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Prediction-Based Cloud Bursting Approach and Its Impact on Total
Cost for Business-Critical Web Systems

Yukio OGAWA†a), Go HASEGAWA††, Members, and Masayuki MURATA††, Fellow

SUMMARY Cloud bursting temporarily expands the capacity of a
cloud-based service hosted in a private data center by renting public data
center capacity when the demand for capacity spikes. To determine the
optimal resources of a business-critical web system deployed over private
and public data centers, this paper presents a cloud bursting approach based
on long- and short-term predictions of requests to the system. In a private
data center, a dedicated pool of virtual machines (VMs) is assigned to the
web system on the basis of one-week predictions. Moreover, in both private
and public data centers, VMs are activated on the basis of one-hour pre-
dictions. We formulate a problem that includes the total cost and response
time constraints and conduct numerical simulations. The results indicate
that our approach is tolerant of prediction errors and only slightly dependent
on the processing power of a single VM. Even if the website receives bursty
requests and one-hour predictions include a mean absolute percentage error
(MAPE) of 0.2, the total cost decreases to half the existing cost of provi-
sioning in the private date center alone. At the same time, 95% of response
time is kept below 0.15 s.
key words: cloud bursting, hybrid cloud, request prediction, total cost

1. Introduction

Computing resources, e.g., physical and virtual servers, are
assigned dedicatedly to an application system for achieving
both high availability and desired performancewithout being
affected by other systems. This type of resource allocation
is practical for business-critical application systems in en-
terprise private data centers. Such systems are, however,
generally built to handle peak workloads, which results in
them being underutilized for most of the time [1]. An ef-
fective approach for maximizing the resource utilization to
improve the cost efficiency of such existing systems is cloud
bursting [2]. In this approach, an application system uses
fixed resources in a private data center for the majority of
its computing. The system further bursts into a public data
center and temporarily combines on-demand resources when
private resources are insufficient. We take this approach to
provision virtual machines (VMs) for business-critical web
systems. Our goal is to minimize the total cost of a com-
puting platform while satisfying response time constraints.
We thus focus on determining the right amount of VMs in
both private and public data centers (i.e., in a hybrid cloud

Manuscript received December 12, 2016.
Manuscript revised March 18, 2017.
Manuscript publicized May 16, 2017.
†The author is with the Center forMultimediaAided Education,

Muroran Institute of Technology, Muroran-shi, 050-8585 Japan.
††The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: y-ogawa@mmm.muroran-it.ac.jp
DOI: 10.1587/transcom.2016NNP0006

environment) in advance in order to adaptively adjust VMs
to meet the current workloads.

Automatic extra resource allocation during increased
demand and its termination when demand decreases is a ma-
jor research topic in cloud environments [3]–[5]. Resource
allocations are classified into two methods: reactive and
proactive [6]. The reactive allocation method reconfigures
an application system to meet the system’s requirements for
quality of service (QoS) after detecting changes in the work-
load, utilization, etc. of the system (e.g., [7]). If the require-
ments can be seriously violated from when the changes are
detected to when the system reconfiguration is completed,
the reconfiguration should be proactively triggered on the
basis of estimating the future changes.

Studies on automating cloud bursting in a proactive
manner are roughly divided into two categories on the basis
of whether workload demand is known ahead of time or not.
In the first category, the futureworkload is known in advance.
This category includes high-performance computing for sci-
entific applications, in which there is a trade-off between
the completion time of the tasks and the amount of required
resources. The number of tasks is known ahead of time
and resources are adaptively scheduled for the tasks to meet
deadlines [8]–[10]. In the second category, future workload
is unknown. Accordingly, future demand must be estimated
to adjust the trade-off between application constraints, such
as response time and throughput, and computing resource
economics, such as cost and configuration overhead, e.g., in
the cases of enterprise applications [11], a video streaming
service [12], and production systems [13]. Our target falls
into the second category, in which an application platform is
dynamically reconfigured to optimize the trade-off on the ba-
sis of predicting the demand for the application. Prediction
errors thus can greatly affect the optimization. Although
the previous studies [11]–[13] supposed different deploy-
ment scenarios and cost frameworks form ours, they, as well
as autoscaling studies targeting a single cloud environment
(e.g., [14], [15]), will give us a clue to consider the frame-
work of our cost optimization problem. However, the impact
of prediction accuracy on the total cost and its trade-off with
application constraints has not been sufficiently discussed in
the above studies. We thus focus on describing the impact
for our deployment scenario.

