and “EvoVNFP simulation.” Latency to accommodate a new
request, shown in Fig. 2 as the dashed arrows, can occur
because EvoVNFP can take some time to obtain a solution.
The other update is done whenever a solution is found that
improves the current solution by a certain percentage, shown
as the thick gray arrows.

B. Design of Genetic Algorithm

In this section, we will explain the GA in the proposed
method in detail. We will discuss how an individual is encoded
and how the mutation and fitness function are defined.

1) Design of an individual: An individual in the GA is a
fixed-length 3-layered graph and represents a placement, i.e.,
components assigned to VMs, which in turn are assigned to
PMs (Fig. 3). The top layer represents the PMs, the middle
layer represents the VMs, and the bottom layer represents the
components. Each node corresponds to each PM, VM, and
component in the placement. The component layer has enough
nodes to accommodate all requests and these nodes and links
connected to them can be unused, shown in Fig. 3 as white
nodes and dashed links, respectively. They can connect to
VM nodes to remember previous placements, but are ignored
when the individual is converted to a placement. A node in
the VM layer and a node in the PM layer are connected if
the corresponding VM is placed on the corresponding PM.
Similarly, a node in the component layer and a node in the
VM layer are connected if the component is placed on the
corresponding VM. If a node in the VM layer does not
connect to the component layer, this node is ignored when
the individual is converted to a placement. Furthermore, each
node in the VM and component layers has the information
about the number of cores which the corresponding VM or
component occupies. The path of each request flow in the
physical network is determined as the shortest path which
connects all required components.

2) Fitness function: The fitness function evaluates how well
an individual matches the objective. In our GA, it is a function



���������

�

PM layer

VM layer 

Component layer

PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM9 PM10PM5

Request of �� Request of ��

VM1 VM4VM2 VM3 VM5 VM6 VM7 VM8

���� ���� ���� �������� ���� �	����
��

VNF1
Comp1

VNF1
Comp2

VNF2
Comp1

VNF2
Comp2

VNF1
Comp1

VNF1
Comp2

VNF2
Comp1

VNF2
Comp2

������ ������ ������������ ������ ������ ������������

Fig. 3. An example of an individual representing a placement by a 3-layered
graph.

shown in Eq. (5b).

F =


(

d̂

dmax
+

W (
∑

i,k mi,k)

cmax

)−1
if the
individual
meets (2)–(4)

(5a)

αZ otherwise (5b)

where dmax is the maximum delay, i.e., the delay of a request
flow where there is maximum possible number of components,
each component performs with 80% utilization, and the hop
length is the maximum hop length in the physical network
plus three, cmax is the maximum possible number of cores,
Z is the number of violations against the constraints, and α
is a negative constant, e.g. α = −0.1. Equation (5a) is used
for individuals which can be converted to placements. The
smaller the value of Eq. (1) is, the larger that of Eq. (5a)
becomes. If the individual cannot be converted to a placement,
Eq. (5b) will be used as the fitness function and yield a
negative value. The higher the level of violation is, the lower
Eq. (5b) becomes.

3) Mutation: In the mutation step of our GA, an individual
is changed only slightly by mutations and without crossovers.
Mutations are performed at a predefined mutation rate for all
individuals except for the elites. We randomly select one of
the four following kinds of operations for the mutation: i)
changing a link between PM layer and VM layer randomly,
ii) changing a link between VM layer and component layer
randomly, iii) changing the number of cores of the node in
VM layer randomly, and iv) changing the number of cores of
the node in component layer randomly.

IV. EVALUATION

In this section, we will first explain the settings of the
simulations, the reference methods, and the evaluation metrics,
and then present numerical results and their discussion.

A. Simulation Settings

We consider a physical network composed of five routers
where each router is connected to two PMs as shown in
Fig. 1. Each PM has sixteen CPU cores. The propagation
delays of the physical link between two routers is 20 ms.
The intervals of arrivals and sojourn time (in generations)
of the requests in the system follow geometric distributions.

There are policies to decide the order of VNFs in a chain
[18]. Therefore, all requests in this evaluation use one of the
four chains in the following: {VNF1}, {VNF1 → VNF2},
{VNF1 → VNF2 → VNF3}, {VNF1 → VNF2 → VNF3 →
VNF4}. The parameters of the GAs are selected as follows:
the number of individuals is 1000, the number of elites is
100, and the mutation rate is 0.8. The other parameters are
chosen based on realistic values, such as currently available
commercial machines or switches, and summarized in the
following: requested transmission rate bu(t) = 200 Mbit/s of
user u, processing capacity of a core C = 3.0 GHz, size of
a packet S = 1500 bit, service rate Mr = 3.0 Gpacket/s of
router r, and weighting coefficient W = 1.0.

