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Abstract: Biological networks, such as that of the human brain, show a remarkable ability
to adapt to changing environments by long-term evolution and short-term adaptations. This
is facilitated by the core-periphery structure of the network, where a core of densely con-
nected network nodes provides long-term functionality and robustness, while the periphery is
responsible for adaptation on short time scales to changing conditions in the environment. In
this paper, we discuss the characteristics of the core-periphery network structure and its rela-
tion with adaptability and evolvability, which we also illustrate with own experimental data
from the brain’s functional network. Based on this concept, we propose a mechanism for the
adaptive placement of network functions to virtual servers in network function virtualization
(NFV) under time-varying user requests. Our simulation results show that the number of
server manipulations (migrations, merges, and replications of virtual machines) necessary to
accommodate changes in network function requests can be greatly reduced compared to the
conventional placement method.

Key Words: evolvability, core-periphery structure, modularity, network function virtualiza-
tion (NFV), software defined networking (SDN)
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1. Introduction

Biological systems are well known for their high adaptability and intrinsic robustness [1, 2]. Genetic
evolution drives the process of adapting an organism to newly arising environmental conditions to
ensure the survival of the species while at the same time keeping the changes within a limited energy
budget. This results in biological networks having a high degree of modularity [3], i.e., the network
can be easily decomposed into “building blocks” of smaller network modules that can be reassembled
to perform high-level complex functions. For example, modularity in the human brain network is
considered as a driver for the interplay between segregation of the specialized brain regions and their
integration [4] facilitating cognitive behavior.

Module decomposition is mostly regarded in complex network studies for stationary networks when
the connections between nodes do not change over time. However, in the recent past also an increased
interest in temporal networks [5] has arisen, where the connectivity between network elements may
change over time. Particularly from evolutionary viewpoint, it is appealing to investigate how nodes
may join or leave modules at different time. One approach for evaluating the temporal dynamics of
the community structure in graphs is by using a multi-slice modularity technique [6], where each slice
consists of the same network at a certain time or time interval, and where each node is interconnected
to itself in successive slices. Instead of finding the optimal modularity for each time instance (slice)
independently, multi-slice modularity optimizes the community structure simultaneously across all
time instances, leading to a more consistent view of the dynamic communities. This method has
been applied to investigating how learning a motor skill is represented in the functional connectivity
structure of the human brain [7].

For investigating how modularity spontaneously arises in a network, Kashtan et al. [8, 9] provide a
model of an evolving biological system with Modularly Varying Goals (MVG) and show that changes
in the environment from alternating evolutionary goals lead to a modular topology. Once the system
has converged, switching from one goal to another by using different fitness functions does not change
the major modules, but only the interconnections between them. The result is that the part of the
network that has common functionality for both goals remains stable, while the part that deals with
the individual functionality required for the current goal is activated only when needed. Such a
behavior has been observed as core-periphery structure of a network [10].

The fast adaptation scheme toward time-varying specific goals with a low number of manipulations
to the network configuration is also appealing for engineered systems, such as information networks.
Recently, the Internet has shown a growing trend toward Software Defined Networking (SDN) and
Network Function Virtualization (NFV), where network components, e.g., routers, and functions,
e.g., deep packet inspection or firewalls, are implemented in software instead of using dedicated
hardware. While SDN is based on separating the control plane, i.e., the control mechanisms of how
data is transmitted, from data plane, i.e., the actual transmission mechanism, NFV facilitates running
network functions, which were previously only available on dedicated hardware, as software instances
in virtual machines (VM) on commodity servers. While the reconfiguration of conventional networks
has been traditionally difficult, NFV enables an adaptive control of the network’s resources in a fast
and dynamic way.

One common application example of SDN/NFV is service chaining. It provides each user to indi-
vidually customize a chain of services composed of multiple Virtualized Network Functions (VNFs)
realized by NFV and enables dynamic provisioning of services according to the requests of users as
well as auto-scaling, i.e., increasing or decreasing the scale of network functions according to their
current level of demand. In order to control service chaining, it is necessary to provide services rapidly
in response to the requests from users [11]. Furthermore, considering the current development of In-
ternet of Things (IoT) technology, the number of users/devices that will be requesting service chains
is expected to become very large in the future. Therefore, deciding the placement of resources and
traffic routes by periodical re-optimization will be infeasible due to the long calculation time.