A business-critical application system is often assigned
a dedicated cluster of physical servers because availability of
the system is determined at the cluster to which redundancy
techniques for the VMs are applied [16]. We thus reallocate
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not only VMs but also physical servers in a private data cen-
ter. A software-defined networking (SDN) framework make
this reallocation feasible [17], although physical servers have
a longer reallocation interval than VMs in practical deploy-
ment. We therefore present a two-step approach to adjust
computing resources in a hybrid cloud environment: assign-
ing physical servers in a private data center on the basis of
a long-term (e.g., a week) prediction, and activating VMs
in both private and public data centers on the basis of a
short-term (e.g., an hour) prediction.

In this paper, we present a cloud bursting approach
based on long- and short-term predictions for physical and
virtual servers, respectively. Previously, we described a cost
model of an application platform in a hybrid cloud envi-
ronment [18]. We hence focus on evaluating the impact of
prediction accuracy on our cloud bursting approach by using
trace data of actual websites. The long-term prediction is,
of course, not as accurate as the short-term prediction. Our
main contributions are therefore to demonstrate that:

1. the prediction errors of the long-term physical server
provisioning do not affect the optimized total costmuch.

2. the prediction errors of the short-term VM allocation
are handled by using the confidence interval for the
prediction, and the allocation can enable the application
system to satisfy response time constraints.

The rest of this paper is organized as follows. In Sect. 2,
we introduce an operational procedure. In Sect. 3, we define
a cost model. In Sect. 4, we describe a method for evalua-
tions. Then, in Sect. 5, we evaluate our approach. Finally, in
Sect. 6, we give conclusions.

2. Overview of a Cloud Busting Approach

We first give an overview of an application system in a hy-
brid cloud environment (called a hybrid cloud system) and
explain our operational procedure. In accordance with the
cost model of Weinman [19], we decrease fixed capacities
to improve the utilization of application systems in a pri-
vate data center and add on-demand resources in a public
data center during the peak time. As shown in Fig. 1, in the
private data center, a dedicated set of physical servers (i.e.,
a pool of VMs) is reallocated to an application system on
the basis of long-term workload predictions every weekend;
this interval is planned by considering long-term workload
variations, as well as management aspects such as the re-
covery time and cost when this reallocation fails. Moreover,
the amount of VMs required in the system is planned on the
basis of short-term predictions every hour; this interval is set
corresponding to the billing interval of the public data center.
If the amount required is less than the amount available in the
private data center, the minimum VMs alone are activated,
and unnecessary VMs are powered off or put to sleep. In
contrast, when the required number of VMs is more than the
maximum number of VMs in the private data center at that
time, the shortage of VMs is compensated for by additionally
allocating on-demand VMs in the public data center.

Fig. 1 Overview of cloud bursting approach.

In above deployment scenario, the total number of phys-
ical serversmay be fixed during a time horizon (e.g., duration
of renting the physical servers), and hence the private data
center may supply a too large/small VM pool to each appli-
cation system. Nevertheless, the amount of physical servers
required by an application system is around the average ca-
pacity used by the system and fluctuations in the amount are
much smaller than the peak-average difference. Moreover,
there can be more than a hundred of application systems in
an enterprise data center [20]. We therefore assume that
the fluctuations in an application system are offset by those
in other systems and thereby the total number of physical
servers remains nearly constant in the time horizon.

We also note that, while we dynamically reconfigure
computing resources, we fix the configurations of a wide-
area network (WAN) between private and public data centers
and local-area networks (LANs) in them. TheWAN,which is
managed by another service provider, can not be dynamically
reconfigured from the private data center and thus should
provide sufficient bandwidth to handle peak workloads of
business-critical application systems. The LANs usually
supply sufficient bandwidth as well, because the LANs are
much cheaper than computing resources [21].

3. Model of a Hybrid Cloud System

In this section, we describe a cost model and response time
constraints of a hybrid cloud system. We sometimes call
VMs in private and public data centers private VMs and
public VMs.

3.1 Cost Model

The VMs in both private and public data centers are con-
trolled at fixed intervals called time slots, each of which is
indexed by t (t = 1, · · · ,T ). A hybrid cloud system has pa-
rameters that change with time slots t as depicted in Fig. 2
and summarized in Table 1. Here, the size (Nt ) and process-
ing rate (Λt ) of a dedicated VM pool are altered at the end
of each interval of w time slots.

