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Background and goal:

Cost Efficiency in hybrid cloud systems

« In private DCs, business-critical application systems are build to
handle peak workloads for achieving high performance.
- Application systems are underutilized most of the time.

« An approach for maximizing utilization to improve cost efficiency
IS Cloud bursting.

- It deceases fixed capacity in a private DC and adds on-demand
resources in a public DC during peak time.

« Our goal is to minimize the total cost of a computing platform
while satisfying response time constraints.

DC: Data Center, VM: Virtual Machine



Objective of this study:
Prediction-based approach needs to be validated

 In our target system, future workload is unknown.

- We need to predict future demand for provisioning optimal
computing resources in advance.

« Prediction-based approach have already been discussed in the cases
of enterprise applications [1], a video streaming service[2], and
production systems|3].

- Prediction errors can greatly affect the optimal provisioning.

- We should perform further analysis of the effect of prediction errors
on cloud bursting.

[1] T.Guo,U.Sharma,P.Shenoy, T.Wood,andS.Sahu,"Cost-awarecloud bursting for enterprise applications,” ACM Trans. Internet Technol., vol. 13, no.

3, pp. 10:1-10:24, May 2014.
[2] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload management in hybrid cloud computing,” IEEE Trans. Netw. Serv. Manage.,

vol. 11, no. 1, pp. 90-100, Mar. 2014.
[3] M. Bjorkgvist, L. Chen, and W. Binder, “Cost-driven service provision- ing in hybrid clouds,” in Proc. of 2012 5th IEEE SOCA, Dec. 2012, pp. 1-

8.



Overview of cloud bursting approach

« A business-critical system is assigned a dedicated cluster of physical servers.
« Physical servers have a longer reallocation interval than VMs.
- We propose a two-step provisioning.

-----------------------------------------------------------------------------------------------------------------

public data center B

1. Assign physical servers (i.e., a =-— : VMs storage
pool of VMs) in a private DC on
the basis of one-week predictions. ~ ’ —(scale-outoncean . .| .
: : W@ . hour if necessary) (Synchronized)
2. Activate VMs on the basis of one- -
hour predictions. L . M S
L : VMs storage)
- in private DC load balancer : :
- additionally allocate on-demand "9Us®

2 (reallocate once an hour)
Ll

VMs in public DC if necessary. ]

VM pool (i.e., physical server:lj
dedicated for system

AN
i | (reassign once a week)

~—l|-’“.l’ l.-’ H; _Ill resource pool
private data center L (physical servers)

DC: Data Center, VM: Virtual Machine




Model of a hybrid cloud system:
Objective: minimizing total cost

. The size of a VM pool in private DC ( /N ) is controlled at every w-time slots.

- The numbers of VMs in the private and public DCs (n, n, ') are determined at
every time slots by using the request rate for each DC ( )\t, )\ ), respectively.

A | i

Request rate Number of VMs

on-demand VMs
in public data center

fixed VMs
in private data center

> Time

« Our objective is to minimize the total cost of an application hosting platform.
T

objective: minimize C' = Z (aF(Ng,ng) +a'U(ny, \)) + O(Nt,ﬂt))

/' \
t=1 [pnvate VM cost] F:)/u\bllc VM cost management cost




Model of a hybrid cloud system:
Detail of cost model

« Cost related to private VMs:

F(Ny,12) = Cos H\rt —| - CecPps ((1—3) {n”t —| L )

VIIl

. ——~—\ N\
powering physical servers| (base) (proportional to the
number of active VMs)

[renting physical serv/grs] [

« Cost related to public VMs:
U(nj, \,) = cvmni_ + CtrdA£

ZaN
[using public V@ [ transferring request/response data to public VMs ]

« Cost for operation and management:
1 X
O(N;,nl) =cst | — (N + 1
( b t) ot Nst ( : t) capacity of fixed private VM pool
and on-demand public VMs




Model of a hybrid cloud system:

Constraint: keeping response time

« Trade-off between application latency and resource amount.
- We pose constraints on response time for both private and public DCs.

subject to:
q

R :CDF (%)
A

rd < Te R(nt, j\t, ?"C) > — (Vt) A L s —
’ ( ;2 180) R(nt:)\t:‘rc) ---------------------- :‘4’\—-l
9 < > - . S 4
r~ >Tc (R(nt! Ai; TC) — 100) (Vt) / E "E (thI’EShO|C|

<

(predicted request rate)

(target probability)

L (gt %ile of response time distribution)—?‘q :

i, distribution)

-

>
Response time

. It is defined by following M/M/m queuing model.

