
Evolution of Functional Core in Network-related
Function Calls during Linux Kernel Development

Shin’ichi Arakawa∗, Hirotaka Miyakawa∗, Tetsuya Takine† and Masayuki Murata∗
∗ Graduate School of Information Science and Technology, Osaka University, Japan

{arakawa, h-miyakawa, murata}@ist.osaka-u.ac.jp
† Graduate School of Engineering, Osaka University, Japan

takine@comm.eng.osaka-u.ac.jp

Abstract—Recently, network function virtualization has been
focused on achieving a flexible deployment of networking services.
Despite the fact that the heart of network function virtualization
is its software implementation, there are fewer studies on how
network functions are implemented as software. In this study,
we investigate the evolution of functional connectivity in network
functions using an implementation of Internet protocol suite in
the Linux kernel. We constructed a call graph for the Linux
kernel and analyzed the change of connectivity between the
protocol components based on the directory structure of Linux
kernel. Our results on the connectivity analysis show that new
sub-directories appears for new emerging technologies, such as
“bluetooth” and “sctp”, and they rely mostly on the function of
sub-directories “core” and “ipv4”. Since the number of functions
in sub-directories “core” and “ipv4” is increasing, we defined a
functional core for the call graph to see whether there is a core
part which has lower variability during the kernel development
or not. The result shows that the functional core consists of
mostly 50-70 functions and has lower variability comparing with
the increase of a number of network-related functions during the
kernel development.

I. INTRODUCTION

The Internet has been more and more important tool for our
daily life as smartphones and tablet computers become widely
used. Various Internet services have emerged along with the
diversity of devices and functional/performance requirements.
In contrast, IP (Internet Protocol) has been centered on the
protocol suite of the Internet and was not so changed in its
functionality during the history of the Internet.

It is widely accepted that the protocol suite of the Internet
is IP-centric and resembles an hourglass. That is, various
kinds of applications use networking services through a socket
interface which provides TCP/UDP as the transport layer and
IP as the network layer. Also, various kinds of bit-transport
systems can be used by IP through interfaces of the data link
layer such as Ethernet or IEEE 802.11’s media access control.
From the application development point of view, IP-centric
protocol suite nicely hides the detail of network infrastructure
thanks to the socket interface. On the other hand, because of
the socket interface, the application developers will face with
difficulties when they want to change networking functions
such as routing and/or addressing. From the networking point
of view, deploying new networking services at the network
layer is not easy because most of the networking services are
now implemented using the hardware.

Recently, network function virtualization has been focused
on achieving a flexible deployment of networking services.
Virtualization is a technique to prepare virtual machines on top
of a hardware. Then, software-implemented network functions
are executed on top of the virtual machine. Network operators
can easily deploy a new network function on the network
infrastructure by, e.g., slicing a new virtual machine and by
executing the software-implemented network function on the
sliced virtual machine.

Despite the fact that the heart of network function virtual-
ization is its software implementation, there are fewer studies
on how network functions are implemented as software. One
of the reasons may be that the network function virtualization
is at the early stage of standardization. Another reason may
be that studies of a software implementation are not the main
scope of networking research community. Actually, Linux ker-
nel, which includes software implementation of the protocol
suite, has been analyzed in a software-engineering research
community where an analysis of software quality and bug
prediction are main concerns. Gao et al. [1] generated the
call graph of the Linux kernel and analyzed the change of the
Linux kernel using some metrics such as degree distribution
and average path length. In the study, they reveal that the
indegree distribution follows power-law whereas the outdegree
distribution follows an exponential distribution. They demon-
strate that the Linux kernel is highly modularized and the
failure of the nodes with large in-degree do more damage
on the entire system. Wang et al [2] investigate the degree
distribution of each component by regarding a directory as
a component. Koon et al. [3] compared the transcriptional
regulatory network of a bacterium (Escherichia coli) with the
network that represents function call relationship of the whole
Linux kernel and showed that functions are heavily reused
in the Linux kernel. However, both of works focuses on the
analysis of entire Linux kernel.