Our objective is to minimize the total cost of an appli-
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Fig. 2 Main parameters used for explaining cloud bursting approach.

Table 1 Parameters changing with time slot t.
xt Average rate of requests to application system

nt, n
′
t Numbers of VMs allocated and turned on for the application

system deployed over private and public data centers
λt, λ

′
t Average rates of requests sent to VMs in a private data center

and a public data center, respectively (λt + λ′t = xt )
Nt, Λt Capacity of theVMpool dedicated for the application system

in the private data center and its average processing rate
(nt ≤ Nt, λt ≤ Λt ))

Table 2 Constants for describing cost related to servers.
(a) Constants related to VMs assigned in private data center
cps Cost of renting a physical server per time slot
nvm Number of VMs per physical server
cec Energy charge rate
pps Energy consumed per physical server
e Energy-proportional coefficient [22]

(b) Constants related to VMs assigned in public data center
cvm Cost of an on-demand VM per time slot
ctr Cost of forwarding requests per unit size
d Average amount of transferred data per request

campus website and 4100 bytes for a consumer website)

(c) Constants for defining cost for operation and management
cst Personnel cost per time slot per staff member
nst Number of VMs managed by a staff member
α Constant for specifying economics of scale (α ≤

1) [23]

cation hosting platform, C, defined as the sum of the cost
related to the fixed private VMs, F, that are relevant to the
on-demand public VMs, U , and that for the operation and
management, O, over a time horizon.
Objective: minimize

C =
T∑
t=1

(
aF (Nt, nt ) + a′U (n′t, λ

′
t ) +O(Nt, n′t )

)
, (1)

where a is a constant for determining the total cost including
all of the servers, networks, storages, etc. from the cost
related to the servers alone in the private data center, and a′

is that in the public data center.
First, the cost related to the private VMs is defined by

using the constants in Table 2(a) as

F (Nt, nt )=cps

⌈
Nt

nvm

⌉
+ cecpps

(
(1−e)

⌈
nt

nvm

⌉
+e

nt
nvm

)
,

(2)

where, on the right side, the first term is the cost of renting⌈
Nt

nvm

⌉
physical servers. The second term is the cost for

powering the physical servers [22], where
⌈
nt
nvm

⌉
physical

servers are needed for allocating and turning on nt VMs.
Here, the second term assumes that each physical server has
energy proportionality [24].

Second, we define the cost related to the public VMs by
referring the constants in Table 2(b) as

U (n′t, λ
′
t ) = cvmn′t + ctrdλ ′t, (3)

where, on the right side, the first term is the cost for using on-
demand VMs, and the second term is the cost for transferring
requests to/from the VMs and synchronizing data storages.
Note that we do not count the cost for traversing aWAN, e.g.,
(virtual) dedicated network or the internet, between private
and public data centers because we assume that the hybrid
cloud system shares theWANwith other application systems
and that the WAN is charged at a flat rate.

Finally, the cost for operation and management, i.e., the
cost of the IT staff members who manage and operate the
application hosting platform across private and public data
centers, is defined by using the constants in Table 2(c) as

O(Nt, n′t ) = cst

(
1

nst

(
Nt + n′t

))α
, (4)

where the IT staff members are prepared to support the sum
of the maximum number of private VMs and the average
number of public VMs. We also assume economics of
scale [23].

3.2 Constraints on Response Time Performance

There is a trade-off between application latency and resource
amount given to the application system. We thus pose con-
straints on response time: in both private and public data
centers, qth percentiles of response time distribution for
each time slot (rq and rq′) are not more than a threshold
rc . Here, q is the target probability. When we define the
cumulative distribution function of response time (R defined
in Sect. 3.4), the above relationship for the private data center
is replaced with an alternative relationship: the probability
determined by the number of private VMs (nt ), the request
rate processed by these VMs (λt ), and the threshold time
(rc) is not less than the target probability (q), as shown in
Constraint (5). The same relationship is also given to the
public data center by Constraint (6). Here, we add the nota-
tion ˆ to the parameter of a predicted value.
Subject to:

rq ≤ rc
(
R(nt, λ̂t, rc) ≥

q
100

)
(∀t) (5)

rq′ ≤ rc
(
R(n′t, λ̂

′
t, rc) ≥

q
100

)
(∀t) (6)
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In these constraints, the numbers of private VMs (nt ) and
publicVMs (n′t ) are determined by using the predicted values
of request rates (λ̂t and λ̂ ′t ). The actual qth percentiles (rq
and rq′) can exceed rc due to prediction errors.

