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Abstract—Fifth-generation mobile and wireless communica-
tion systems are actively being studied as a next-generation mo-
bile communication network. People and devices will connect
to the Internet via wireless networks in future communication
networks, but many challenges must be solved to realize 5G
networks. For example, it is difficult to manage connected
user devices using centralized control in the control plane.
We previously proposed an architecture for autonomous and
distributed mobility management and a biology-inspired mobil-
ity management scheme that adaptively selects the location of
management entities. However, this scheme has some problems
from a network-wide perspective, due to entities’ autonomous
decision-making. This paper introduces a control node for
monitoring and managing the network to resolve the otherwise
unsolvable problem of autonomous distributed control. We
show that this control node can improve network stability
without much loss of performance in the entire network.

Keywords-5G network, attractor selection, bio-inspired algo-
rithm, controlled self-organization

I. INTRODUCTION

Future communication networks will connect people and

devices via wireless networks in the so-called Internet of

Things (IoT), and machine-to-machine (M2M) communica-

tion will be critical for secure, safe, and affluent living. To

that end, fifth-generation (5G) mobile and wireless commu-

nication systems have attracted attention as a next-generation

mobile communication network.
Many technical challenges remain for 5G networks [1],

[2]. To enhance network resource utilization and network

performance in the IoT and M2M communication, 5G net-

works should allow for the transmission of many small pack-

ets with low latency and small communication overhead. In

current long-term evolution/evolved packet core (LTE/EPC)

networks, a serving gateway (SGW) handles the user plane

(U-Plane) and a mobility management entity (MME) man-

ages the control plane (C-Plane) in a centralized manner.

Such centralized information management of connected user

equipment (UE) has caused bottleneck problems [3].
The control-plane load will grow in the future due to

the periodic background traffic generated by many mobile

devices and various types of traffic generated by a lot

of IoT/M2M devices. The concentration of the load on

the control plane results in the increase in delay in the

control plane, which causes the performance degradation

of the mobile network as a whole. Fully autonomous and

distributed control techniques, called self-organization con-

trol techniques, can resolve such problems. Self-organized

control is described as a time-evolution equation based

on local information for deriving a solution, which avoids

rapid increases in the amount of collected information and

calculated solutions. Self-organized control optimizes the

system through the emergence of the individual decision-

making.

We have previously proposed a network architecture that

employs MMEs as a logical function in the mobile net-

work [4]. These MMEs autonomously perform UE man-

agement in a distributed manner as autonomous distributed

MMEs (ADMME). The role of mobility management for a

UE can be delegated from one ADMME to another (called

ADMME switching), and the selection of a new ADMME

is made at the previous ADMME’s discretion. We call

this ADMME selection. Determining the best placement

of ADMMEs in a mobile-core network and determining

which ADMME manages which UE by considering the UEs’

position are quite challenging problems.

ADMME was proposed to distribute MME function and

achieve delay reduction and load balancing in the control

plane. Similar efforts are being made in the distributed
MME [5]. However, in [5], it is necessary to preallocate

servers for control-plane usage, and dynamic load balancing

among servers is not considered. ADMME performs the dy-

namic migration of UE, and manages UE in an autonomous

and decentralized manner taking the delay and load of the

surrounding MME into consideration.

In [4], an ADMME selection method based on the

attractor-selection algorithm [6] was proposed for load

balancing between ADMMEs and for suppressing commu-

nication delay between an ADMME and its UEs, where

each ADMME makes decisions using only local informa-

tion. However, autonomous and distributed control generally



Figure 1. Network and delay model

suffers from instability when there exist multiple states that

satisfy the local optimality [7]. Our proposed method in [4]

cannot solve this problem and furthermore generates exces-

sive ADMME switching. Movement of the context and an

increase in signaling accompanying this switching increased

load in the C-Plane. In addition, the local decision-making

of ADMMEs cannot directly control the performance of the

entire network.
The main goal of this paper is to propose a novel network

architecture that solves problems in the autonomous AD-

MME selection method while retaining its advantages. Note

that our proposal is designed to suppress ADMME switching

even when considering UE mobility. We introduce a control
node [8] that monitors and manages the network to meet per-