(threshold time)

« Constraints are applied by using predicted request rates (L, 3\; ).
- Actual response time (r?,7%) can exceed " due to prediction errors.

CDF: Cumulative Distribution Function



Model of a hybrid cloud system:
Request rate prediction

« Adopting the ARIMA model to predict request rates.
- Backward shift operator Bby Bz, = x;_1
- Stationary time series by differencing y, = (1 — B)%(1 — B%)Pz,

p q
Yt — Z QﬁiBIyt -+ (1 -+ Z Qij)Et
=1 1=1

/ "\ /\
[pth-order autoregressive process] [qth-order moving average process]

5 - one-time-slot-ahead prediction: 331:4—1
- Error term: ¢, ~ N (O! o ) - h-time-slot-ahead prediction: ¢+

- Confidence interval of one-time-slot-ahead prediction: ¥s+1 ~ N (§:+1,0°)
- Confidence interval of h-time-slot-ahead prediction: h—1
Yerh ~ N(Jsn,0° Z b7

=0 9

ARIMA: AutoRegressive Integrated Moving Average



Method for Resource Allocation

« At the end of each w-time-slot interval,
- Predict the request rates over next w-time-slot interval ({Z:1, Z:19, " ,Tiaw} )| line 3

- Determine the size of a VM pool in private DC (V;, ;) over the next w-time-slot interval | |ine 4

« At each time slot,
- Predict the request rate of next time slot (5, )| line 7

- Recalculate the numbers of private and public VMs at the next time slot (,, L1,

.IF "
Ty ) line 8

Algorithm 1 Resource allocation in hybrid cloud system

I: for eachtimeslotz (z=1,---,7T)do
2: if +t mod w = 0 then

3: Predict {X;,5, | h=1,2, .-+, w} according to Eq.(7).
4. N;+1 < VMPOOLSIZE(X; 41, X742, * * *» Xtaw )-
3: The number of dedicated physical servers in the next week
is given by [%-‘
6: end if
7 Predict X;,; according to Eq. (7).
8: {(nes1, 1) 45 /’i;+1} «— VMALLOCSIZE(X;4+1, N¢+1).
9: end for 10




Evaluation:
Simulation settings

« Datasets- arrival traces collected from two actual web systems:
- Campus web: 5-month access log for a campus website of a university
- Consumer web: 2.5-month access log for the 1998 World Cup website[1]

public data center application system
[ _ =-- . VMs :
. Public DC ] e
-m4.2xlarge instance at Amazon EC2 I - (scaleoutoncean .|
) - WAN . hour if necessary) (Synchronized)
- Dell PowerEdge R430(8 CPU cores, 32 GB jnony;)j balancer | :
- 3-year lease "eQUESTS | (every time slot) Z(realiocate once an hour)
-2 VMs per server :|T B VM pool (i.e., physical servers)
L r I_I dedicated for system

(every 168-time-slots interval) ﬁ(reassign once a week)
_ . e | resource pool
« Response time constraint r I"’ r Ll (physical servers)
- 95 %ile of response time

distribution is not more than 0.15 s [1] The Internet Traffic Archive, “1998 world cup web site access logs,”
http://ita.ee.lbl.gov/html/contrib/WorldCup.html 11
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Evaluation results:

Prediction error of request rate

« Identifying ARIMA model parameters < last 3 week data, logarithmic scale conversion
« Performing the allocation process 48 times by changing staring time slot

« Analyzing the MAPE defined as 1

|$t — ff?t|

consumer web

t=1

-| = 1l-week prediction o 1-hour prediction

—s actual

.

« One-week predictions

- Campus web showed relatively small
regular predictable patterns.

- Consumer web showed a large (0.94
received unexpected request spikes.

(0.34) error beca

) error because it

<=

? I

2.0

.