3.3 Request Rate Prediction

We adopt the autoregressive integrated moving average
(ARIMA) model [25] to predict the request rates. When
defining the backward shift operator B by Bxt = xt−1, the
original time series, xt , is transformed into a stationary time
series yt = (1 − B)d (1 − Bs)D xt by applying the dth-order
non-periodic differencing and the Dth-order periodic differ-
encing. This yt is then expressed as a function of its past
values and/or past errors, as follows.

yt =

p∑
i=1

φiBi yt +
*.
,
1 +

q∑
j=1

θjB j+/
-
ε t (7)

where φi, θj are the parameters, and ε t is the error term that
follows ε t ∼ N (0, σ2). The confidence interval of the one-
time-slot-ahead prediction is the standard deviation of the
errors (σ), which means yt+1 ∼ N ( ŷt+1, σ

2). Moreover,
when yt+h is expressed as yt+h =

∑∞
τ=0 ψτε t+h−τ (where

ψτ is the parameter calculated from the observed values and
ψ0 = 1 ), yt+h follows yt+h ∼ N ( ŷt+h, σ2 ∑h−1

τ=0 ψ
2
τ ).

3.4 Estimation of Response Time Distribution

To introduce the response time constraints explained in
Sect. 3.2, we define the cumulative distribution function of
response time at time slot t by applying the M/M/m queuing
model [26]. Since a web system is supposed to be imple-
mented asynchronously so that it can respond quickly to a
request without waiting for the request to be completed, we
adopt the waiting time distribution, not the sojourn time dis-
tribution. Let r , r0, and µ be the response time from the
application system at t, a constant network latency, and av-
erage processing rate of requests per VM, respectively. The
cumulative distribution function R is defined as

R(nt, λt, r)=1−π(nt, λt )e−(ntµ−λt )(r−r0) (r ≥ r0), (8)

where π(nt, λt ) is the probability of requests to be queued at
t. This probability is defined as

π(nt, λt ) =
nt ρ

nt
t

nt ! (nt − ρt )



nt ρ
nt
t

nt ! (nt − ρt )
+

nt−1∑
l=0

ρlt
l!



−1

ρt =
λt
µ
. (9)

Note that the above function is in the case of the private data
center, but this function is also applied for the public data
center. We also note that the network latency, r0, corresponds
the sums of latencies of a WAN and LANs, indeed. We
regard r0 as a constant, because we neglect the buffering
delay and consider propagation and transmission delays in

Algorithm 1 Resource allocation in hybrid cloud system
1: for each time slot t (t = 1, · · · , T ) do
2: if t mod w = 0 then
3: Predict {x̂t+h | h = 1, 2, · · · , w } according to Eq.(7).
4: Nt+1 ← VMPoolSize(x̂t+1, x̂t+2, · · · , x̂t+w ).
5: The number of dedicated physical servers in the next week

is given by
⌈
Nt+1
nvm

⌉
.

6: end if
7: Predict x̂t+1 according to Eq. (7).
8: {nt+1, n

′
t+1, λ̂

′
t+1 } ← VMAllocSize(x̂t+1, Nt+1).

9: end for

Algorithm 2 Sizing of VM pool in private data center
1: function VMPoolSize(x̂t+1, x̂t+2, · · · , x̂t+w )
2: Nt+1 ← 0 and Λt+1 ← 0.
3: while Λt+1 < max(x̂t+1, x̂t+2, · · · , x̂t+w ) do
4: Calculate Λt+1 so as to satisfy Constraint (5) with substituting

Nt+1.
5: for each t + h (h = 1, 2, · · · , w) do
6: {nt+h, n′t+h, λ

′
t+h
} ← VMAllocSize(x̂t+h, Nt+1).

7: CalculateCt+h in accordance with Objective (1).
8: end for
9: The cost of the VM pool in this interval (denoted byC∗ (Nt+1))

is given by
∑

h=1,2, ···,w Ct+h .
10: Nt+1 ← Nt+1 + 1.
11: end while
12: return Nt+1 ← arg min

Nt+1
C∗ (Nt+1).

13: end function

the networks which have sufficient bandwidth.