In this paper, we follow an interdisciplinary approach by applying an evolutionary core-periphery
model from biology to information networking. Our contribution in this paper is to interpret the
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MVG model as a temporal core-periphery model based on which we derive an efficient method that
can be applied to the problem of allocating VNFs to virtual servers in the physical infrastructure of
an information network with time-varying demand. We compare our proposed method by simulation
with a conventional method using optimization [12, 33]. Simulation results show that the number of
manipulations (migrations, merges, and replications of VMs) to accommodate for changes in traffic
demand are in our proposed method about 33% lower than with the optimization.

The remainder of this paper is organized as follows. First we discuss in Section 2 general properties
of modularity and core-periphery, as well as describe how we can characterize MVG as a temporal core-
periphery mechanism. In order to show a real-world example, we identify core and periphery in the
brain functional network extracted from functional magnetic resonance imaging (fMRI) data where
the subjects alternate between two tasks. In Section 3, we then propose an evolutionary mechanism to
efficiently control the server allocation of network functions in an NFV scenario under varying traffic
conditions. We compare our proposed mechanism with conventional optimization by simulations in
Section 4 and show numerical evidence that our proposal reduces the number of required adaptations
necessary to accommodate changes in traffic. Finally, the paper is concluded in Section 5 including
an outlook on future work.

2. Core-periphery structure and modularity of networks
Studying the topological structure of networks is necessary for understanding their internal organiza-
tion, particularly if they are continuously evolving and changing over time. This is not only important
for biological networks, e.g., the human brain, but also for most technical systems, e.g., the Internet.
Methods from complex network theory can be used for evaluating the network topology based on a
large variety of topological measures, e.g., clustering coefficient or characteristic path lengths. Some
of these measures, like betweenness or modularity, are of particular importance for understanding
the global network structure since they reveal important information about the role and topological
importance of each individual node. While most complex network studies only look at a steady-
state from geometrical viewpoint, it is challenging to also include temporal aspects. One way is to
characterize the temporal network dynamics by observing changes in modularity.

2.1 Topological properties of network graphs
Estrada [13] provides a general classification of networks into 4 classes of topologies based on the
spectral properties characterized by the eigenvalues of the adjacency matrix. Beside homogeneous
networks that are free from any bottlenecks, the other classes are modular networks, core-periphery
networks, and networks having features of both (quasicliques and quasibipartites). This classification
is performed by comparing how the elements of the eigenvector of the adjacency matrix deviate from a
straight line which corresponds to a homogeneous network with perfect spectral scaling. In this paper,
we decouple the strictly topological distinction from [13] between core-periphery and modular, but
rather observe the time-dependent behavior of core-periphery structures. This also permits combining
both notions by having a network with modular topology, but where some modules frequently change
over time, while others remain stable.

2.1.1 Modularity structure
Biological networks have in many cases modular structures such as protein-protein interaction net-
works, gene expression control networks, and brain functional networks [14]. Modularity can be
informally characterized as the formation of groups of densely interconnected nodes that have sparse
connections among groups. These groups are referred to as modules. The connection density is
evaluated through comparison with randomly connected networks serving as null models.

Modularity is formally defined in [15] as the partition of network nodes that maximizes the modu-
larity quality function Q defined as

Q =
1

4m

∑
ij

(
Aij − kikj

2m

)
δ(si, sj) (1)
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Fig. 1. Core-periphery versus modularity structure.

where 2m =
∑

ij Aij is the number of all links, i.e., the sum of all entries Aij in the adjacency
matrix, ki is the degree of node i, i.e., the number of connected neighbors of node i, and δ(si, sj) is
an indicator function that is 1 if nodes i and j are in the same module and 0 otherwise. The partition
that maximizes Q in Eq. (1) is also called the community structure of the network.

2.1.2 Core-periphery organization
Core-periphery organization can often be found in real-world networks [10]. Although there appears
to be no fully consistent formal definition of a core-periphery network, the general consensus is that
the core forms a densely interconnected group of nodes with rather low adaptability located in the
“center” of the network, while the periphery is formed by nodes with sparser connections, usually
connecting only to the core and having a high adaptability. This is in contrast to modularity which
has a more decentralized type of organization as shown in Fig. 1.

