
IEICE TRANS. COMMUN., VOL.E99–B, NO.4 APRIL 2016
885

PAPER

Placement of Virtual Storages for Distributed Robust Cloud Storage

Yuya TARUTANI†a), Yuichi OHSITA††b), Members, and Masayuki MURATA††c), Fellow

SUMMARY Cloud storage has become popular and is being used to
hold important data. As a result, availability to become important; cloud
storage providers should allow users to upload or download data even if
some part of the system has failed. In this paper, we discuss distributed
cloud storage that is robust against failures. In distributed cloud storage,
multiple replicas of each data chunk are stored in the virtual storage at
geographically different locations. Thus, even if one of the virtual storage
systems becomes unavailable, users can access the data chunk from another
virtual storage system. In distributed cloud storage, the placement of the
virtual storage system is important; if the placement of the virtual cloud
storage system means that a large number of virtual storages are possible
could become unavailable from a failure, a large number of replicas of each
data chunk should be prepared to maintain availability. In this paper, we
propose a virtual storage placement method that assures availability with a
small number of replicas. We evaluated our method by comparing it with
three other methods. The evaluation shows that our method can maintain
availability while requiring only with 60% of the network costs required by
the compared methods.
key words: data center, cloud storage system, fault tolerance, redundancy

1. Introduction

Cloud storage services have become popular, and a large
amount of data is stored in them [1]–[4]. Cloud storage ser-
vices are provided via datacenters, with a part of the storage
space of the data center is allocated to each user. Users can
upload or download their data by accessing the data center.
The cloud storage service enables the users to access their
data regardless of what devices, tools, and areas are used. In
addition, by using the cloud storage services, the users can
save the cost otherwise required to manage storage devices.
Due to the above advantages, cloud storage services have
become used both by personal users and companies.

Availability is important for cloud storage [5]–[7] es-
pecially that used by companies; the data should always be
able to be accessed by the user. However, the storage in a
data center may fail. In addition, a data center may become
unreachable by the users due to network failure or conges-
tion. Therefore, providers of cloud storage service should
ensure availability even in such cases.

Manuscript received July 10, 2015.
Manuscript revised November 18, 2015.
†The author is with the Cybermedia Center, Osaka University,

Toyonaka-shi, 560-0043 Japan.
††The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565-0871
Japan.

a) E-mail: y-tarutn@cmc.osaka-u.ac.jp
b) E-mail: y-ohsita@ist.osaka-u.ac.jp
c) E-mail: murata@ist.osaka-u.ac.jp

DOI: 10.1587/transcom.2015EBP3292

One approach to ensuring the accessibility of data even
in such cases is to prepare the replicas of data. Distributed
file systems such as Google file system (GFS) [8] and the
Hadoop file system [9] use this approach to keep the avail-
ability of the data. The distributed file systems divide the
data into chunks, and store them in one of the storages. At
the same time, replicas of each chunk are stored by the dif-
ferent storages. By doing so, users can access the data even
when several storages become unavailable. By using this
approach to store the replicas in the different data centers,
availability can be maintained even if several data centers
fail.

Though the approach of preparing replicas ensuring
availability of the data so long as a sufficient number of
replicas are prepared, more storages are needed and more
bandwidth is consumed as the number of replicas increases.
The required number of replicas depends on the locations
of the data centers storing the replicas; a small number of
replicas are sufficient if no possible failure in the network
never can causes multiple data centers storing the replicas
to become unreachable.

There are several studies that solves for placement of
the data and the backups in a network including multiple
data centers [5], [10]–[12]. This such approaches place a
complete backup of the original data at one of the data cen-
ters, so that the backup can be accessed by the user if the
data center storing the original data becomes unreachable.
However, this approach incurs a large overhead: a large stor-
age resource at a data center may be required to store a com-
plete backup of the data. If one of the data centers fails and
the additional data center storing the backup becomes re-
quired, all of the original data should have been sent to the
additional data center.

