Osaka University

Dynamic Placement of Virtual Network Functions based on Model Predictive Control

Kota Kawashima, Tatsuya Otoshi, Yuichi Ohsita, Masavuki Murata

Graduate School of Information Science and Technology, Osaka University

2016/4/25

Objective and Approach

- Objective
 - Establishment of a method which places the VNFs so as to follow the traffic variation
 - Start migration in advance of the change of the required
 - By considering the predicted future demands
 - Allocate sufficient resources to the VNFs without migrating a large number of VNFs at the same time
- Approach

2016/4/25

- Decide the placement based on the predicted value
- Robust control to prediction errors

S. J. Qin and T. A. Badgwell, "A survey of industrial model predictive cont Practice, vol. 11, pp. 733-764, July 2003.

Osaka University

Model Predictive Control (MPC) [1]

- Overview
 - Inputs setting to a system to make the output close to desired one
- · Correction of prediction error by feedback
- · Controller implements only the calculated inputs for the next time slot
- Controller observes the output and corrects the prediction
- Controller recalculates the inputs with the corrected prediction

Osaka University

Other simulation environments

- · Prediction method
 - Simple line fitting to past time series
- Metrics
 - · Maximum resource utilization
- $_{mf}$: the resource required by IF node n^{vnf} · The largest resource utilization, which is defined by

$$\max_{n^p \in N^p} \left(\frac{1}{u_{n^p}^p} \sum_{n^{vnf} \in N_{n^p}^{VNF}} u_{n^{vnf}}^v \right)$$

 $\frac{1}{2} n^p$: the set of virtual nodes hosted by physical node n^p

- Number of active physical nodes
 - The number of physical nodes hosting at least one VNFs
- · Number of migrated VNFs
 - · The number of VNFs which are migrated at each time slot

2016/4/25

Osaka University

Maximum resource utilization

- · All methods map the virtual network properly
 - VNFs are migrated before the lack of resources is caused by using the predicted values.

Osaka University

Number of active physical nodes

- All methods change the number of active physical nodes according to the time variation of the required resources
- · MPC-VNF-P indicates the same performance compared with MinActiveNode
- The future required resources are predicted to increase, while the actual required resources stop
- increasing MPC-VNF-P avoids the increase of the number of active physical nodes
 - Correcting the prediction errors Calculating the locations of VNFs again

2016/4/25

Osaka University

Number of migrated VNFs

- MinActiveNode and NoMPC require
- a larger number of migrations
 - MinActiveNode does not consider the cost of migration
 - NoMPC does not consider the future required resources
- MPC-VNF-P avoids a large number of migrations at any time slot
 - Start migration in advance by using the predicted values

2016/4/25

Osaka University

Summary and future work

- Summary
 - · Proposition of MPC-VNF-P
 - $\stackrel{\cdot}{\cdot}$ We introduce the idea of placement of VNFs based on MPC
 - · Our method starts migration in advance of traffic variation · By considering the predicted future demands
 - Evaluation of MPC-VNF-P

 - We show that MPC-VNF-P allocates sufficient resources without migrating a large number of VNFs at the same time
 - We show that our method handles the time variation of the demands
- · Future work
 - The evaluation using the actual traffic traces
 - Establishing a distributed algorithm of the dynamic placement of the VNFs

2016/4/25