Various theoretical models for core-periphery networks and real-world networks have been proposed,
often originating from studies of elites in social networks [16, 17]. Especially in the field of information
networking there seem to be abundant examples of core-periphery, such as the Jellyfish model for the
network of autonomous systems (AS) in the Internet [18], the bowtie structure of WWW links [19],
or the evolution of network protocols that leads to the characteristic hourglass shape of the TCP/IP
protocol stack [20]. Bowties and rich clubs are regarded as special cases of core-periphery [10], where
a bowtie distinguishes the periphery into directed links leading to the core and links leading from
the core, while a rich club has a clique of high degree nodes as core. Both, bowties and rich clubs,
have been also studied in the context of the organization of functional [21] and anatomical brain
networks [22].

2.2 Modularly varying goals vs. Temporal core-periphery
One of the factors which generates modularity in biological networks is evolution under varying
environments as shown in [8]. When organisms evolve towards varying goals, they genetically change
to adapt to the new environments and the underlying biological networks also need to change to fulfill
the new goal. Regarding the trajectory in the system’s state space, evolution toward a goal is the
process of moving the system’s state closer to the location that represents maximum fitness. When
the goal changes, it means that the maximum fitness state is located at a new position toward which
evolution will occur, starting from the state that was optimized for the previous goal. If the goals
cyclically change, the ideal state will converge somewhere in the middle between both goals making
both easy to reach. Kashtan et al. [8] refer to this concept as Modularly Varying Goals (MVG).

2.2.1 Modularly Varying Goals (MVG)
Genetic algorithms (GAs) are computational heuristics which imitate biological evolution with respect
to an objective. In GAs, genomes are evolved toward a goal by using genetic operations such as
selection, mutation, and crossover. Reference [8] proposes MVG based on GA to introduce the
concept of biological evolutions in varying environments. Unlike conventional GAs which only optimize
toward a fixed and single goal, MVG requires 2 or more goals to represent the varying environments.
Since switching between the goal does not involve re-initialization, this method differs from simply
performing sequential GAs with fixed goals.

205



Fig. 2. Basic concept of evolutionary core-periphery structure in MVG.

In the examples presented in [8], the goals consist of combinations of sub-goals, i.e., boolean func-
tions consisting of nested expressions in parentheses of the goals G1 = (X ⊕ Y ) ∨ (W ⊕ Z) and
G2 = (X ⊕ Y ) ∧ (W ⊕ Z), where “⊕”, “∨”, and “∧” are the logical XOR, OR, and AND operators,
respectively. When evolving a network with varying goals, MVG obtains a structure, where modules
correspond to sub-goals (X ⊕ Y ) and (W ⊕ Z) and only the AND operator needs to be replaced by
an OR, or vice versa. Since goals are combinations of sub-goals, a genome can adapt by only chang-
ing that part of the genome corresponding to links between the modules by few mutations without
changing the modules themselves. Therefore, we can obtain solutions from genomes by adapting to a
new goal by only few operations.

2.2.2 Evolutionary Varying Goals (EVG)
Our proposed method in this paper is based on MVG, but unlike the graph-based problem definition in
[8], our formulation does not break down into individual modules, but only into two groups: core and
periphery (Fig. 2). Similar to MVG, we assume that goals remain fixed during one epoch, comprising
several generations, but then change slightly at the begin of the next epoch.

For each change in goal, the core corresponds to the common part that doesn’t change regardless of
the goal, whereas the periphery reflects the different part that is required when the new goal is active.
We will refer to the MVG-based method as Evolutionary Varying Goals (EVG) and its temporal
core-periphery structure can be regarded as a generalization of MVG.

2.3 Temporal core-periphery in brain functional networks
In order to illustrate the existence of dynamic core-periphery structures in brain functional networks,
we evaluated data that was obtained from fMRI measurements where each subject alternates between
2 tasks at an auditory cue signal: (i) COUNT in which the subject silently counts down from 100,
and (ii) NAM in which the subject recalls a negative autobiographical experience from memory, each
performed 3 times for epochs of 32 s at a temporal resolution (TR) of 2 s. The data set consists
of functional magnetic resonance imaging (fMRI) measurements from 11 subjects (5 males, 21–37
years) and was made available by kind permission of the authors of [25], where further details on the
acquisition of the data can be found.