In this paper, using an implementation of Internet protocol
suite in the Linux kernel, we investigate the evolution of
connectivity between network functions. More specifically, we
construct a graph for each kernel version by regarding a node
as a function call and a link as a callee-caller relationship of
function calls. Then, changes of topological characteristic are
investigated. We mainly focus on the functional core of the
network-related implementation, which is defined as a group



of functions that maximally handle the information processing
requests from remaining functions.

The rest of this paper is organized as follows. Section
2 explains a method to obtain a graph representation of
Linux kernel implementation. In Section 3, we investigate
the way of evolution of network-related implementation in
Linux kernel based on the directory information. Section 4
define the functional core in the Linux kernel implementation
and investigate the evolution of the functional core during the
kernel development. Section 5 concludes this study.

II. GRAPH REPRESENTATION OF LINUX KERNEL
IMPLEMENTATION

A. Obtaining a call graph for Linux kernel

The call graph is a directed graph with functions as nodes
and function calls as edges. When a function (caller) calls
another function (callee), the edge connects these two nodes.
CodeViz [4] is one of the tools for generating a call graph
from program code and is commonly used for visualizing
program code to understand the structure of the software
implementation. However, we do not use the CodeViz for
obtaining a call graph for Linux kernel. One of reason is
that we were faced with a problem that functions that are
declared at different files but has the same name are regarded
as the same node in the call graph generated by the CodeViz.
Therefore, we use GCC’s debugging option (dump-rtl-expand)
to obtain a Register Transfer Language code for each source .c
file. RTL is the intermediate language used for exchanging the
front-end, which performs lexial analysis and syntax analysis,
and the back-end, which optimize the program code and
generate binary code. Since the RTL code is nicely formatted
and generated each source file, we developed a software tool
for analyzing the RTL code. We used a gcc version 6.1.1
(20160621) to compile the Linux kernel from 2.4.0 to 4.7.
The configuration options for the compilation was set to the
default settings of Fedora 24. Note that recent gcc sometimes
fails to compile the old Linux kernel due to the change of the
specification of gcc. In this case, we give a little modification
to the Linux kernel such that the recent gcc can compile the
Linux kernel.

Even after we have obtained RTL codes, we are still facing
a problem that we cannot distinguish two functions that have
the same name. For a caller-callee relationship, the caller
function is easily identified since the RTL code is generated
for each source file. The problem is the identification of the
callee function: which function is actually called by the caller
function? GCC compiler uses the linker program in actual to
identify the body of the callee function, but it was difficult
for us to follow the behavior of linker program. Instead, we
apply following rules in sequence to identify the location of
the callee function.

1) When the caller function and callee function is defined
in the same file, the callee function located at the same
file is called.

Fig. 1. Changes of numbers of nodes and links of network-related functions
from Linux kernel 2.4.0 to 4.7

2) When the callee function is defined only in one file in
the entire Linux kernel, the callee function defined at
the file is called.

3) When the name of the callee function appears at the sev-
eral files in the entire Linux kernel, the callee function
located at the closest directory to the caller function is
called.

4) When the name of the callee function appears at the
declaration of assembler file, the callee function defined
at the assembler file is called.

There are mostly 100 callee functions that cannot be iden-
tified by applying the above rules. These functions include,
for example, acpi_pci_link_exit, acpi_ec_exit,
do_suspend_lowlevel_s4bios, and so on. Most of
these functions are related to the BIOS-level function call and
are not related to the networking function, so we will ignore
these function calls for further analysis. From Linux kernel
2.4.0 to 4.7, the number of nodes was increased from 8,806
to 164,945 and the number of links was increased from 25,813
to 602,149.

