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Abstract: We investigate a Bayesian approach for VN reconfiguration in elastic optical
networks. The approach identifies traffic condition from simple observations and selects VN
suitable to the condition. Results show a fast converge of VN reconfiguration.
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1. Introduction

Network virtualization is one of key concepts for network operators to provide a flexible infrastructure to the cus-
tomers. Against the change of the customer’s demand, network operators construct or reconfigure a virtual network
(VN) in a dynamical manner by slicing physical resources such as wavelengths in WDM networks or frequency slots
in elastic optical networks. The dynamical nature of the network virtualization will lead to the need for the VN recon-
figuration approaches.

A typical approach for constructing/reconfiguring a VN is to design an optimal topology and the amount of resources
with a knowledge of the end-to-end traffic demand matrix [1, 2]. However, it is not an easy task to obtain the end-to-
end traffic demand matrix since traffic inspection is necessary to count the volume for each source-destination pair.
Ref. [3] therefore developed a method to estimate the end-to-end traffic demand matrix using link-level information
which is easy to collect. However, when the estimation fails, we do not have a way to design the optimal VN because
we have incorrect knowledge of the end-to-end traffic demand matrix.

In this paper, we develop a VN reconfiguration framework without using the traffic demand matrix. Our basic idea
is to follow the human’s recognition and decision-making. That is, we memorize a set of “good” VNs, each of which
works well for a certain traffic situation, and then retrieve one of the VNs suitable for the current traffic situation. Here,
the traffic situation is not necessarily the traffic demand matrix itself, thereby more easily available traffic information
can be used. We will use the amounts of outgoing/incoming traffic at edge routers as the traffic information. Challenges
are 1) how to identify the traffic situation from easily available information in a changing environment, 2) how to
reconfigure a VN when the performance of the VN is not adequate even though the identification succeeds, and 3)
how to reconfigure a VN if the identification fails. For the first point, we apply a concept of Bayesian inference [4].
Bayesian inference is a fundamental method to infer the probability for a hypothesis from observed information based
on Bayes’ theorem. In our current case, given a set of pre-specified traffic situations, the probability for taking each
traffic situation is updated as more traffic information is observed. For the second and third points, we incorporate a
noise-induced VN reconfiguration method proposed in [5] with our framework. The noise-induced method also does
not use the traffic demand matrix but observes only the service quality on a VN and searches for good VNs induced
by noise. However, our framework with the Bayesian inference is superior to the noise-induced method in terms of
stability, since the noise-induced method changes a VN in nature while our framework will not change a VN unless
its performance is bad. In what follows, we will explain the VN reconfiguration framework based on the Bayesian
inference method, and then evaluate the advantage of our framework over the noise-induced method.

2. Virtual Network Reconfiguration Framework Based on Bayesian Inference

2.1. Bayesian Attractor Model (BAttM)

As a way for the Bayesian inference, we explain the Bayesian Attractor Model (BAttM) [6] that models a hu-
mans’s behavior where the brain accumulates evidence extracted from noisy sensory information and makes per-
ceptual decisions. The BAttM has a decision statez that eventually settles into a fixed point,φ ∗, that is defined
by the attractor dynamics, i.e., the winner-take-all dynamics, as the evidence is accumulated. Internally, the BAttM
has several decision alternatives for the average of observation values, and each decision alternative,µi , is associ-
ated with its corresponding fixed pointφi . Let’s denote the observation values up to timet as X1:t = {x1, · · · ,xt}.
At a time t, the model infers the posterior distribution of the decision statezt , denoted byp(zt |X1:t), using the
unscented Kalman filter (UKF). Finally, the model makes a decision for the alternativei that satisfiesp(zt =
φi |X1:t) ≥ λ , where p(zt = φi |X1:t) is the posterior belief or simply called the confidence in the alternativei.



Fig. 1. State transition diagram for VN reconfiguration

2.2. VN reconfiguration framework

We apply the BAttM approach to a VN reconfiguration
framework. In our framework, a VNgi is selected when
the traffic situation is identified toµi under the obser-
vation valuesX1:t . More precisely, we select the VNgi

when the confidence in the alternativei is sufficiently
large. We use the amounts of outgoing/incoming traffic
at edge routers as the observation valuesX1:t . Note that
the VNgi is prepared in advance such that the VN works
well for the traffic situationµi .

Applying only the BAttM approach is insufficient for
VN reconfiguration because the performance of the VN
gi may not be adequate even though the identification succeeds. Therefore, we prepare a set of control phases and
change the control phase based on both the confidence from the BAttM approach and the service quality on the VN.
We briefly explain our control phases in following, and their state transition diagram is shown in Fig. 1.