Each COUNT and NAM epoch is separated by a short REST phase of 16 s to avoid overlaps of
the hemodynamic responses from task changes. The time series consists of 3 repetitions of COUNT-
REST-NAM-REST epochs, resulting in a total time series length of 144 scans. The time series data
from all voxels was reduced to 264 regions of interest (ROIs) based on the definition of putative
functional areas by Power et al. [26] by averaging over the BOLD signals of all voxels’ time series
located within spheres centered at the ROI locations with a 5mm radius.

The general process of constructing a network graph from fMRI time series is often described in
the literature [27, 28] and will be only roughly sketched here. Each ROI acts as node in the functional
network graph and two nodes are connected by a link if their time series are strongly correlated. Since
the duration of each task-specific epoch is very short with only 16 scans, the correlation matrices
becomes very noisy if we attempt to determine an individual network for each epoch. We, therefore,
reordered the time samples so that all COUNT epochs are concatenated in one data set and all
NAM epochs are concatenated in another (Fig. 3). These time series are sufficient in length to
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Fig. 3. Reordering of fMRI epochs and extraction of functional brain network
graphs for both tasks reveals temporal core-periphery structure. Black links
are common in both networks (core) and red links vary depending on task
(periphery). Colors of the nodes are chosen based on their anatomical regions.

compute a correlation matrix for each task and we calculated the average correlation matrix from all
11 subjects and applied a proportional threshold of θ = 0.05 to pick only the 5% strongest values as
links. Figure 3 shows the resulting networks for the COUNT and NAM tasks. For sake of clarity,
we only depict nodes located on the left hemisphere. Links shown in black are common in both
networks (core) and red links vary depending on the task (periphery). Colors of the nodes are chosen
based on their functional areas according [29]: motor and somatosensory network (SMN), cingulo-
opercular network (CON), auditory, default mode network (DMN), visual, fronto-parietal network
(FPN), salience network (SAN), subcortical, ventral and dorsal attention networks (VAN and DAN).

3. Application to traffic-dependent VNF placement

In this section, we present the application of EVG as a dynamic core-periphery mechanism to the
problem of optimizing the VNF placement to servers in a physical network with respect to the changes
in demand for the network functions.

3.1 Modeling the VNF placement problem
Let us consider an SDN/NFV scenario, consisting of a physical network connecting routers and servers
as shown in Fig. 4. We model the service chain of each VNF as a sequence of 3 function components
FC c with c = 1, 2, 3, where similar to [30] the first component handles receiving of packets, the second
deals with finding flow states from a flow table, which contains information on the current flow state
and the corresponding processes, and the last component is for processing packets and outputting
them. Each network function needs to be processed by the components FCc in their exact order
c = 1, 2, 3, while the components run on VMs located on any server in the network, not necessary on
the same server.

VNFs for service chaining are placed on servers in carrier clouds [31]. In the future, carrier clouds
will be composed of multiple data centers and their interconnections. In such case, it is important
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Fig. 4. Conceptional figure of our considered SDN/NFV model. An example
placement is shown where each server has 16 cores and the number of necessary
cores for components FC c is 4, 8, 4 for c = 1, 2, 3, respectively. The percentages
shown beside each server are the utilization of their CPU cores based on the
current placement.

Fig. 5. An example of time-dependent placement due to changes in demand
over 3 epochs is shown where each server has 16 cores and the number of
necessary cores for components FC c is 4, 8, 4 for c = 1, 2, 3, respectively.

to place the components of the same VNF on the same data center to avoid unnecessary delays in
the communication between data centers. In this paper we assume that the network is composed of
routers that each connect to multiple servers, so our scenario is equivalent to a router being a data
center and the network connecting routers as the network between data centers.

When demand for a certain network function VNF v increases, the second component FC 2 often
becomes the bottleneck of VNF v [32], while we assume that FC 1 and FC 3 remain nearly unaffected
by the number of traffic flows. Therefore, when the demand increases, we need to increase the
performance of FC 2, which is achieved by scaling up the number of VMs running the software of
FC 2 (Fig. 5). We will therefore focus in our notation only on FC 2 when we consider the number of
required components by representing its demand only.