4. Method for Dynamically Allocating Resources

As explained in Sect. 2, we use long and short-term VM
provisioning. The size of a VM pool in the private data
center over the next w-time-slot interval ({Nt+h | h =
1, · · · , w}(Nt+1 = · · · = Nt+w )) is determined on the basis
of the predictions from one-time-slot-ahead to w-time-slot
ahead ({ x̂t+h | h = 1, · · · , w}) at the end of each w-time-slot
interval, while the numbers of private and public VMs at the
next time slot (nt+1 and n′

t+1) are recalculated by using the
one-time-slot-ahead prediction x̂t+1 and Nt+1 at each time
slot, as given in Algorithm (1).

The VM pool size in the next interval (Nt+1) is deter-
mined so as to minimize Objective (1), which is counted up
with increasing Nt+1 from 0 (i.e., the case of a pure pub-
lic data center) to more than the maximum of { x̂t+h | h =
1, · · · , w} (i.e., the case of a pure private data center), as
described in Algorithm (2). Moreover, the numbers of pri-
vate and public VMs in the next time slot (nt+1 and n′

t+1)
are determined by comparing the processing ability of the
VM pool in the private data center (Λt+1) with the predicted
request rate to an application system (x̂t+1), as shown in
Algorithm (3).

5. Evaluation

In this section, we evaluate the total cost and response time
of web systems and analyze the effect of prediction errors on
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Algorithm 3 Sizing of VMs allocated in both data centers
1: function VMAllocSize(x̂t+h, Nt+1)
2: Calculate Λt+1 so as to satisfy Constraint (5) with substituting

Nt+1.
3: if x̂t+h ≤ Λt+1 then
4: λ̂t+h ← x̂t+h .
5: Calculate nt+h so as to satisfy Constraint (5) with substituting

λ̂t+h .
6: λ̂′

t+h
← 0 and n′

t+h
← 0.

7: else
8: λ̂t+h ← Λt+1 and nt+h ← Nt+1.
9: λ̂′

t+h
← x̂t+h − Λt+1.

10: Calculate n′
t+h

so as to satisfy Constraint (6) with substituting
λ̂′
t+h

.
11: end if
12: return {nt+h, n′t+h, λ̂

′
t+h

}.
13: end function

them through numerical simulations based on trace data of
actual web systems. In the evaluations, each time slot is set
to one-hour long in accordance with the billing interval of a
prominent public data center [27].

5.1 Simulation Settings

5.1.1 Datasets

We used the arrival traces collected from twoweb application
systems.

• 5-month access log (from April 1 to August 26, 2014)
for a campus website of a university with about 30,000
students and staff members (called a campus web).

• 2.5-month access log (from April 30 to July 16, 1998)
for the 1998 FIFA World Cup website [28] (called a
consumer web).

5.1.2 Cost Model

The description of physical servers in the private data center
was given as follows. All physical servers, which have 8CPU
cores and a 32-GB memory each [29], were assumed to be
used on a three-year lease. The price of a single physical
server was set to ¥600,000. Thus, the cost of renting a
physical server per time slot (cps) was ¥600, 000/(3 × 365 ×
24) =¥22.8 per physical server per hour. Each physical
server had up to 2 VMs (i.e., nvm = 2). The energy charge
rate (cec) was ¥16 per kWh [30], and the power consumption
of a single physical server (pps) was set to 550W . In addition,
the energy-proportional coefficient (e) of the physical servers
was set to 0.6 [22].

On the other hand, each public VM was assumed to
be a m4.2xlarge instance at Amazon EC2 [27], which per-
formed similarly to a single VMwhen nvm = 2 in the private
data center. The price of a single on-demand VM (cvm) was
$0.732 per hour. The price for transferring data to/from the
public data center (ctr) was set to $0/$0.14 per GB, respec-
tively, as well [27]. We converted dollars into yen at an
exchange rate of ¥120 to $1. In addition, the average amount

of transferred data per request (d) was 7800 bytes for a cam-
pus website and 4100 bytes for a consumer website; these
values were calculated on the basis of the figures recorded
in the trace data.

Moreover, the personnel cost for operation and man-
agement (cst) was set to ¥900,000 per month /(30 × 24) =
¥1250 per time slot per staff member. A single staff mem-
ber is assumed to be able to operate and manage up to 100
VMs (i.e., nst = 100) [21]. Furthermore, the constant for
specifying economics of scale (α) was set to 0.6 [23].