In this paper, we discuss distributed cloud storage that
maintains availability of the data, even in case of failures,
without a large number of replicas. This method deploys
virtual storages at multiple data centers for each user who
requires availability even in case of failure. In the distributed
cloud storage, data are divided into chunks, similar to exist-
ing distributed file systems. Then, by storing each chunk at
multiple virtual storages, we ensure availability in case of
failures. This approach makes the placement of the virtual
storage flexible; each virtual storage holds only a part of the
data. This also reduces the overhead required to place the
additional virtual storage, because the size required for the
virtual storage is not large.

In this paper, we also propose a method to determine

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

886
IEICE TRANS. COMMUN., VOL.E99–B, NO.4 APRIL 2016

which data centers should host the virtual storages so as to
ensure availability even in the case of any possible failures
with a small number of replicas. In this method, we use the
split groups, which are defined as sets of groups including
the nodes belonging to the same connected subgraph, if fail-
ure occurs. The nodes belonging to the same split group can
communicate with each other even if failure has occurred.
Thus, our method guarantees the availability of the data by
placing the virtual storages so that the split groups includ-
ing the node connected to the user include more than (N−k)
virtual storages, where N is the number of deployed virtual
storages and k is the number of replicas.

Our method determines the data center for hosting the
virtual storages and the number of replicas by searching the
suitable sets of the data centers for a small number of repli-
cas. When we cannot find a suitable set of the data centers,
we increment the number of replicas, and search the suitable
sets again. By continuing these steps, we determine the data
centers to host the virtual storages and ensure availability
with a small number of replicas.

The rest of this paper is organized as follows. In Sect. 2,
we explain the cloud storage system discussed in this paper.
Section 3 presents a heuristic method for deciding which
data centers should host the virtual storages. In Sect. 4, we
evaluate our method by comparing it with other a methods
without considering the required number of replicas. Fi-
nally, Sect. 5 provides our conclusions.

2. Distributed Cloud Storage

Figure 1 shows an overview of the distributed cloud storage
discussed in this paper. The distributed cloud storage dis-
cussed in this paper is constructed of multiple data centers
and the network between them. The provider of the storage
service places multiple virtual storages for each user. Each
virtual storage is hosted by one of the data centers using a
part of the storage of the data center. The set of the virtual
storages stores each user’s data.

The data stored in the distributed cloud storage are di-
vided into multiple small chunks, and each chunk is stored
in ku virtual storages. By doing so, we keep all fractions of
data available unless all of the ku virtual storages storing the
chunk become unavailable simultaneously. Each chunk has

Fig. 1 Distributed robust cloud storage.

an ID from which the virtual storage storing it is determined.
By using the ku hash functions, we can determine the set of
virtual storages used to store the chunk.

To reduce communication delay from users and the
amount of traffic on networks, the virtual storages are stored
in the data centers that are close to users. However, doing
so means that the number of unavailable virtual storage be-
comes large in the case of failure, because most of the virtual
storages are concentrated in the data centers that are close to
users. This causes an increase in recovery time and network
overhead for recovering the robustness. In this paper, the
data centers hosting the virtual storages are determined on
the basis of the impact of failures to reduce the recovery time
and the network overhead for recovering the robustness.

In the rest of this section, we explain the operation on
the distributed cloud storage.

2.1 Access by Users

User access the their data on the distributed cloud storage
through client software. The client software knows the hash
functions, allowing it to obtain the virtual storage storing the
chunk.

Data items are downloaded by downloading all the
chunks required to construct the data. For each chunk, the
client software calculates the hash functions to obtain the
lists of the virtual storages where the chunk is stored. Then,
the client software selects one of them, and downloads the
chunk from the selected one.

Similarly, when uploading data, the client software up-
loads all the chunks included in the data. Each chunk is up-
loaded to one of the virtual storages corresponding to the ID
of the chunk, as calculated by the hash functions. Then the
virtual storage copies the chunk to the other virtual storages
corresponding to the ID of the chunk.