B. Obtaining a call graph for network related functions in
Linux kernel

Linux kernel supports various functions such as CPU ar-
chitectures, file systems, and networking. Since our focus is
a network-related function, we need to extract the functions
related to networking. Fortunately, the directory structure
of Linux kernel’s files is useful to extract. Files of Linux
kernel are grouped into directories based on their functions.
Files related to network functions are gathered in the “net”
directory whose sub-directories are also grouped into more
specific functions such as “ethernet”, “ipv4”, and others. In
this paper, we regard a function which is defined at the
files under the branch of “net” directory as the network-
related function. In addition, we regard a function which is
defined at the files under the branch of “drivers” directory
and calls or be called by the function under the branch of
“net” directory as the network-related function. The “drivers”
directory gathers the hardware-related function calls for not



only the network drivers but also storage drivers and graphic-
related drivers. That is, a part of functions defined under the
branch of “drivers” directory is supposed to be a network-
related function. So, we consider that the function under the
branch of “drivers” directory is a network-related function
when it is related to the functions under the branch of “net”
directory.

Figure 1 shows the changes numbers of network-related
functions and links that connect them from Linux kernel 2.4.0
to 4.7. Notable changes during the development are supports
of IPv6 (v3.0), VPN (v3.0), and IPsec (v2.6). Needless to say,
other network functions are also developed intensively; for ex-
ample, mobile ad-hoc networking (B.A.T.M.A.N) and Stream
Control Transmission Protocol (SCTP). A full of ChangeLog
is available at [5]. The number of network-related functions
was increased from 2,281 to 23,219 and the number of links
was increased from 4,834 to 50,703. Numbers of nodes and
links have increased as development has progressed since new
function calls are added without deleting old function calls.
From version 2.4.0 to version 3, numbers of nodes and links
drastically increased due mainly to IPSec and IPv6 support.
Note that the implementation of IPSec and IPv6 exists before
the version 2.4.0, but it was EXPERIMENTAL. In this paper,
all of the results are based on the version at which the default
configuration option is activated. After version 3.0.0, numbers
of nodes and links are not drastically increased except from
version 3.7 to 3.9 where the number of nodes increased from
14,331 to 17,631 and number of links significantly increased
from 30,477 to 38,445. We check the name of function calls in
detail and conclude that Stream Control Transmission Protocol
(SCTP) [6] was activated by default from version 3.8.0. The
increase of a number of links is faster than the increase of
the number of nodes, which means that a function is being
actively reused.

III. EVOLUTION OF NETWORK-RELATED
IMPLEMENTATION IN LINUX KERNEL

In this section, we investigate changes in connectivity in
network-related functions during the development of Linux
kernel. We use our own software tool (See Sec. II for detail)
to obtain network-related functions and their connectivity in
the Linux kernel from version 2.4.0 in Jan. 2001 to version
4.7 in Jul. 2016.

A. Analysis of connectivity between directories

We first investigate the relation between the network func-
tions based on the (sub-)directories that the functions are
belonging. As we mentioned above, files related to network
functions are gathered in the “net” directory whose sub-
directories are also grouped into more specific functions
such as “ethernet”, “ipv4”, and others. Figure 2 shows the
connectivity between sub-directories in the Linux kernels 3.0
and 4.7. Here, the node is the sub-directory and the link
between two nodes is constructed when one or more functions
defined at files in a sub-directory calls one or more functions
defined at files in another sub-directory. In the figure, the size

4.7

3.0.0

Fig. 2. Connectivity between sub-directories of the “net” directory at Linux
kernel 3.0 and 4.7

 0

 10

 20

 30

 40

 50

2.4.0 2.6.0 3.0 4 4.7

N
u

m
b

er

versions

components
components using core
components using ipv4

Fig. 3. Number of sub-directories (protocol components) connected to “core”
and “ipv4” from 2.4.0 to 4.7.

of the node expresses the number of calls in the component,
and the thickness of the link expresses the number of calls
between the protocol components. The figure clearly shows
that functions have been increased for each sub-directory. The
network-related functions for new emerging technologies, such
as “bluetooth”, “sctp”, and “openvsswitch”, has appeared or
drastically increased from 3.0 to 4.7. An interesting observa-
tion can be made for sub-directory “core” and “ipv4”: most
of the newly added sub-directory are connected to the sub-
directory “core” and 60% of them are connected to the sub-
directory “ipv4”

Figure 3 shows the changes of the number of sub-directories
and changes of the number of sub-directories connected to
“ipv4” and “core”. The sub-directories that use “core” and
“ipv4” are increasing as the total number of sub-directories



Fig. 4. Relation between a call graph and a flow of processing.

increases. “core” and “ipv4” are almost always used from
new sub-directory is added. Thus, the components “coreh and
“ipv4h play a key role in providing network functions.