The processing rate of each private and public VM
(µ) was set to 5.5 requests/s for the campus web and 275
requests/s for the consumer web. The µ of the consumer
web was set so that the maximum number of VMs for the
consumer web was similar to that for the campus web. In ad-
dition, the cost related to the servers was assumed to be 50%
of the total cost including all of the devices and equipments
in a private data center [21]. The cost related to VMs was
similarly supposed to be 80% of the total cost in a public
data center [27]. We thereby set a = 2 and a′ = 1.25 in
Objective (1).

5.1.3 Response Time Constraints

In Constraints (5) and (6), target probability q was defined
as 95%. The threshold of response time (rc) was set to
0.15 s because users can notice the response time when the
response delay exceeds this threshold [31]. Furthermore, the
sums of latency of a WAN and LANs (r0 in Eq. (8)) were set
to 0.001 s for the private data center and 0.14 s for the public
data center.

5.1.4 Request Rate Prediction

Based on the observation of the trace data, the datasets had
weekly, i.e., 24×7 = 168 time slots, periodicity. We convert
the time series into a logarithmic scale for counteracting the
effect of the rapid increase and decrease. We then applied
the transformation of yt = (1−B)(1−B168) log10 xt in order
to make the original time series xt stationary. At each time
slot, we extracted the last three weeks, i.e., 24 × 21 = 504
time slots, of data and identified the values of p and q of
ARI M A(p, 1, q) by changing p (0 ≤ p ≤ 5) and q (0 ≤ q ≤
5) until no lower AIC (Akaike Information Criterion) could
be found [25].

5.2 Evaluation Results

5.2.1 Prediction Error of Request Rate

We performed the allocation process shown in Algorithm (1)
48 times by changing the starting time slot of a time hori-
zon. Figure 3 shows an example of bursty requests and their
predictions. Figure 4 shows the prediction accuracy, where
we analyzed the mean absolute percentage error (MAPE)
defined as 1

T

∑T
t=1

|xt−x̂t |
xt

. For the 168-time-slot, i.e., one-
week, predictions, the campus web showed relatively small
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Fig. 3 Example of bursty requests and predictions (for consumer web).

Fig. 4 Prediction errors.

error (0.34 on average) because it had regular predictable pat-
terns, while the consumer web showed a large error (0.94 on
average) because it sometimes received unexpected request
spikes. In contrast, the one-time-slot-ahead, i.e., one-hour,
predictions indicated relatively small errors in bothwebs (0.2
and 0.1 on average).

5.2.2 Sizing of VM Pool in Private Data Center

In the private data center, the dedicated VM pool was resized
once a week to minimize Objective (1). For example, Fig. 5
shows the Objective (1) value of a certain week as a function
of the size of the private VM pool (Nt ) in the case of the
consumer web, where the Objective (1) value is expressed in
terms of the cost relative to that when the application is de-
ployed by using an existing provisioning approach (denoted
by Cexisting). This Cexisting is calculated for when the system
is assigned private VMs able to handle the maximum request
rate of the time horizon and all VMs always stay active in
the private data center. In Fig. 5, the consumer web was
processed in the private data center alone when Nt was 11
and in the public data center alone when Nt was 0.

The cost associated with the physical servers in the pri-
vate data center decreased linearly with Nt , where most of
the cost went to rent the physical servers under our evalua-
tion settings. The cost of energy consumed by the physical
servers did not significantly change when Nt was large be-
cause the number of active VMs was almost the same in that
case. On the other hand, the cost for using on-demand VMs

Fig. 5 Example of total cost as function of Nt (consumer web, nvm = 2).

in the public data center and that for transferring data from
them increased rapidly when Nt was close to 0 because the
number of VMs in the public data center greatly expanded
at that time. Furthermore, the cost for VM operation and
management was reduced nearly linearly with Nt . As shown
in Fig. 5, Objective (1) was minimized when Nt was 2 and
was almost unchanged until Nt = 4. In this case,

⌈
2
2

⌉
(= 1)

physical server was reassigned to the consumer web in the
next week.

5.2.3 Total Cost and Response Time

Figure 6(a) indicates the evaluation results of the total cost,
which is expressed as the ratio of the optimized one (C) to
the existing one (Cexisting). Figure 6(b) further shows those
of the response ratio of more than the threshold rc (0.15 s).
Each ideal assumes a case in which the future requests are
known a priori.

For the campusweb, the relative total cost corresponded
to its ideal, and the response ratio of more than the threshold
rc (0.15 s) was totally below the (transformed) target prob-
ability of 0.05 (= 1 - q (0.95)) because both one-hour and
one-week predictions had high accuracy. The response ratios
were almost the same for the starting time slots because the
ratio depended on the number of active VMs. Each number
was determined on the basis of the corresponding one-hour
ahead prediction having the same accuracy (see Fig. 4).