• Phase 1: Stay until the traffic situation is identified

– We do not reconfigure a VN until the confidence becomes stable at a large value by considering the
confidence becomes equal to or larger thanλ in cth consecutive times. Following Ref. [7], we use
log10

p(zt=φi |X1:t )
p(zt=φ j |X1:t )

as the confidence, which represents the difference between the logarithm of the largest

posterior belief among alternatives and the second largest, in order to identify the situation.
• Phase 2: Reconfigure a VN based on the traffic situation identified

– We configure a promising VNgi that works well for a traffic situationµi when the current traffic situation
is identified toµi (Phase 2-1). In the case where the performance of the VNgi is not adequate, we search
for good VNs by the noise-induced method [5](Phase 2-2).

• Phase 0: Stay (The VN shows good performance)

– We do not reconfigure a VN since the VN can accommodate the traffic successfully.

In summary, our framework first identifies traffic situations using the BAttM (Phase 1) and immediately changes a
VN after the identification (Phase 2-1). Then, we observe the service quality on the VN, and reconfigures if necessary
(Phase 2-2). Note that, in this paper, we do not cover the case where the identification of traffic situations fails, i.e., the
confidence is stable at a small value. However, we believe that it is enough to just apply the noise-induced control as
Phase 2-2 does to search for a good VN.

3. Evaluation

We evaluate the advantage of our VN reconfiguration method over an elastic optical path network by comparing the
results of the noise-induced method [5]. Since our framework includes the noise-induced behavior at Phase 2-2, we
call the existing noise-induced method as the reference method. Both of them do not use the traffic demand matrix
information.

The parameters of the physical network that has the USNET topology are the same as Ref. [5]. Here, all the nodes are
edge routers. The goal of the control is to make the maximum link utilization on a VN less than 0.5. We generate traffic
demand matricesT i (1≤ i ≤ 5) which follow a log-normal distribution. We denote the amounts of outgoing/incoming
traffic at edge routers byEi (= µi) when the traffic demand matrix isT i , and calculate the configuration of VNs
g1, · · · ,g5, each of which can accommodateT1, · · · ,T5. Specifically, we determine the virtual topology using MSF
(Most Subcarriers First) algorithm [8], and allocate frequency slots using First-last fit algorithm [9]. We setcth to 3,
and setλ to 10.

For the evaluation, traffic demand matrices are generated based on the normal distributionN(T1,Σ) at every unit
time, whereT i = (T̄i,11, · · · , T̄i,NN) andΣ = CV2diag(T̄2

i,11, · · · , T̄2
i,NN). N is the number of nodes, andCV is the coef-

ficient of variation which represents the degree of traffic fluctuation. The reference method changes its control phase
based on the service quality on a VN; the method searches for good VNs at Phase 2-2, then changes to Phase 0 when
the performance of the VN is improved.

Fig. 2 shows the transition of the control phases of each method whenCV is 0.75. The horizontal axis shows the
time and the vertical axis shows the control phase staying at each time. The figure clearly shows the behavior of our
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Fig. 2. Transition of the control phase
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Fig. 3. Total elapsed time of taking Phase 0

framework. Our method starts with Phase 1 and continues to stay at Phase 1 until the traffic situation is identified. At
time 5, the control phase shifts to Phase 2-1, and our method reconfigures a VN to the most promising VN. Note that
our method can identify the traffic situation using the amounts of outgoing/incoming traffic at edge routers which are
available more easily than the traffic demand matrix. After that, the control phase becomes Phase 0 since the VN can
accommodate traffic. Even when the control phase shifts to Phase 2-2 due to a traffic fluctuation (time 20), the control
phase is immediately back to Phase 0 by the noise-induced control. This is because a VN is configured to the most
promising VN and therefore the noise-induced control requires a little effort to search for a good VN . In contrast, the
reference method repeatedly changes the control phase between Phase 2-2 and Phase 0.

Next, we evaluate the stability of our VN reconfiguration framework. Fig. 3 shows the total elapsed time of taking
Phase 0 for each method. The horizontal axis shows the value ofCV, and the vertical axis shows the average of the
total elapsed time. For each VN, the total elapsed time is averaged over 100 trials of the noise-induced control. In Fig.
3, we can see that the total elapsed time of our method is longer than that of the reference method against varyingCV.
Our method successfully decreases the number of VN reconfiguration to reach a VN suitable for the traffic situation.

4. Conclusion

We develop a virtual network reconfiguration framework with the Bayesian inference. Specifically, we introduce the
Bayesian Attractor Model to infer the current traffic situation. Evaluation results show that our method can identify
the traffic situation using the amounts of outgoing/incoming traffic at edge routers, which are available more easily
than the traffic demand matrix, and decreases the number of VN reconfiguration to reach a VN suitable for the traffic
situation.
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