2.2 Management of the Set of Virtual Storages

The set of virtual storages for each user is managed by the
central manager. The central manager knows the location
of the users and data centers in the network, the remaining
resources of the data centers, the available bandwidth of the
links in the network, and the set of nodes or links that are

TARUTANI et al.: PLACEMENT OF VIRTUAL STORAGES FOR DISTRIBUTED ROBUST CLOUD STORAGE
887

could fail simultaneously. Using this information, the cen-
tral manager controls the locations of the virtual storages so
as to keep the availability even in case of the failures.

After placing the virtual storages, the central controller
monitors the set of virtual storages. If the set of virtual stor-
age does not satisfy the requirements due to one or more
virtual storages becoming unavailable, the central controller
detects this, and new virtual storages are placed. The chunks
stored in the new virtual storages are obtained from the
other active virtual storages; the virtual storages storing the
chunks required to be stored by the new virtual storages can
be obtained by the hash functions, and then the new virtual
storages send a request to the active virtual storages.

3. Placement of the Virtual Storages

In this paper, the central controller decides the data centers
to host the virtual storages for each user. The placement of
the virtual storages has an impact on the number of required
replicas. Because the number of required storages and the
bandwidth between data centers both increase as the number
of replicas becomes large, the central controller should de-
termine the data centers hosting the virtual storages so as to
keep ensure availability without requiring a large number of
replicas, and then determine the number of replicas needed.
In this section, we formulate the problem to decide the data
centers to host the virtual storages, and propose a heuristic
method to solve the problem.

3.1 Problem Formulation

3.1.1 Input

The central controller knows the network topology. The net-
work is represented as a graph G. We denote the set of nodes
by N and the set of edges by L. Each edge l has available
bandwidth bavail

l . There are multiple data centers that can
host the virtual storages, and each data center is connected
to the network. We denote the set of data centers by D. We
denote the storage space provided by the data center d ∈ D
by pd. Each user is also connected to at least one of the
nodes in the network. We denote the set of users by U, and
the set of the nodes connected to the user u by Nu.

A path on the graph G can be represented as the set of
links in the path. There may be multiple paths between any
two nodes. We denote the set of paths between the nodes a
and node b by ra,b, and the set of all paths on the graph G by
R. Among the paths included in ra,b, we denote the shortest
one by rshort

a,b .
The central controller also knows the possible patterns

of failures. A set of links that could fail simultaneously is
called a shared risk group (SRG). We denote the set of SRGs
by F, and the set of the nodes included in the SRG f by Nfail

f .
The central controller receives requests from users. Each
request includes the number of required virtual storages Cu,
the traffic rate from the user uploading data bupload

u and the
traffic rate to the user downloading data bdownload

u .

3.1.2 Variables

We determine the data centers hosting the virtual storages
for the user u by setting a variable Mn,u that indicates the
number of virtual storages for the user u hosted by the node
n. In this problem, in addition to determining the data cen-
ters to host the virtual storages, we also determine the num-
ber of replicas. We denote the number of replicas for the
user u by ku.

In the rest of this paper, we set the size of each virtual
storage to 1 in order to simplify discussion. As a result, the
total number of virtual storages for the user u is (1 + ku)Cu.
In addition to the above variables, we also define a variable
bl indicating the traffic amount from the distributed cloud
storage over the link l.

3.1.3 Objective

In this paper, we minimize the network cost defined as the
total bandwidth used by the distributed cloud storage.

minimize
∑

l∈L

bl. (1)

3.1.4 Constraints

• The total number of virtual storages hosted by data cen-
ters should be (1 + ku)Cu

∀u ∈ U:
∑

n∈D

Mn,u = (1 + ku)Cu.

• Each data center must have sufficient resources to host
all of the assigned chunks, including chunk replicas.

∀n ∈ D:
∑

u∈U
Mn,u ≤ Un,

where Un is the maximum number of virtual storages
in data center n.
• All data must be available even if any failure occurs.

