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Abstract—Traffic engineering (TE) plays an essential role in
deciding routes that effectively use network resources. The TE
controller should handle the uncertainty due to the lags and lacks
of collected network information. Many previous work partially
tackled this uncertainty problem in various aspects e.g. data
collection, estimation, prediction, routing with uncertain traffic.
However there are few studies about integrating these partial
processes to achieve the cooperation. In this paper, we proposed a
framework to integrate partial processes in a whole TE process,
and formulate it according to the Bayesian approach. In our
framework, decision making process considers how the decision
affects not only network but also other processes by modeling
the behavior of the process as conditional probability. Thus, the
cooperation of different processes is expected to be achieved.

Index Terms—Traffic Engineering, Uncertain Information,
Bayesian Decision

I. INTRODUCTION

Traffic engineering (TE) is a promising solution for handling
time variation of traffic [1]. In the TE, a controller periodically
collects the traffic information, and changes the routes of
the flows within the network based on the collected traffic
information. By dynamically reconfiguring the routes, the
controller avoids the congestion even when traffic change
occurs.

One imminent problem for the TE is how to handle the un-
certainty of the traffic information. The control server cannot
obtain the perfectly accurate information.

One factor of the uncertainty is a lack of information
in the collected data. The controller hardly collects all the
information at all times in a large network since the mes-
saging overhead costumes the capacity even for the ordinal
communication. Thus, the controller has to estimate the traffic
information with a partially available data. In existing work,
many estimation methods are proposed [2, 3], which estimate
the whole traffic information with limited data such as link
traffic or sampling. Moreover, a monitoring method is also
proposed [4] which optimizing the deployment of the monitors
to minimize the estimation error.

Another factor of the uncertainty is a lag between collecting
information and setting the routes. When the controller sets

the next route, the collected data is no longer correct since
traffic changes during the lag between the data collection and
route change. To solve the lag problem, the controller should
predict how traffic changes from the collected data. The traffic
prediction methods have been also proposed in many work
e.g. [5].

Though a promising approach to overcome the uncertainty
is integrating these technologies, there is difficulty to combine
these technologies because of the interactions among them.
For instance, the data collection affects whole other processes
i.e. the estimation, prediction, and route setting. After the
controller collects some partial data, the collected data is used
for not only the estimation of the current traffic but also the
traffic prediction to update the traffic model. Thus, the lack
of data causes both the estimation error and prediction error,
and such errors finally affect the route setting. Therefore, the
data collection method should consider how the collected data
affects other processes. Since such interaction can occur at any
pairs of processes, the controller should orchestrate the whole
processes to cooperate them. In existing work, however, only
achieves the partial integration e.g. prediction and routing [6],
estimation and routing [7], or observation and estimation [4].

In this paper, we proposes a framework of TE to han-
dle the uncertainty of traffic information. Our framework is
inspired by the human brain mechanism. In our daily life,
human brain makes many decisions well even under highly
uncertain environment. One promising theoretical model to
explain the brain mechanism is the Bayesian decision making
model [8]. Therefore, we proposes the framework to handle
the uncertainty in the TE based on the Bayesian approach.
Using the Bayesian model, we also introduces the cooperation
mechanism among different processes, that is, the decision
making process considers how the decision affects the other
processes.

II. UNCERTAINTY IN TRAFFIC ENGINEERING

To clarify our target network on which the proposed frame-
work works, this section briefly explains how the uncertainty
in traffic information occurs.
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Fig. 1. Overview of Bayesian Traffic Engineering

In the TE, a controller is deployed to collect the data from
the network and changes the route according to the collected
data. Indeed, there is some uncertainty of the lacks and lags
of the collected data. In a large network, it is hard for the
controller to collect all traffic information from all nodes
at all time because the messaging overhead consumes the
capacity even for ordinal communication. Thus, the available
information for controller is only a partial information about
traffic. In addition, the collected current information is no
longer accurate when the controller changes the route since
the traffic amount of any flow always changes.