B. Weight-based analysis

In the previous section, we analyzed the connectivity be-
tween network-related functions based on the directories that
they are belonging. In the analysis, we assume that the weight
of connection between functions is always 1.0. However, when
we want to know the importance of network functions, it is
necessary to consider the frequency of function calls for each
link. To explain this, we show the relation between a call graph
and a flow of processing in Figure 4. In the figure, nodes
and solid lines form a call graph, that is, a node represents
a function and the link with a solid line represents a caller-
callee relationship between functions. The triangle represents
a unit of information processing, i.e., the function call of the
node will be completed after the all of the nodes inside the
triangle are completed. Thus, the dashed-line depicts the flow
of processing when the function of the top-node in the biggest
triangle is called. This figure suggests that the link in the
call graph can be called many times in an actual usage, and
therefore, we have to define the weight of links to reflect the
frequency of function calls for each link. One of the ways to
define the weight of links is to run the Linux kernel in the
actual environment and then measure the number of function
calls directly. However, it is difficult to define the “actual”
environment. Therefore, instead of taking a way to run the
Linux kernel, we consider the graph-based definition for the
link weight. Looking at the Figure 4, we notice that a function
call is triggered by nodes whose indegree is 0. Thus, we define
the weight of links by counting up the appearance of each link
during the flow of processing triggered from indegree-zero
nodes.

Figure 5 shows the number of internal links for each sub-
directory at the Linux kernel 4.7. Here, the internal link
for a sub-directory means that its caller function and callee
function belongs to the same sub-directory. We also show

Fig. 5. Total weight of internal links for each sub-directory (selected, LKM
v4.7).

Fig. 6. Changes of total weight for each sub-directory.

the sum of weight for internal links in the figure. The sub-
directory “core” has a lot of highly-used links internally, and
its value is higher than other sub-directory by one order of
magnitude. The importance of sub-directory “netlink” is also
drastically changed. The function call defined in the sub-
directory “netlink” is only 126, but they are called 33,644
times. We finally check the evolution of total weight for each
sub-directory from Linux kernel 2.4.0 to 4.7. Figure 6 shows
the total weight of links in each sub-directory dependent on
the Linux kernel version. The total weight of sub-directory
“80211” (for wifi communication), “netlink”, and “core’ in-
creases continuously, but the that of sub-directory “ipv4” and
“ipv6” does not increase so much.

Next, we investigate the relation between sub-directories
under the directory “net”. Our results on the connectivity anal-
ysis show that new sub-directories appears for new emerging
technologies, such as “bluetooth” and “sctp”, and they rely
mostly on the function of sub-directories “core” and “ipv4”.
However, our analysis based on the link weight reveals that
the importance of the sub-directory “ipv4” is not so high
comparing with the sub-directory “core’. The sub-directory
“netlink” is important rather than the “ipv4” and “ipv6”. As
the name of directory “core” indicate, the sub-directory “core”
plays a central role for network functions. A question is
whether all of the functions under the sub-directory “core”
is important or not. Another question is whether the size of



important functions in the directory “net” increases or not. In
the next section, we develop a method to reveal the functional
core in the network-related implementation and presents the
way of evolution of the functional core during the kernel
development.

IV. EVOLUTION OF FUNCTIONAL CORE OF THE
NETWORK-RELATED FUNCTIONS

In this section, we extract the functional core, which defined
as a set of function that plays a central role in information
processing, of the network-related functions through a “Core-
Periphery” concept [7]. The core-periphery concept interpret
a system into a core part, which has lower variability and is
efficient, and a periphery part, which has higher variability
to absorb environmental changes. Our interest on the Linux
kernel implementation is whether there is a core part which
has lower variability during the kernel development or not.