Because each chunk is stored by ku+1 virtual storages,
all data is available unless more than ku virtual storages
become unreachable by the user u. That is,

∀u ∈ U,∀ f ∈ F: Nunreach
u, f ≤ ku,

where Nunreach
u, f is the number of virtual storages that

become unreachable from the user u when the set of
nodes is included in Nfail

f , which is calculated by

Nunreach
u, f =

∑

n∈{n|n∈D,∀r∈rNu ,n,∃m∈Nfail
f :m∈r}

Mn,u

• bl is the sum of the traffic passing the link l. In this dis-
tributed cloud storage, data are divided into multiple
small chunks, and chunks are stored in separate virtual
storages. Therefore, we assume that users access all

888
IEICE TRANS. COMMUN., VOL.E99–B, NO.4 APRIL 2016

virtual storages at the same rate. The traffic rate from
the user u to each data center with virtual storage is de-

noted by bupload
u

Cu
where bupload

u is amount of traffic in the
worst case. Similarly, the traffic rate from each data
center with virtual storage to the user u is denoted by
bdownload

u

Cu
where bdownload

u is the amount traffic in the worst
case. Each uploaded chunk is copied to ku virtual stor-
ages. In this paper, we assume that the virtual storage
hosting a replica is selected uniformly randomly from
the possibilities, because the calculation overhead for
solving the placements of replicas is avoided by assum-
ing this. This problem is considered in future work.
Thus, the traffic rate between the data center with the

virtual storages of the user u is bupload
u

Cu
. That is,

bl =
∑

u∈U,n∈D,l∈rshort
Nu ,n

⎛⎜⎜⎜⎜⎜⎝
Mn,u(bupload

u + bdownload
u)

Cu

⎞⎟⎟⎟⎟⎟⎠

+
∑

u∈U,n1,n2∈D,l∈rshort
n1 ,n2

⎛⎜⎜⎜⎜⎜⎝
Mn1,uMn2,ubupload

u

Cu

⎞⎟⎟⎟⎟⎟⎠

• bl should be less than the available bandwidth of the
link l

∀l ∈ L: bl ≤ bavail
l .

3.2 Heuristic Method to Place the Virtual Storages

Solving the optimization problem formulated in Sect. 3.1
requires a large amount of time, because the problem in-
volves 6 integer variables. Therefore, we propose a heuris-
tic method to determine the data centers to host the virtual
storages.

To determine the data centers to host the virtual stor-
ages, we use the split groups, with a split group defined as
the set of groups including the nodes belonging to the same
connected subgraph if failure occurs. Nodes belonging to
the same split group can communicate with each other even
if failure occurs. Thus, we can guarantee the availability of
the data by placing the virtual storages so that the split group
including the node connected to the user includes more than
|N | − k virtual storages.

In our method, the data centers to host the virtual stor-
ages are determined by the following steps. We first cal-
culate the split group for each SRG in advance. Then, we
decide the data center to host the virtual storages, deciding
one by one by using the split groups. The rest of this section
explains the details of the above steps.

3.2.1 Calculation of the Split Groups

The split groups for SRG f are obtained by following steps.

1. Obtain the set of nodes S Nfail
f

that is connected to one of

the links in Nfail
f

2. Construct the graph G′, in which the links in Nfail
f are

removed from the network G.
3. Calculate the route from the node s f ,1 to the node s f ,2

on the graph G′ by using the Dijkstra algorithm, for all
node pairs s f ,1 and s f ,2 included in S N f ail

f

4. Construct groups so that the nodes s f ,1 and s f ,2 belongs
to the same group only when a route between s f ,1 and
s f ,2 is found in the previous step.

The calculation time to obtain the split group for each SRG
is O(|N |2). In a large-scale network, this calculation time be-
comes large, because the number of SRG increases. There-
fore, our future work is to reduce the calculation time to
obtain the split group for each SRG by combining several
SRG into one SRG.

3.2.2 Placement of the Virtual Storages

Figure 2 shows the flowchart to determine the data centers
to host the virtual storages for the user u. In these steps, we
first set ku to 1 and search for a suitable set of data centers to
host the virtual storages such that the set ensures availability
of the data for all SRGs even when ku is 1, to minimize
the number of required replicas. Then, if we cannot ensure
availability of the data for all SRGs, we increment ku, and
search again for a suitable set.