However, the number of components that can be placed on each server is finite. In [12], a limit
of the number of VNFs that can be placed on each server is set by introducing the concept of the
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number of cores1 to their model. Given the number of necessary cores for running a VNF on a VM,
and the number of cores for each server, the VNFs are placed in the network in such a way that no
server uses more cores than it actually has. Since our smallest unit size is one VNF component, we
limit the number of components by providing the number of necessary cores for running a certain
component and the total number of available cores for each server. Then, our proposed method EVG
places the components on the servers without exceeding their number of cores.

3.2 Application of EVG to VNF placement problem
As discussed in earlier sections, EVG is based on MVG and has a core-periphery structure that we
use for adapting to time-varying goals in the form of requests for VNFs. In order to solve the VNF
placement problem, we now propose the EVG method to make use of the core which remains same
when goals are changed and only need to accommodate for the changes in the periphery. In order to
define the EVG model, we now need to elaborate on its formulation as a genetic algorithm.

An instantaneous configuration in our model reflects the current assignment of component VMs
to the servers in the network, which is encoded as a genome. Therefore, the population of genomes
represents the candidates of possible assignment configurations of VNF placement to the physical
infrastructure. Switching between goals in EVG is accomplished by comparing the two traffic requests
for required VNF components at generation t and t+1. Since this transition from t to t+1 is very likely
to have overlapping requirements, this common part forms the core of the core-periphery structure
discussed in Section 2. The quality of the output from the GA is evaluated by a time-varying fitness
function, which distinguishes it from most conventional GA implementations. The algorithm of EVG
that we use in the following is outlined in Algorithm 1. We refer to all steps within the loop (steps
3–9) as one generation. Note that, in Algorithm 1, no re-initialization of the population occurs when
the goal changes. This property of EVG lets the genomes in the population obtain the core-periphery
structure which can easily adapt to varying goals.

Algorithm 1 Genetic algorithm for solving VNF placement problem
1: randomly generate population of N genomes
2: while maximum number of generations is not reached do
3: if required components changed from previous generation then
4: change goal
5: end if
6: evaluate the fitness of each genome and rank genomes by their fitness
7: save η genomes from the top of the ranking (“elites”) and remove from population
8: mutate each genome in the population with probability pm and crossover with probability pc

9: generate the new population by combining η and the remaining population
10: end while

Fitness F evaluates the quality of the current configuration of VNF placement and is determined
by Eq. (2).

F = κ− Putil + Pcore + Pdelay

κ
(2)

Here, κ is the coincidence of the number of components in the current placement to the required
number of components, Putil is the penalty imposed according to the utilization of the resources of
the physical network, and Pcore is the penalty imposed when more cores are placed on servers than
they have. The coincidence κ is calculated as follows.

κ = 1 −
∑3

c=1

∑V
v=1Dcv

3V
with Dcv =

⎧⎪⎨
⎪⎩

0 if Rcv =
S∑

s=1
xscv

1 otherwise

1The term “cores” refers in this section to CPU cores in a server and should not be confused with the cores in the
core-periphery structure discussed in Section 2.
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Here, V is the number of VNFs that need to be placed and S is the number of servers in the system.
The number of placed components is represented by variable xscv, where s ∈ {1, 2, . . . , S} is the server
index, c ∈ {1, 2, 3} is the component index, and v ∈ {1, 2, . . . , V } is the index of the corresponding
VNF. The variable Rcv is the number of required components c of VNF v, and Dcv indicates if the
number of required components matches with the number of placed components (Dcv = 1) or not
(Dcv = 0). Dcv can be determined from xscv and xscv can be decided from the genome.

The utilization penalty on the fitness Putil is calculated as follows:

Putil =

{
U − Uth if U ≥ Uth

0 otherwise
(3)

Here, U is the utilization of the resources in the physical network, which we will refer to in the
following as “resource utilization” and Uth is its threshold. U is defined as

U =
1
2

(
Ĉ

C
+
L̂

L

)

where

Ĉ =
S∑

s=1

3∑
c=1

V∑
v=1

Cc × xscv C =
S∑

s=1

Ss L̂ =
L∑

k=1

yk.

C is the sum of the number of cores of all servers in the system and L is the number of all links
between routers in the physical network. Cc is the number of required cores for running component
c, Ss is the number of cores of server s, and yk is a variable which indicates with 1 if link k is used,
otherwise it is 0. L̂ is the sum of the used links between routers and Ĉ is the sum of the number of
cores which the placed components need. U , Ĉ, L̂, and yk can be determined from xsjv.