Although the estimation and prediction of traffic may solve
the problems of the lacks and lags of the information, there
are still errors. Moreover, the estimation and prediction errors
are interdependent, and they also depend on the data collection
method. Thus, the controller has to manage the whole process
to handle the uncertainty caused in each process.

III. BAYESIAN FRAMEWORK FOR TRAFFIC ENGINEERING

In this section, we show the Bayesian-based framework of
TE, which handles the uncertainty of traffic information. In our
framework, the controller sequentially collects partial informa-
tion of current network and sets a route to the network. The
controller is constructed by three components i.e. estimator,
predictor, decision maker. Figure 1 shows the overview of
our framework. The rest of this section explains how each
components handles the uncertainty of traffic information.

A. Estimator

The estimator uses the collected partial data and the pre-
vious result of the prediction to calculate the current traffic
amounts of the whole network. We denote the collected data
as a vector x′

t which is a sub-vector of whole data xt monitored
on the network at time slot t. The collected data x′

t depends on
the collection method Ot e.g. from which node the controller
gets the data. We also denote the traffic amount of each
flow as a vector Xt, its estimated probability distribution as
P (X̄t), and its predicted probability distribution as P (X̂t).
Note that the whole observed data xt is not always same as
the estimation target Xt, for instance xt is link traffic amounts
or sampling data from Xt.

According to the Bayesian estimation, the posterior prob-
ability of the traffic amounts Xt with given x′

t by the data

collection method Ot is calculated as following:

P (Xk|x′
k;Ok)=

1

P (x′
k|Ok)

P (x′
k|Xk;Ok)P (Xk) (1)

where P (Xk) is a prior distribution of Xk, P (x′
k|Xk;Ok)

is a likelihood function of Xk, and P (x′
k|Ok) =∑

Xk
P (x′

k|Xk;Ok)P (Xk). Then, the estimator outputs the
distribution of current traffic P (X̂k) = P (Xk|x′

k;Ok).
The likelihood function represents the stochastic relation-

ship between the collected data x′
k and actual data Xk, which

depends on data to be used in the estimation. For instance,
when estimating the traffic amounts with sampled packets, the
likelihood function reflects the distribution of the sampling
error. The estimator also can use the route information of
current network [2]. However, the likelihood function has no
information about flows which are not involved in the collected
data.

To compensate the lacks in the collected data, the controller
uses prior knowledge. Since the current traffic amounts are
previously predicted at time slot t− 1, the controller uses the
predictive distribution P (X̂t) as the prior distribution P (Xt).
By doing so, the estimator can calculate the traffic amounts
of the flow which is not included in the collected data.

B. Predictor

After the estimation of current traffic amounts, the predictor
calculates the future traffic. First, the predictor estimates a
stochastic model which the current traffic follows. Then, the
predictor calculates the probability distribution of the future
traffic using the model. We denote the model as a conditional
probability P (Xk|Xk−1, Xk−2, · · · , Xk−s; θ) where s is the
maximum length of the model and θ is a parameter of
the model. A typical model of time series is the ARIMA
model [5], which is a regression model representing the
next value by the linear combination of previous values and
residuals.

In the estimation of model, the predictor finds the parameter
θ which leads the appropriate model to the current traffic
pattern. According to the Bayesian theorem, the predictor
calculates the posterior distribution of θ with the previous data
as following:

P (θ|x′
k, · · · , x′

1) =
1

P (x′
k, · · · , x′

1)
P (x′

k, · · · , x′
1|θ)P (θ)(2)

where P (θ) is a prior distribution calculated at previous time
slot, P (x′

k, · · · , x′
1|θ) is the likelihood function of θ, and

P (x′
k, · · · , x′

1) =
∑

θ P (x′
k, · · · , x′

1|θ)P (θ).
According to the Bayesian prediction, the predictor calcu-

lates the predictive distribution by marginalizing over param-
eters and the estimated previous traffic:

P (Xk+1|xk) =
∑
θ,Xk

P (Xk+1|Xk; θ)P (Xk, θ|xk) (3)

where xk = (x′
k, · · · , x′

1), Xk = (Xk, · · · , Xk−s+1), and
P (θ,Xk|xk) is the joint probability of the estimated values
X̄k, · · · , X̄k−s+1 and θ. The predictor outputs the predictive



distribution P (X̂k+i) = P (Xk+i|xk). Though the equa-
tion (3) shows only one-step prediction, further prediction can
be conducted by repeating the calculation using the predicted
distribution instead of the estimated distribution.