When searching for a suitable set of data centers, we
determine the data centers to host virtual storages one by
one. The candidate data centers for hosting a virtual storage
are checked in ascending order of the network cost BM,u(d)

Fig. 2 Flowchart of our method.

TARUTANI et al.: PLACEMENT OF VIRTUAL STORAGES FOR DISTRIBUTED ROBUST CLOUD STORAGE
889

caused by the traffic from/to the data center and character-
ized as

BM,u(d) =(bupload
u + bdownload

u)|rnu,d |
+
∑

n∈D

Mn,ukubupload
u |rn,d |. (2)

where Mn,u is the number of virtual storages whose locations
are already decided as the data center n, and nu is the node
corresponding to the user u in the graph G. By selecting
the data center with the smallest BM,u(d), we avoid a large
network cost.

When checking whether a data center is suitable for
hosting the virtual storage, we check that the constraints on
availability are not violated. We can ensure availability un-
less more than ku virtual storages become unreachable by
the user. That is, for all of the SRGs in F, the number of
virtual storages hosted by the data centers belonging to split
groups not belonged to by the user should be less than ku, so
as to ensure availability in case of failure.

Therefore, in our method, we count the number of vir-
tual storages hosted by data centers in a different split group
from the user for each of the SRGs. Then, if the number
exceeds ku, we regard the selected data center as unsuitable
for hosting the virtual storage, and eliminate it from the can-
didate data centers.

The computational complexity for selecting the data
centers to host the virtual storage of user u is O(|Cu|).

4. Evaluation

In this section, we evaluate our method, and demonstrate the
advantage of the placement of the virtual storages consider-
ing the impact of failure.

4.1 Evaluation Environment

4.1.1 Network Topology

In this evaluation, we use the Japan Photonic Network
Model (JPNM), which is a model of the network in Japan
[13] shown in Fig. 3. This network topology is likely to form

Fig. 3 Japane photonic network model.

subgraphs on failure. In this case, the impact of failure de-
pends on the location of the data centers. Therefore, in this
evaluation, we place 8 data centers whose locations are se-
lected to be close to users, and to be far from users. The
number of virtual storages of possible at each data center is
set to 1000, and the bandwidth of each link is set to 10 Gbits
per second. The size of virtual storage is set to 500 GB.

In this evaluation, the SRG is created so that the failure
divides the network into two subgraphs. The SRG is given
by the following steps for each data center.

1. Select the closest data center d to a data center s.
2. Add the links on the shortest path between s and d to

the SRG.
3. Remove the links on the shortest path between s and d.
4. Check the whether the path exists. If yes, go back to

Step 2, otherwise end.

4.1.2 Request from Users

We assume that users are in Tokyo or Osaka, and with equal
number of users in Tokyo and Osaka. Each user is connected
to two nodes in the network, because users can access their
virtual storages in the case of failure. We connect the users
in Osaka to nodes 260 and 270, and connect users in Tokyo
to nodes 131 and 132. The number of users at each loca-
tion is set to 25. The size of the storages requested by each
user is set to an integer value from 5 to 20 chosen uniformly
randomly. Each user uploads and downloads 10 Mbit per
second.

4.1.3 Evaluation Metrics

In our evaluation, we investigated the resource required by
the distributed cloud storages. The network resources re-
quired as the distributed cloud storages are estimated by the
network cost defined by Eq. (2). The resources of the data
centers are estimated as the size of the storages allocated for
use in the distributed cloud storage, which is calculated as

Call =
∑

u∈U
Cu(ku + 1). (3)

Moreover, we evaluate the availability and restoration
time for recovering robustness. The availability of data to
user u is guaranteed by placing the virtual storages so that
the split groups that include the node connected to the user
have more than |Cu| − ku virtual storages. Thus, the avail-
ability of data to user u is denoted by the following;

Availability =

⎧⎪⎪⎨⎪⎪⎩
100 (Cu − ku ≤ Nreach

u, f)

100
Nreach

u, f

Cu−ku
(Otherwise)