B. Reference Methods

To evaluate the performance of our proposal, we will
compare EvoVNFP to the following reference methods.

1) Conventional GA: Similar to EvoVNFP in Fig. 2, the
objectives of conventional GA change every time the requests
arrive or depart. The differences from EvoVNFP are that the
individuals are re-initialized at every objective change (ar-
rival/departure of requests), and there are no periodic objective
changes. We use this as a reference method to clarify that
forgetting past information is not a good strategy for the
dynamic VNF placement problem.

2) Random Immigrant GA: In random immigrant GA [19],
similar to EvoVNFP, the objectives change every time the
requests arrive or depart and there are no re-initializations
of the individuals. The differences from EvoVNFP are that
it re-initializes some individuals at a predefined rate called re-
placement rate after every generation and there are no periodic
objective changes. This method aims at generating diversity in
the population to adapt to the varying environments.

C. Evaluation Metrics

We use the four evaluation metrics as follows. First, we
evaluate failure probability over the cases where the methods
cannot obtain any feasible solutions until the next change of
the objectives. Here, a feasible solution refers to the individu-
als which have positive fitness, i.e., the individuals which can
be converted to placements. Second, we evaluate the number
of generations until obtaining the first feasible solution. Third,
we evaluate the number of reconfigurations, which are needed
to change placements between two successive requests. The
reconfigurations include eight operations as shown in Table I.
VM/component migrations mean that a VM or component,
which had been placed on a PM, is moved to another PM. In
this evaluation, we count inter-router and intra-router migra-
tions separately because inter-router migrations take more time
than intra-router ones [20]. VM/component size changes mean
that the number of cores of a VM/component is increased or
decreased. VM additions mean that the number of VMs is
incremented in a placement and VM removals mean that the
number is decremented. The weights are decided according to
the time it takes to perform each operation [21] and the values
we selected are shown in Table I. Finally, we evaluate two



TABLE I
WEIGHTS OF EIGHT OPERATIONS OF RECONFIGURATIONS

Kind of reconfiguration Weight
Intra-router VM migration 30
Inter-router VM migration 120

VM size change 1
VM addition 60
VM removal 1

Intra-router component migration 30
Inter-router component migration 120

Component size change 1

measures of performance for generated placements. The first
is the number of cores in a placement (system performance),
which we evaluate through the number of physical cores used
by VMs in each placement. The other is delay of a placement
(user performance) described in Section II-A4.

D. Results and Discussions

In this subsection, we show the results of the simulations
and their discussion. The results of EvoVNFP, conventional
GA (Conv), and random immigrant GA (RandImm) are the
averages of the results from 100 simulation runs. The re-
placement rate of RandImm is 0.3. Each run continues for
10000 generations. The evaluations use the results at 5000th–
10000th generations to leave out results when the system is
not in steady state. The length of the periods is 20 generations.
Updates for improvement of real placements are performed if
the newly computed solution of the methods is 10% better than
the current real placement. These checks are done every 40
generations. There are 5 requests in the system at the beginning
of the simulation. The maximum of the number of requests in
the system is ten and we reject any requests that would exceed
this number. In Fig. 4, the x-axis represents the generations and
the y-axis represents the maximum fitness. In Figs. 5(a)–5(e),
the x-axes represent the arrival rate and y-axes represent the
average results of 100 simulations of each metric. The arrival
rate of the requests used in the evaluations is 1/3000, 1/2500,
1/2000, 1/1500, 1/1000, and 1/500 (requests/generation). In
order to obtain a constant offered load, the service rate per
request of the system is one-fifth of the arrival rate. We
evaluate only successful cases, i.e., when the system can
find a solution within a period, in Figs. 5(b)–5(e). Note that,
therefore, the results of Conv and RandImm tend to be better
than EvoVNFP in Figs. 5(b)–5(e) because they solve only easy
problems where the number of the requests is smaller.