C. Decision Maker
Using the prediction result, the decision maker finally de-

cides which route should be set to the network, and which data
should be collected at the next time slot. Following section
details these two decision processes, respectively.

1) Routing: In the routing process, the decision maker
calculates an appropriate route which guarantees the commu-
nication performance with the uncertain future traffic.

In our previous work [6], we proposed a TE method called
stochastic MP-TE, which handles the uncertainty of traffic.
In this method, the route Rk is calculated by minimizing the
cost function f(Xk, Rk) and route changes while keeping the
probability which the link traffic exceeds the link capacity
lower than a certain level. That is, the method solves the
following stochastic optimization problem:

minimize:E

[
k+h∑

i=k+1

{(1− w)f(Xi, Ri) + w∥∆Ri∥2}

]
(4)

s.t.:P (yli(Xi, Ri) > cl) ≤ p

where ∆Ri = Ri −Ri−1, E[·] is the expectation value about
traffic Xk+1, · · · , Xk+h, h is the length of predicted time
series, yli(Xi, Ri) is the amount of traffic on the link l under
traffic Xi and route Ri, cl is the capacity of the link l, and p
is the acceptable probability that the capacity constraints are
broken.

Although the routes Rk+1, · · · , Rk+h are obtained by solv-
ing the above optimization problem, the decision maker ac-
tually sets Rk+1 to the network. After collecting the data
at the following time, the later routes are recalculated with
the new prediction result. By doing so, the decision maker
adaptively corrects the route even if the predictive distribution
is temporally wrong.

2) Data Selection: The decision maker also decides which
data to collect at the next time slot without causing un-
acceptable overhead of data collection. Since the collected
data triggers off the correction of estimation, prediction, and
routing, the decision maker should consider how the new
data affects other processes. Such behavior of other processes
can be calculated according to Eqs. (1)–(4). We denote the
route with the new data x′

k collected by the method Ok as
Rk+1(x

′
k, Ok). Also, we denote the overhead of the collection

method Ok as C(Ok), and the upper limit of the acceptable
overhead as W .

Considering the behavior of other processes, the decision
maker finds the optimal Ok by minimizing the expectation
value of the cost function f in routing around the possible
data x′

k to be collected by Ok and the future traffic Xk+1.
The optimization problem is formulated as following:

minimize:EP (Xk+1)P (x′
k
|Ok) [f(Xk+1, Rk+1(x

′
k, Ok))](5)

s.t.:C(Ok) ≤ W (6)

where EP (Xk+1)P (x′
k
|Ok) means the expectation value under

the joint probability distribution about future traffic Xk+1 and
the new data x′

k when the method Ok applied. P (x′
k|Ok) =∑

Xk
P (x′

k|Xk;Ok)P (Xk) is the marginal distribution of x′
k

given Ok. The controller actually calculates the above opti-
mization by using the predictive distribution P (X̂k), P (X̂k+1)
instead of P (Xk), P (Xk+1).

IV. SUMMARY & FUTURE WORK

In this paper, we proposed a framework of the TE method
with uncertainty due to lacks and lags of information. Our
framework integrates different processes such as data col-
lection, estimation, prediction, and routing; and introduces
the cooperation mechanism. In our framework, each partial
process is modeled in a formulation according to the Bayesian
approach. Using these models, the decision maker calculates
how the decision affects other processes, and achieves the
cooperation.

The remaining challenge is how to implement this frame-
work with particular methods for data collection, estimation,
prediction, and routing. Especially, selecting data is has not
been well established even in the previous work, since most
of the previous work only focuses on the estimation accu-
racy. Thus, our future work includes developing a method
to select data with considering the network performance and
the interactions among other processes, and proof of concept
of our framework with specific methods of data collection,
estimation, prediction, and routing.
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