For the consumer web, the total cost was slightly larger
than its ideal, while the response ratio of more than 0.15 s
was muchmore than the target of 0.05 and reached 0.23. The
slight difference in the total cost was mainly caused by errors
in the one-week predictions. In this case, these errors shifted
to the positive side, resulting in an over-provisionedVMpool
in the private data center. Furthermore, this optimized cost
was lower than that for the campus web, which meant that
the consumer web was less utilized than the campus web
when both webs ran in the existing manner. On the other
hand, the response time was degraded by errors of the one-
hour predictions. Although the consumer web had small
MAPEs in the one-hour predictions, it sometimes received
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Fig. 6 Evaluation results when nvm = 2.

bursty requests exceeding estimated values of the one-hour
predictions (see arrows in Fig. 3); these errors made VMs
under-provisioned, resulting in delaying the response time.
In addition, the ideal case of the consumer web was much
less than the target probability of 0.05 because the processing
rate of a single VM for the web was relatively large, which
absorbed a certain level of request rate variation.

5.2.4 Handling of One-Hour Prediction Errors

Since the VMs are allocated and activated/deactivated on
the basis of the point estimates for future request rates, es-
timation errors sometimes made VMs under-provisioned,
resulting in degrading the response time as in the case of
the consumer web explained in the previous section. To
prevent this response delay, we thus use the upper bound of
the interval estimate instead of the point estimate. Figure 7
shows the total cost and the response ratio as functions of
the upper bounds of the confidence interval for the one-hour
predictions in the case of the consumer web. The error bars
indicate the maximum and minimum of the 48 trials. Here,
we still used the point estimates for the one-week predictions.
Note that we provide two additional cases when nvm = 4 and
nvm = 8 in Fig. 7, which will be explained in Sect. 5.2.6.

Fig. 7 One-hour error handling for consumer web.

Figure 7 indicates a trade-off between the total cost
and the response-time performance. When we provisioned
with the upper bound of a 99.9% confidence interval, the
response ratio was below the target probability (0.05) and
the total cost increased but still remained half that ofCexisting.
The errors of the one-hour predictions were relatively small,
which suppressed the increase of the total cost. Figure 7 also
shows that the response ratio did not decrease below about
0.04 even when we applied the upper bound of a more than
99.99% confidence interval; this reveals the limitation of the
prediction-based provisioning using the fixed length (i.e., 1
hour) for time slots in our evaluation environment. We also
note that the selection of a confidence level determines how
strictly the response time constraints are enforced, and this
strictness depends on the requirements of a corresponding
application system.

5.2.5 Impact of One-Week Prediction Errors on Total Cost

Errors of one-week predictions change the size of the VM
pool in the private data center, which can impact the total
cost. On the x-axis of Fig. 8, positive and negative values
mean the upper and lower bounds of the confidence interval
for the one-week predictions. Zero on the x-axis means that
the point estimates are applied. For example, 50% on the
x-axis means that the private VM pool is over-provisioned
when the upper bound of a 50% confidence interval is used.
In contrast, -50% means that the pool is under-provisioned
when the lower bound of a 50% confidence interval is used.
We evaluated up to a 95% confidence interval for the one-
week predictions. Here, to make the response ratio less than
the target probability, for the one-hour predictions, the point
estimate was applied to the campus web and the upper bound
of a 99.9% confidence interval was applied to the consumer
web. Note that 2 additional cases when nvm = 4 and nvm = 8
in Fig. 8 will be also discussed in Sect. 5.2.6.

Figure 8 reveals that the underestimate of the size of the
private VM pool had little effect on the total cost. This was
also true for the overestimate, until we used the upper bound
of a 50% confidence interval when nvm = 2 for the consumer
web (Fig. 8(b)). Although the one-week prediction values,
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Fig. 8 Impact of one-week prediction error.

of course, included larger errors especially for the consumer
web, the total cost was tolerant of the prediction errors for the
following reasons. When we predicted the request rates, we
converted them into a logarithmic scale. Owing to this, lower
bounds of the confidence interval had smaller fluctuations
than upper bounds. Furthermore, the total cost stayed at an
equilibrium while Nt was in the range of up to two from the
value making the cost optimal (see around Nt = 3 in Fig. 5).
These advantages come from the VM pool in the private data
center being provisioned for the average rate of requests, not
for the maximum rate.