(4)

where Nreach
u, f is the number of virtual storages that remain

reachable by user u when the set of nodes are included in
Nfail

f .
The data centers hosting the virtual storages for recov-

ery are also determined by using the method to determine

890
IEICE TRANS. COMMUN., VOL.E99–B, NO.4 APRIL 2016

the data centers to host the initial virtual storages. In the case
of restoration, the virtual storages are sent to data centers by
using the available bandwidth of links. In this evaluation, we
assume that the delay depends on the amount of data sent,
because the transmission delay is much larger than the delay
from distance. Thus, the restoration time trest is denoted by
the following;

trest =
Vd

minl∈rshort
s,d

bavail
l

(5)

where Vd is the amount of data sent and rshort
s,d is the shortest

path from the source data center s to the restoring data center
d.

4.1.4 Compared Methods

In this evaluation, we compare the proposed method with
three other methods that guarantee the availability of the
data by placing virtual storages. In this paper, we call these
methods mirroring method, random method, and last deter-
mining method.

The mirroring method is similar to a method described
in Ref. [5]. This method guarantees the availability of
the data by preparing the backup virtual storages. In this
method, the service provider selects the data center hosting
the virtual storages within the shortest distance from a user.
To ensure the availability of the data, another data center is
selected to host backup virtual storages. In this paper, the
mirroring method selects a data center that users can access
their virtual storages or their backup virtual storages in the
case of failure.

The random method is similar to the GFS method [8].
In this method, we determine the data centers to host the
virtual storages randomly. Moreover, the number of replicas
is a constant value independent of the placement of virtual
storages. In this paper, we set the number of replicas to one
quarter the number of required virtual storages.

Finally, the last determining method determines the
number of replicas after determining the data centers to host
the virtual storages. In this method, we first determine the
data centers to host the virtual storages so that the network
cost is minimized. This can be calculated by using the
method described in Sect. 3.2.2 with setting bu to a suffi-
ciently large value Cu. Then, bu is set as the minimum value
that does not require violating the availability in any case
of the SRG. Finally, the number of virtual storages in each
data center is adjusted so as to minimize the used storage
size under the constraint that bu replicas per each chunk can
be stored.

The purpose of the last determining method is to mini-
mize the network cost for the user to access the data. How-
ever, this method does not consider that the network cost
is increased by synchronizing the replicas. Therefore, our
evaluation shows the advantage of determining the place-
ment of virtual storage with considering the number of repli-
cas.

4.2 Results

4.2.1 Cost of Networks

Figure 4 shows the network cost of our method and the com-
pared methods in the case where the data centers are placed
far from users. In these figures, the horizontal axis is the
number of users, and the vertical axis is the network cost
calculated by Eq. (2). Figure 4(a) shows the network cost
caused by the communication between users and data cen-
ters. This figure indicates that the mirroring method and the
last determining method achieve lower network cost than
our method and the random method. This is because that
the mirroring method and the last determining method de-
ploy virtual storages near the users, while our method and
the random method deploy virtual storages at the data cen-
ter far from the users, too, to ensure availability in case of
failure. As a result, the number of hops from the user to the
data centers is large in our method and the random method,
compared with the mirroring method and the last determin-
ing method.

However, Fig. 4(b) shows that the total cost of our
method is similar to that of the last determining method.

Fig. 4 Network cost for data center placed far from users.

TARUTANI et al.: PLACEMENT OF VIRTUAL STORAGES FOR DISTRIBUTED ROBUST CLOUD STORAGE
891

Fig. 5 Network cost for data center placed near users.

This is because the last determining method requires more
replicas to ensure availability. As a result, the data centers
send a large amount of data to keep the replicas updated
when the last determining method is used, which causes a
high network cost. In contrast, Fig. 4(b) also shows that the
total cost of the mirroring method is smaller than that of
other methods. This is because, in the mirroring method, the
number of backup virtual storages is smaller than in other
methods. As a result, the amount of traffic used in guaran-
teeing availability is small.