The penalty Pcore of assigning too many cores is calculated as follows:

Pcore = Pex

S∑
s=1

Es with Es =

⎧⎪⎨
⎪⎩

1 if
3∑

c=1

V∑
v=1

xscvCc > Ss

0 otherwise
. (4)

Here, Es indicates with 1 if the required number of components exceeds the capacity of server s
(0 if it doesn’t exceed) and the sum over all Es is the number of servers which require more cores
for running the components than they actually have. In the following, we refer to such servers as
“exceeded servers”. Pex is the penalty value which is imposed on the fitness for each exceeded server
and is given as parameter.

The penalty Pdelay of exceeding a delay threshold is calculated as follows:

Pdelay =

{
D −Dth if D > Dth

0 otherwise
. (5)

Here, D is the sum of delays of each VNF and Dth is its threshold. D is defined as

D =
L∑

l=1

V∑
v=1

(wv (1,2)
l + w

v (2,3)
l )ψl

where ψl is the propagation delay of the physical link l, wv (1,2)
l is a variable which represents the

number of virtual links of VNF v from component 1 to component 2 which are allocated to physical
link l, and wv (2,3)

l is a variable which represents the number of virtual links of VNF v from component
2 to component 3 which are allocated to physical link l, where l ∈ {1, 2, . . . , L}. Both variables of the
number of links can be determined from xscv.

By using Eq. (2) as the fitness function, we can achieve a fitness of 1 for specific genomes. These
genomes represent placement configurations which have the following 3 properties:
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Fig. 6. The structure of a genome and table for converting 3-bit strings to
number of components. In this example, the part of the genome “011010111”
for VNF 1 and server 10 is translated to 0 FC 1, 2 FC 2, and 1 FC 3 number of
components.

• the placements have the appropriate number of components

• resource utilization of the placement is below a specified threshold, and

• there is no exceeded server among them.

4. Simulation evaluation of VNF placement mechanism
We now evaluate the performance of EVG as VNF placement mechanism. Our objective is to reduce
the number of configuration changes while also achieving a good quality of placement in terms of
utilization.

4.1 Evaluation environment
In this subsection we explain the settings we used in the simulation regarding the structure of the
network and how we model traffic changes. We used for our evaluations the same physical network as
previously shown in Fig. 4, which is composed of 5 routers connected in a full mesh and where each
router has 2 servers connected to it. Each server and router has an id number, ranging from 1 to 10
for servers and from 1 to 5 for routers. Furthermore, we assume that each server is equipped with 16
cores in total. Each server must use a certain number of cores for running a VNF component. We
assume this number to be 4, 8, and 4 cores for components FC i, i = 1, 2, 3, respectively.

In this paper, we consider the problem of placing V = 5 equal VNFs on the physical infrastructure.
As mentioned in Section 3.2, our focus is on the time-varying demand for components of VNFs,
particularly for FC 2. Denoting rv as the number of required FC 2 of VNF v, the number of required
components at generation t is represented as a V -dimensional vector R(t) = [r1, . . . , rV ]. This vector
R(t) randomly changes after every T generations (1 epoch), such that |R(t+1)−R(t)| = 1 if generation
t and t+1 belong to different epochs, and R(t+1) = R(t) if they belong to the same epoch. In other
words, R(t) performs a discrete random walk in N

V
+ with step size 1 on the time scale of epochs.

4.2 Proposed genetic algorithm
As explained in Section 3.2 our proposal is based on the evolutionary method of MVG. In the following
of this section, we will explain the design and settings of the GA simulation.

The structure of a genome is illustrated on the left in Fig. 6. The number of components for FC i,
i ∈ {1, 2, 3} for each VNF v ∈ {1, ..., V } and server s ∈ {1, ..., S}, is a binary string of 3 bits and the
entire genome is comprised of such concatenations in the order shown by the red arrow in Fig. 6. In
order to convert from a 3 bit binary sequence to the number of components, the table on the right of
Fig. 6 is used.