1) An example of fitness transition: First, we show the
results of the fitness of one simulation run where the arrival
rate is 1/1000 in Fig. 4 to see differences in behavior among
the methods. EvoVNFP fluctuates more than the other methods
because of the periodic changes of the objectives. EvoVNFP
and RandImm cannot generate solutions at first, but after about
1000 generations they generate feasible solutions and can
maintain them because they don’t re-initialize the population
when the objectives changes. On the other hand, Conv cannot
maintain the solutions because it re-initializes the population
at every change of the objectives.

2000 4000 6000 8000 10000

Generation

-1

0

1

2

3

4

5

6

F
it
n
e
s
s

EvoVNFP

Conv

RandImm

Fig. 4. An example of fitness transition

2) Evaluation of the time for successful adaptations and
the failure probability: Second, we show the results of the
number of generations until obtaining the first feasible solution
for the new objectives in Figs. 5(a) and 5(b). For the higher
arrival rates, the failure probabilities are higher in Fig. 5(a)
because we have to find solutions in shorter time. Also, the
number of generations is smaller in the higher arrival rates in
Fig. 5(b) because all methods can solve easy problems where
the number of requests is small. EvoVNFP shows the best
performance among all three methods for all arrival rates in
Figs. 5(a) and 5(b). Figure 5(b) shows the ability of EvoVNFP
to reduce the time to calculate the first feasible solutions,
which also leads to the lower failure probability in Fig. 5(a).
The reason for this is that the periodic changes of EvoVNFP
work effectively and prevent EvoVNFP from getting stuck in
local solutions. Also, they facilitate the discovery of solutions
because a solution for N requests can be easily created from
a solution for N − 1 requests, which are obtained from easier
problems than the case of N requests.

3) Evaluation of the cost for reconfigurations: Next, we
evaluate the total reconfiguration cost needed to adapt to suc-
ceeding objectives. It is measured using the last placements for
preceding objectives and the first feasible placements for the
new objectives. Figure 5(c) shows that RandImm has a slightly
lower cost than EvoVNFP. It is assumed from this result that
EvoVNFP generates placements where the components and
VMs for each request are separated to different VMs and
PMs, respectively, because of the periodic changes of the
objectives. This makes the speed of adaptation faster because
the resources for the requests do not interfere with each other.
However, it also makes the difference between the placements
larger. This is because recalling the separated resources causes
sudden appearance of VMs and components, leading to many
VM additions.

4) Evaluation of the performance of the placement: Finally,
we evaluate the quality of the placement, i.e., the number of
cores and delays, at the updates. EvoVNFP and RandImm are
almost same and better than Conv in Fig. 5(d) and EvoVNFP



0.5 1 1.5 2
arrival rate ×10

-3

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b
a
b
ili

ty EvoVNFP
Conv
RandImm

(a) Failure probability of request ac-
ceptance.

0.5 1 1.5 2
arrival rate×10

-3

10
1

10
2

10
3

n
u
m

b
e
r 

o
f 
g
e
n
e
ra

ti
o
n
s

u
n
ti
l 
o
b
ta

in
in

g
 t
h
e
 f
ir
s
t

fe
a
s
ib

le
 s

o
lu

ti
o
n

EvoVNFP
Conv
RandImm

(b) Number of generations until
obtaining the first feasible solution.

0.5 1 1.5 2
arrival rate ×10

-3

0

200

400

600

n
u
m

b
e
r 

o
f

re
c
o
n
fi
g
u
ra

ti
o
n
s

EvoVNFP
Conv
RandImm

(c) Weighted sum of reconfigurations
needed to adapt to succeeding objec-
tives.

0.5 1 1.5 2

arrival rate ×10
-3

0

20

40

60

80

100

n
u
m

b
e
r 

o
f 
c
o
re

s

EvoVNFP

Conv

RandImm

(d) Number of CPU cores of the
placement at updates.

0.5 1 1.5 2
arrival rate ×10

-3

0

20

40

60

80

d
e
la

y

EvoVNFP
Conv
RandImm

(e) Delay of the placement at up-
dates.

Fig. 5. Evaluation results where x-axes represent arrival rate. The arrival rates
used in the evaluations are 1/3000, 1/2500, 1/2000, 1/1500, 1/1000, and 1/500
(requests/generation) and marked in the figures. (b)–(e) are under conditions
of success.

is the best in Fig. 5(e). These are because EvoVNFP can
improve the individuals faster than RandImm and Conv, not
only obtain the first feasible solutions faster. These results
mean that EvoVNFP doesn’t have overhead in terms of the
system-side/user-side performance.