Figure 5 shows the network cost of our method and the
compared methods in the case where the data centers are
placed near users. In these figures, the horizontal axis is the
number of users, and the vertical axis is the network cost cal-
culated by Eq. (2). Figure 5(a) indicates that the mirroring
method and the last determining method achieve lower net-
work cost than our method and the random method, but the
difference is smaller than in the case shown in Fig. 4. This
is because data centers are chosen near users. As a result,
the number of hops from users to data centers is small in our
method. Therefore, our method is more suitable in this case.
Figure 5(b) also shows that the total cost of our method is
lower than that of the last determining method. This is be-
cause, the number of replicas used in our method is smaller

Fig. 6 Number of virtual storages.

Fig. 7 Availability of data.

than in the last determining method, and the number of hops
between data centers is small. As a result, our method can
ensure availability while requiring only 60% of the network
costs required used in the last determining method.

Figure 6 shows the total number of virtual storages. In
this figure, the horizontal axis is the number of users, and
the vertical axis is the total number of virtual storages. Fig-
ure 6 shows that the total number of virtual storages used by
our method is much smaller than that used by the last deter-
mining method. This is because our method decides the data
centers to host the virtual storages so that a large number of
virtual storages never become unavailable simultaneously.
As a result, in our method and the random method, a small
number of replicas is sufficient to ensure availability in the
case of failures, which leads to a reduction in required re-
sources.

4.2.2 Availability

We evaluate the availability in the case of failure. In this
evaluation, a randomly selected SRG is set as failed. The
time of failure is 10 minutes and 40 minutes. In this evalu-
ation, the number of cases is set to 20, and the result shows
the worst case. Figure 7 shows the result. In this figure, the
horizontal axis is the time, and the vertical axis is the avail-
ability defined as Eq. (4). Figure 7 indicates that our method,
the mirroring method and the last determining method en-

892
IEICE TRANS. COMMUN., VOL.E99–B, NO.4 APRIL 2016

Table 1 Restoration time.

Method maximum restoration time

Proposed method 27 minutes
Mirroring 133 minutes
Random 30 minutes

Last Determining 67 minutes

sure availability of data in the case of one failure. In con-
trast, the random method dose not guarantee availability of
data, because the number of replicas is too small for to guar-
antee availability.

However, the mirroring method and the last determin-
ing method cannot guarantee the availability of data in the
case of a second failure. Table 1 shows the time for restor-
ing the robustness. The restoration time of these methods
is large because size of the data to be sent is large in these
methods. Therefore, the mirroring method and the last de-
termining method are not suitable when multiple failures are
possible. On the other hands in contrast, our method can
also ensure availability of data in this case. This is because
the number of virtual storages not available to users is small.
As a result, the restoration time is small.

5. Conclusion

In this paper, we discuss a distributed cloud storage sys-
tem that ensure availability of the data even in case of fail-
ure without a large number of replicas. We also propose
a method to determine which data centers should host the
virtual storages so as to ensure availability even in the case
of any possible failures using only a small number of repli-
cas. In our method we use split-groups, which are defined
as groups including the nodes belonging to the same con-
nected subgraph after a failure occurs. In this method, we
calculate the split-group for each node, which is the group
that the nodes are grouped into according to connectivity
when the node fails. We evaluated our method by compar-
ing it with three other methods. The evaluation showed that
our method ensures availability while requiring only 60%
of the network costs required by other methods that do not
consider the required number of replicas.

In this paper, the placement of chunk replicas is per-
formed randomly. We expect that the number of chunk repli-
cas and the network costs can be reduced by considering the
placement of chunk replicas. Moreover, in our method, the
split-group must be recalculated after a failure. Therefore,
reducing the calculation time is task for future work in the
large-scale networks.

Acknowledgment

This work was supported in part by the National Institute
of Information and Communications Technology (NICT) of
Japan.

References

[1] “Google Drive,” https://www.google.com/intl/en/drive/
[2] “Dropbox,” https://www.dropbox.com/
[3] “Microsoft OneDrive,” https://onedrive.live.com/
[4] “box,” https://www.box.com/
[5] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li, “Topology-aware

virtual network embedding to survive multiple node failures,” Proc.
2014 IEEE Global Communications Conference, pp.1823–1828,
Dec. 2014.