In the conversion of FC 1 or FC 3, only the bit string of “111” leads to 1, while all others are
converted to 0 (middle column of table). This is because the number of FC 1 and FC 3 components is
likely to become greater than 1 due to the genome structure shown in the left side of Fig. 6, although
one component of each of FC 1 and FC 3 is needed. On the other hand, in the conversion of FC 2, the
difference between two values which are converted from two neighboring bit strings in the Gray code
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Table I. Parameter settings of proposed VNF placement method.

number of genomes in a population (N) 1000
size of elites (η) 100

crossover probability (pc) 0.9
mutation probability (pm) 0.9

number of generations (Gmax ) 20000
interval between goal changes (T ) 20

threshold of resource utilization (Uth) 0.5
threshold of delay (Dth) 120

penalty imposed per exceeded server (Pex ) 0.1

is 1, except for “110” and “111” so that the number of FC 2 doesn’t change drastically when a bit is
changed by a mutation.

The parameters in the evaluation of our proposal are summarized in Table I. In our simulations
we use a population size of N = 1000 genomes. The elite consists of η = 100 genomes with highest
fitness values. Crossovers and mutations are performed with probabilities pc and pm, respectively.
Every T = 20 generations the traffic requirement vector R(t) is changed. The threshold Uth in Eq. (3)
is set to 0.5, the penalty per exceeded server Pex in Eq. (4) is set to 0.1, and the threshold of delay
Dth = 120 in Eq. (5). The maximum number of generations is Gmax = 20000.

The solution for each goal is the genome which has maximum fitness among all other genomes
obtained in the generation prior to the goal change. That is, we obtain a solution for the current goal
and change the goal every T = 20 generations, which we refer to as an epoch. Therefore, we obtain a
time series of 1000 (= Gmax/T ) epochs from a single simulation run. Furthermore, we also store the
time series of Rcv corresponding to the traffic requirements as input to the simulation.

4.3 Reference placement method by ILP
Beside our proposed method, we also consider the placement results obtained by solving the problem
formulated by an Integer Linear Problem (ILP) which was used to obtain optimized VNF placements
in previous research [12, 33]. In the following, we refer to this method as “ILP method”. We use the
same input Rcv from the simulation of EVG method for which we also determine the placement of
components by the ILP method. We obtain the placements which have minimal resource utilization
and satisfy 2 constraints:

• the placements have the appropriate number of components, and

• there is no exceeded server.

In the following, we explain the formulation of the problem by ILP. We use the same variables and
constants as in Section 3.2. The decision variable is xscv, the objective function is U + D, and the
constraints are shown below:

κ = 1

∀s
3∑
c

V∑
v

(xscv × Cc) ≤ Ss

∀s, c, v xscv is an integer value and 0 ≤ xscv ≤ 4

∀l yl is a binary value

∀l (∃v (x̃r1v = 1 ∧ x̃r′2v ≥ 1) → yl = 1)

∀l (∃v (x̃r3v = 1 ∧ x̃r′2v ≥ 1) → yl = 1)

∀l, v w
v (1,2)
l ≥ (x̃r2v − x̃r′1v) + (x̃r′2v − x̃r1v)

∀l, v w
v (2,3)
l ≥ (x̃r2v − x̃r′3v) + (x̃r′2v − x̃r3v)

212



Table II. Mean and standard deviation of the number of each manipulation.

EVG ILP FG
mean SD mean SD mean SD

replications 0.51 0.45 1.61 0.67 25.91 2.13
merges 0.54 0.49 1.60 0.67 12.10 3.02

migrations 0.50 0.29 13.63 2.19 6.14 0.85

Here, x̃rcv is the variable which represents the number of component c of VNF v on the servers
connected to router r with x̃rcv = x(2r)cv +x(2r+1)cv. The terms r and r′ are the router ids which are
connected to link l.

4.4 Reference placement method by FG
In order to show the difference between EVG and ordinary GA, we also consider the placement
results obtained by Fixed-Goal genetic algorithm (FG) in our comparison. FG is the repetition of the
ordinary GA whose maximum number of generations is T . That is, the only difference we have in
Algorithm 1 is that we change “change goal” in line 1 of to “regenerate population and change goal.”
All parameters of FG are the same as in EVG (Table I).

4.5 Evaluation metrics
We use the number of VM manipulations that are required to change the VNF placement from the
old configuration to the new one as our evaluation metric. In the following, we evaluate it as the
number of manipulations and resource utilization obtained from simulation runs.