5.2.6 Effect of the Processing Power of a Single VM

From Sect. 5.2.2 to Section 5.2.5, while mentioning the eval-
uation results when all physical servers in the private data
center had up to 2 VMs (i.e., nvm = 2) each and all VMs
in the public data center performed similarly, we discussed
how our provisioning approach is tolerant of prediction er-
rors. When a single VM, however, has a large processing
power, it can absorb a somewhat high level of request fluc-
tuation; this may lead to the error tolerance. We therefore
additionally examined cases when the VMs have less pro-
cessing capacity.

Figure 7 shows the effect of a single VM processing
power on one-hour prediction errors, the resulting total cost
and response delay. Note that horizontal positions of the
plots mentioned in Sect. 5.2.6 have been adjusted to keep the
markers visible. When all physical servers had up to 4 VMs
(nvm = 4) and even 8 VMs (nvm = 8) each in the private
data center and VMs of corresponding performances (such
as m4.xlarge ($0.366 per hour) and m4.large ($0.183 per
hour) instances at Amazon EC2 [27]) were provided in the
public data center, the total cost slightly became smaller and
the response ratio above 0.15 s appeared larger. This was
because a single VM of smaller processing capacity had less
surplus capacity; this cut the total cost and enabled the VM
itself to afford lower request fluctuations caused by one-hour
prediction errors as well.

Figure 8 furthermore indicates the effect of a single VM
capacity on one-week prediction errors and the resulting total
cost. In the case of the campus web shown in Fig. 8(a), the
total cost decreased as the processing capacity of a single
VM shrank from nvm = 2 to nvm = 8, for the same reason
as in the case of the one-hour error handling above. In this
case, the total cost was little affected by the VM pool over-
and under-provisioned when the upper and lower bounds of
the confidence interval were used, respectively, because the
campus web showed relatively small errors for one-week
predictions. Moreover, in the case of the consumer web
given in Fig. 8(b), when we used the lower bound of a 95%
confidence interval, the total cost was slightly increased as
the processing capacity became small. This was because the
smaller VMs in the under-provisioned private VM pool had
little redundant capacity and needed more on-demand public
VMs of relatively high cost. On the other hand, when we
used the upper bound of a 95% confidence interval, the total
cost was significantly increased as the processing capacity
enlarged from nvm = 8 to nvm = 2 for the following reasons.
The request rates was converted into a logarithmic scale
for being predicted and the consumer web had larger errors
for one-week predictions shown in Fig. 4. These made the
privateVMpool of the consumerwebmuch over-provisioned
when the upper bound of a 95% confidence interval was
used. The over-provisioned private VM pool had the largest
redundant capacity when the processing capacity of a single
VM is the biggest (i.e., nvm = 2); this greatly increased the
total cost.

As explained above, the total cost and the response
ratio was affected by the processing capacity of a single VM.
However, the total cost could still be half the existing cost
and 95% of response time was less than 0.15 s, even if the
predicted request ratio contained somewhat large errors.

6. Conclusion

This paper presented a cloud bursting approach in which
we assign a dedicated VM pool for a business-critical web
system in a private data center on the basis of one-week
predictions and determine which VMs in private and pub-
lic data centers should be active on the basis of one-hour
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predictions. We evaluated how prediction errors affect the
approach through numerical simulations based on trace data
of actual web systems. To avoid the response delay caused
by the one-hour prediction errors, we needed to apply the
upper bound of a wider confidence interval, resulting in-
creasing the total cost of the system. However, when the
upper bound of a 99.9% confidence interval was used for the
one-hour predictions to keep 95% of response time less than
0.15 s, the total cost was still half the existing cost, i.e, the
cost when VMs are provided to handle the maximum request
rate and all VMs always stay active in the private data cen-
ter alone. Furthermore, the total cost was nearly unchanged
when the VM pool in the private data center was under- or
over-provisioned for the one-week predictions. These char-
acteristics of our approach, furthermore, are only slightly
dependent on the processing capacity of a single VM.

The length of time slots used for predicting request rates
and handling VMs was fixed to one hour, which may limit
the prediction accuracy of request rates and the resulting
distribution of response time as well. Moreover, dynamic
adjustment of the confidence level is beyond the scope of
this paper. A topic of future study is therefore improving
the provisioning accuracy by shortening the time slots and
adjusting dynamically the confidence level, with using more
trace data for further analysis of this study.
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