[6] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: a high-availability
and integrity layer for cloud storage,” Proc. 16th ACM Conference
on Computer and Communications Security, CCS’09, pp.187–198,
2009.

[7] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C.
Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M.F. ul Haq, M.I. ul Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L.
Rigas, “Windows azure storage: A highly available cloud storage
service with strong consistency,” Proc. Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP’11, pp.143–157, 2011.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file sys-
tem,” SIGOPS Oper. Syst. Rev., vol.37, no.5, pp.29–43, Dec. 2003.

[9] “Apache hadoop project,” http://hadoop.apache.org/
[10] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun, “Sur-

vivable virtual infrastructure mapping in a federated computing
and networking system under single regional failures,” Proc. 2010
IEEE Global Telecommunications Conference GLOBECOM 2010,
pp.1–6, 2010.

[11] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” Proc. Second ACM SIG-
COMM Workshop on Virtualized Infrastructure Systems and Archi-
tectures, VISA’10, pp.41–48, 2010.

[12] P. Bodı́ k, I. Menache, M. Chowdhury, P. Mani, D.A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacenters,”
ACM SIGCOMM Computer Communication Review, vol.42, no.4,
pp.431–442, 2012.

[13] “Japan Photonic Network Model,” http://www.ieice.org/˜pn/jpn/
jpnm.html

Yuya Tarutani received an M.E. and a
Ph.D. in Information Science and Technology
from Osaka University in 2012 and 2014, re-
spectively. He is currently an Assistant Profes-
sor at the Cybermedia Center, Osaka University.
His research interests include traffic matrix es-
timation, data center networks and network re-
configuration. He is a Member of IEICE and
IEEE.

https://www.google.com/intl/en/drive/
https://www.dropbox.com/
https://onedrive.live.com/
https://www.box.com/
http://dx.doi.org/10.1109/glocom.2014.7037073
http://dx.doi.org/10.1145/1653662.1653686
http://dx.doi.org/10.1145/2043556.2043571
http://dx.doi.org/10.1145/1165389.945450
http://hadoop.apache.org/
http://dx.doi.org/10.1109/glocom.2010.5683951
http://dx.doi.org/10.1145/1851399.1851407
http://dx.doi.org/10.1145/2377677.2377760
http://www.ieice.org/~pn/jpn/jpnm.html

TARUTANI et al.: PLACEMENT OF VIRTUAL STORAGES FOR DISTRIBUTED ROBUST CLOUD STORAGE
893

Yuichi Ohsita received an M.E. and a
Ph.D. in Information Science and Technology
from Osaka University in 2005 and 2008, re-
spectively. He is currently an Assistant Profes-
sor at the Graduate School of Information Sci-
ence and Technology, Osaka University. His re-
search interests include traffic matrix estimation
and countermeasures against DDoS attacks. He
is a Member of IEICE, IEEE, and the Associa-
tion for Computing Machinery.

Masayuki Murata received an M.E. and
a D.E. in Information and Computer Sciences
from Osaka University in 1984 and 1988, re-
spectively. In April 1984, he joined the To-
kyo Research Laboratory of IBM Japan as a
researcher. From September 1987 to January
1989, he was an Assistant Professor at the Com-
putation Center, Osaka University. In February
1989, he moved to the Department of Informa-
tion and Computer Sciences, Faculty of Engi-
neering Science, Osaka University. From 1992

to 1999, he was an Associate Professor at the Graduate School of Engi-
neering Science, Osaka University, and became a Professor at the same
school in April 1999. He moved to the Graduate School of Information
Science and Technology, Osaka University in April 2004. He has pub-
lished more than 300 papers in international and domestic journals, and
has given presentations at numerous conferences. His research interests
include computer communication networks, as well as performance mod-
eling and evaluation. He is a Fellow of IEICE and a Member of IEEE, the
Association for Computing Machinery (ACM), The Internet Society, and
IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