Defining the core part in the Linux kernel is not an easy
task because the lower variability is not a sufficient condition
to define the core. For example, functions of old networking
technology that are not maintained now are unchanged during
the recent kernel development. Avin et al [8] presented an
axiom-based definition to separate a social network into the
core and periphery part. According to the [8], the core part
satisfies following four conditions; A) Dominance where the
total of weight of links connecting core part and periphery
part is greater than that of links inside the periphery part,
B) Robustness where the total of weight of links inside the
core part is greater than that of links connecting core part and
periphery part, C) Compactness where the size of the core part
is minimum, D) Density, where the density of the core part
is sufficiently high. However, in this paper, we use an another
definition of the functional core intended for the Linux kernel.
The functional core is defined as the set of functions such that
the total weight of links connecting the functional core and the
remaining part is maximized. As we have shown in Figure 4,
the weight of links is defined as the number of function calls.
Thus, the functional core by our definition represents the set
of highly called functions from the remaining part. Figure 7
show the changes of functional core from Linux kernel 2.4.0
to 4.7. The figure shows that the functional core consists of
mostly 50-70 functions and has lower variability comparing
with the increase of a number of network-related functions
during the kernel development.

V. CONCLUSION

In this study, we investigated the evolution of functional
connectivity in network functions using an implementation of
Internet protocol suite in the Linux kernel. We constructed
a call graph for the Linux kernel and analyzed the change
of connectivity between the protocol components based on
the directory structure of Linux kernel. Our results on the
connectivity analysis show that new sub-directories appears for
new emerging technologies, such as “bluetooth” and “sctp”,
and they rely mostly on the function of sub-directories “core”
and “ipv4”. However, our analyisis based on the link weight

Fig. 7. Changes of the size of functional core.

reveals that the importance of the sub-directory “ipv4” is not
so high comparing with the sub-directory “core’. Then, we
defined a functional core for the call graph to see whether there
is a core part which has lower variability during the kernel
development or not. The result shows that the functional core
consists of mostly 50-70 functions and has lower variability
comparing with the increase of a number of network-related
functions during the kernel development.

The analysis in this paper was based on the analysis of
source codes and actual behavior of the program is not
reflected. Our future work is to analyze the inter-dependency
of network functions when the Linux kernel works for some
networking purpose.

ACKNOWLEDGEMENT

This work was supported by National Institute of Informa-
tion and Communications Technology (NICT) in Japan.

REFERENCES

[1] Y. Gao, Z. Zheng, and F. Qin, “Analysis of linux kernel as a complex
network,” Chaos, Solitons & Fractals, vol. 69, pp. 246–252, Nov. 2014.

[2] H. Wang, Z. Chen, G. Xiao, and Z. Zheng, “Network of networks in Linux
operating system,” Physica A: Statistical Mechanics and its Applications,
vol. 447, pp. 520–526, Apr. 2016.

[3] K.-K. Yan, G. Fang, N. Bhardwaj, R. P. Alexandera, and M. Gersteinb,
“Comparing genomes to computer operating systems in terms of the
topology and evolution of their regulatory control networks,” Proceedings
of the National Academy of Sciences, vol. 107, no. 20, pp. 9186–9191,
May 2010.

[4] M. Gorman, “Codeviz: A callgraph visualiser,” Available at:
http://www.csn.ul.ie/ mel/projects/codeviz/, accessed: 1 Feb. 2015.

[5] “The Linux Kernel Archives,” Available at: http://www.kernel.org, ac-
cessed: 1 Feb. 2017.

[6] T. Dreibholz, E. P. Rathgeb, I. Rüngeler, R. Seggelmann, M. Tüxen,
and R. R. Stewart, “Stream control transmission protocol: Past, current,
and future standardization activities,” IEEE Communications Magazine,
vol. 49, no. 4, pp. 82–88, Apr. 2011.

[7] P. Csemely, A. London, L. Wu, and B. Uzzi, “Structure and dynamics
of core/periphery networks,” Journal of Complex Networks, vol. 1, no. 1,
pp. 93–123, Oct. 2013.

[8] C. Avin, Z. Lotker, D. Peleg, Y. A. Pignolet, and I. Turkel,
“Core-periphery in networks: An axiomatic approach,” arXiv preprint
arXiv:1411.2242, Nov. 2014.