We assume three types of VM manipulations: migrations, replications, and merges for changing
from one VNF configuration to another. Migration means moving a VM from an origin server to
another server, replication means copying an existing VM and additionally launching it on the same
or a different server, and merge means combining multiple VMs into a single VM. In this paper, we
use the number of migrations, replications, and merges needed for each change of the placements as
metrics for comparing our proposal with ILP and FG. We only count the number of manipulations
that traverse links between routers because manipulations that take place between servers connected
to the same router do not consume significant transmission time for transferring disk and memory
images [34].

4.6 Numerical results
To perform a comparison under the exactly same conditions, we first generated the input Rcv which
we then used for 10 repetitions of the proposed EVG simulation, ILP with random seeds, and FG
simulation.

4.6.1 Number of manipulations for placements
Figure 7(a) shows the sum of the 3 kinds of manipulations to match the requirement Rcv over the
whole time course averaged across all simulation runs. It can be clearly seen that both the mean
and variance are significantly smaller for EVG than for ILP and FG (Table II). If we look at the
cumulative distribution functions (CDFs) for each manipulation separately in Fig. 7(b), we can see
that each manipulation is on average smaller for the EVG method than ILP and FG. This is due to the
core-periphery type of configuration which requires only few manipulations to switch the periphery
while the core remains unchanged. In contrast, FG is much worse than the other two methods. This
is because FG is often unable to generate even a valid placement in only T = 20 generations as we
explain further in Section 4.6.2.

4.6.2 Comparison of resource utilization
While the proposed MVG-based method shows a significant decrease in the number of manipulations
compared to ILP, it is expected that the quality of the solutions achieved by the proposal is inferior
since ILP is able to find the best placement. However, Fig. 8(a) shows that the utilization of EVG
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Fig. 7. Evaluation of number of manipulations for VNF placement for EVG,
ILP, and FG.

Fig. 8. Evaluation of VNF placement quality by utilization for EVG, ILP,
and FG.

is not significantly worse than ILP when we look at its time series. The solution by ILP has a mean
utilization of 0.37 (SD: 0.037), while EVG has a mean of 0.43 (SD: 0.046). Moreover, we can also
recognize that both time series are positively correlated (ρ = 0.745), which means that EVG has a
tendency to come relatively close to the optimal solution from ILP. In contrast, the quality of the
solutions achieved by FG is much worse than EVG and ILP. The solutions often have utilizations
of more than 1.0 because evolution of T = 20 generations is insufficient to get even a valid result in
those cases. Figure 8(b) shows the plots of the CDFs of all distributions and although the variances
of EVG and ILP appear similar in the slope of the CDF, EVG has a larger median by about 0.06,
which indicates that the placement is not as efficient as ILP, but it is much more efficient than FG.

5. Conclusion
In this paper, we provided an interdisciplinary view of the core-periphery structure and its relationship
with evolution. While core-periphery structure is a phenomenon that is often observed in static
networks, it can also be observed in the evolutionary adaptation of a system to varying goals. This
concept was introduced as MVG that showed how a modular structure could arise, but we generalized
this notion to EVG, where an underlying network does not need to exist for showing modularity, but
we can characterize a core, which remains stable, and a periphery which flexibly adapts due to the
change of goals. We showed by a simple evaluation of fMRI data that the partitioning into core and
periphery can also be observed in the human brain when the subject’s tasks are switched.

We proposed the application of EVG to the problem of VNF placement on a physical network with
varying traffic requirements. Our proposed method evolves the genomes which represent the place-
ments of VNF components towards structures which are strong against goal changes. This is mostly
the effect of alternating between the goals every time the number of required components changes.
It was confirmed that the proposed method can significantly reduce the number of manipulations
needed to change the placement when adapting to new component requirements. Thus, the proposed
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method can control the network adaptively to the varying traffic and we consider the results in this
paper as a proof of concept.

We intend to pursue extensions of the work described here in various directions. From the applica-
tion viewpoint, we want to enhance EVG-based VNF placement to further improve its performance.
In order to do this, we will perform studies in more realistic scenarios, i.e., taking more complex phys-
ical network topologies into account. We further intend to place service chains composed of multiple
VNFs as future work. Furthermore, for a better comparison with task switching in the human brain,
we are planning on acquiring new data from subjects which have longer task epochs to study the
dynamics of temporal core-periphery in brain functional networks.
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