V. CONCLUSION AND FUTURE WORK

In this research, we proposed a method called EvoVNFP
for solving the dynamic VNF placement problem. EvoVNFP
includes fine-grained changes of the objectives every period
to facilitate fast adaptation. Also, when the requests arrive
or depart, the objectives of EvoVNFP change without re-
initialization of the population.

The results of the simulations show that EvoVNFP has
smaller failure probability of finding feasible solutions, i.e.
can follow the dynamics, and can reduce the adaptation time
to successive objectives in comparison to conventional GA and
random immigrant GA. Furthermore, EvoVNFP has virtually
no overhead in terms of the performance.

Our future work includes further evaluations with differ-
ent types of objective changes to measure adaptability of

EvoVNFP and evaluate further metrics to show that EvoVNFP
has good performance for solving the dynamic VNF placement
problem.

ACKNOWLEDGMENT

This research was supported by “ Program for Leading
Graduate Schools” of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys & Tutorials, vol.
18(1), pp. 236–262, Jan. 2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network Function
Virtualization: Challenges and Opportunities for Innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, Feb. 2015.

[3] R. Jain and S. Paul, “Network Virtualization and Software Defined
Networking for Cloud Computing: A Survey,” IEEE Communications
Manazine, pp. 24–31, Nov. 2013.

[4] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research Directions
in Network Service Chaining,” in Proceedings of SDN4FNS 2013, Nov.
2013, pp. 1–7.

[5] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep Packet
Inspection as a Service,” in Proceedings of CoNEXT 2014, Dec. 2014,
pp. 271–282.

[6] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
Orchestrating Virtual Network Functions in NFV,” in Proceedings of
CNMS 2015, Nov. 2015.

[7] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near Optimal
Placement of Virtual Network Functions,” in Proceedings of INFOCOM
2015, Apr. 2015, pp. 1346–1354.

[8] M. Bouet, J. Leguay, and V. Conan, “Cost-based Placement of vDPI
Functions in NFV Infrastructures,” in Proceedings of NetSoft 2015, Apr.
2015, pp. 1–9.

[9] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba, “Service Function
Chaining Simplified,” eprint arXiv:1601.0075, Jan. 2016.

[10] M. Bouet, J. Leguay, and V. Conan, “Cost-Based Placement of Virtu-
alized Deep Packet Inspection Functions in SDN,” in Proceedings of
MILCOM 2013, Nov. 2013, pp. 992–997.

[11] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement
of Virtualized Network Functions,” in Proceedings of CNMS 2014, Nov.
2014, pp. 418–423.

[12] C. Aikens, “Facility Location Models for Distribution Planning,” EJOR,
vol. 22, no. 3, pp. 263 – 279, Dec. 1985.

[13] GS NFV-SWA 001 - V1.1.1 - Network Functions Virtualisation (NFV);
Virtual Network Functions Architecture. ETSI, Dec. 2014.

[14] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
Dynamic Placement of Virtual Network Functions,” in Proceedings of
NOMS 2014, May 2014, pp. 1–9.

[15] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and
Network Motifs,” PNAS, vol. 102, no. 39, pp. 13 773–13 778, Sep. 2005.

[16] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed
Up Evolution,” PNAS, vol. 104, no. 34, pp. 13 711–13 716, Aug. 2007.

[17] M. Otokura, K. Leibnitz, T. Shimokawa, and M. Murata, “Evolutionary
Core-Periphery Structure and its Application to Network Function
Virtualization,” IEICE Transactions on NOLTA, vol. 7, no. 2, Apr. 2016.

[18] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
Middlebox Manifesto: Enabling Innovation in Middlebox Deployment,”
in Proceedings of HotNets-X, Nov. 2011, pp. 21:1–21:6.

[19] J. Grefenstette, “Genetic Algorithms for Changing Environments,” in
Proceedings of PPSN 1992. Elsevier, Sep. 1992, pp. 137–144.

[20] J. Barrera, M. Ruiz, and L. Velasco, “Orchestrating Virtual Machine
Migrations in Telecom Clouds,” in Proceedings of OFC 2015, Mar.
2015, pp. 1–3.

[21] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity
Provisioning System for the Cloud,” in Proceedings of ICDCS 2011, Jun.
2011, pp. 559–570.