« One-hour predictions indicated small errors in both w

0.1)

MAPE: Mean Absolute Percentage Error

=+ campus web (1-week) &= consumer web (1-week)
B8 campus web (1-hour) e—e consumer web (1-hour)

)

0.205

10 20 30 40
Starting time slot of time horizon (hours)
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Evaluation results:
Sizing of VM pool in private data center

Total cost (C/ Ceurrent ) in @ week as a function of private VM pool size (Nt )

- Ceurrent: cost when private VMs can handle the maximum request rate and

always awake. ;o | consumer web

B private (cost of renting physical servers)

@ private (cost for powering physical servers)
public (cost for using on-demand VMs)

[~ public (cost for transferring requests)

0.8

mm operation & management min' 5 d en

« Management cost -WIE' B8 2~ 4

= _—

: 7
U 0.4
« Public DC cost
: Sinereased rapidly because

« Private DC cost 0.2

the number of VMs greatly
axpanded.

- Most cost went to ker :

physical servers.

0.
011 10 9 8 7 6 5 4 3 2 1 O

(Pure private) (Pure public)
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Evaluation results:

Total cost and response time

L6 |  total cost

E—8 campus web e—e consumer web

1.4t campus web (ideal) - consumer web (ideal) | |

1.2+

10 ]

~current

-2 0.8}

campus web

02l consumer web

0 10 20 30 40
Starting time slot of time horizon (hours)

7~

« Campus web
- Total cost corresponded to its ideal.
- Response ratio was below the
(transformed) target of 0.05.
—Both one-hour and one-week
predictions had high accuracy.

*ideal assumes a case in which the future
requests are known a priori.

L response ratio of more than 0.15 s

B8 campus web &—e consumer web
0.35} campus web (ideal) - consumer web (ideal) | -
0.30 -
— 025! consumer y‘\Leb |
=
S 0.20
A
&~
X 0.15
0.10
----- ‘ campus web
0.00———— R —— e e ———
0 10 20 30 40

Starting time slot of time horizon (hours)

« Consumer web

- Total cost was slightly larger than its ideal.
—One-week prediction errors made the

private VM pool over-provisioned.

- Response ratio was much more than target.
—One-hour prediction errors made the VMs

under-provisioned.

7 14



Evaluation results:
Handling of One-Hour Prediction Errors

VMs are activated on the basis of the point estimate for the request rate.
- Estimation errors sometimes make VMs under-provisioned.
- Use the upper bound of the interval estimate instead of the point estimate.

consumer web

1.6 ————r—— - ————————— 0.30
H C,"{C:‘urrvur H Ar=0. 155)
1.4+
- 10.25
1.2} _
response ratio > 0.15 s | P
el 1N 2 Trade-off between the total cost
\__} 0.8| lo.15 i and the response-time performance
=~ At g
"o i _ g
0.6 total cost 1. Respongse ratio was below the target probability
0.4 v .05).
_________________________________________ = Total-egstincreased but still remained half of
0.2} o ""'target Ceurrent
ool . . lgoo
0.0 90.0 99.0 99.9 99.99

Upper bound of confidence interval for 1-hour predictions (%) 15



Evaluation results:

Cost

Impact of One-Week Prediction Errors on Total

« One-week prediction errors change the size of the VM pool in the private DC.

- The private VM pool is over-/under-provisioned with the upper/lower bund of
confidence interval for 1-week predictions.

VM pool size deviation had little effect
on total cost.

1.6

B8 campus web

% consumer web

1.4}

1.2}

consumer web
1.0 |

« Owing to converting request rate into a logar
scale, lower bounds of the confidence interva
smaller fluctuations.

« Total cost didn't change largely while the VM
size () Was near the optimal point.

- These advantages came from the VM pool bei

provisioned for the average request rate, not
the maximum rate.

J
E current
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B

t}p

'harch |

&
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—100 —-50 0 50 100
er/upper bound of confidence interval for 1-week predictions (%)
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Conclusion

« Cloud bursting approach: assigning a dedicated VM pool in a private
DC on the basis of one-week predictions and determining the active
VMs in private and public DCs on the basis of one-hour predictions.

« One-hour prediction errors caused the response delay.
« One-week prediction errors caused the VM pool in the private DC to
be under- or over-provisioned.

- The evaluation results indicate that our approach can become tolerant
of prediction errors by handling the confidence interval for
predictions.

17



Thank you for your attention.
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