formance requirements and suppress instability. The control

node described in this paper induces network performance

to a sub-optimal value and suppresses connection switching

between an ADMME and a UE, so long as doing so does not

result in deterioration from the desired performance. To that

end, the control node has a feedback mechanism, where it

periodically observes the network performance and provides

control input to each ADMME according to the observed

performance.
The remainder of this paper is organized as follows. We

first briefly explain attractor selection-based on the ADMME

selection algorithm in Section II. We then propose a con-

trol architecture for an autonomous mobility management

system in Section III. A computer simulation described in

Section IV demonstrates the performance of the proposed

method. Finally, Section V concludes this paper and suggests

areas for future work.

II. AUTONOMOUS ADMME SELECTION BASED ON

ATTRACTOR SELECTION

An attractor selection-based ADMME selection algorithm

is proposed in [4]. We first briefly explain the ADMME se-

lection problem, and then explain how the attractor selection

algorithm solves this problem.

A. ADMME Selection Problem
An ADMME can run on any eNodeB, SGW, or PGW

node. As in [4], this paper assumes that all nodes have AD-

MME functionality. Each ADMME manages the mobility

information of UEs. ADMME switching can happen when

a UE transmits a tracking area update (TAU) request, a

handover request, or an attach request to a current ADMME.

Here, a TAU request is transmitted when the TAU timer of

a UE expires or a UE moves to another tracking area. A

handover request starts when a UE moves to another cell. An

attach request is sent when a UE joins the mobile network.

When an ADMME receives such a request from a UE, the

ADMME selects an ADMME that is eligible for transferring

management of the requesting UE to reduce communication

delays between the UE and the new ADMME and to reduce

the load concentration on the new ADMME. The ADMME

selects a new ADMME from a candidate set that consists of

ADMMEs in all nodes on the path between a requesting UE

and the current ADMME. The candidate set also includes

ADMMEs in the SGW and the PGW nearest to the UE.

In [4], the ADMME selects a new ADMME from the can-

didate set according to the delay history and load status of

nodes (details are described in the following subsection). We

assume that communication delay is estimated by a node that

has an ADMME through the request of a UE. Each ADMME

periodically collects the load status of nodes in the current

candidate set. After determination of a new ADMME, the

current ADMME transmits a delegation message to the new

ADMME with context information of the requesting UE.

The new ADMME responds to the UE’s request with a

message.

B. Attractor Selection-based ADMME Selection
The attractor selection model mathematically explains

how biological systems adapt themselves to unexpected

changes in their surroundings [6]. In this model, each

system component periodically updates its state. This model

therefore provides not a simple heuristic algorithm, but re-

markable adaptation to dynamically changing environments

according to the fitness to the current environment. Various

network control methods have applied this [9]. In [4], we

applied this algorithm to solve the ADMME selection prob-

lem for delay reduction and load balancing. Figure 1 shows

our assumed network model. For simplicity, we assume that

delays between a UE and an eNodeB (Δ0), between an

eNodeB and an SGW (Δ1), and between an SGW and a

PGW (Δ2) are a constant value. The load status is the

number of UEs that the corresponding ADMME manages.

An ADMME has a vector m = (m1,m2, · · · ,mM ) for

each UE that the ADMME manages. M is the cardinality
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Figure 2. Control node and ADMMEs in the assumed network

of the candidate set for the corresponding UE. mi is a state

value that corresponds to the adequacy of ADMME i for

selection. An ADMME also has a scalar value α for each

UE, which is called its activity. Activity expresses the fitness

of the current selection of an ADMME. In the attractor

selection algorithm, m is updated as

dm
dt

= αf(m) + η, (1)

where f is the derivative of a function that has M attractors

and η is noise.

When activity is high, m converges to an attracted state,

and it randomly seeks another state when activity is low.

An ADMME updates its activity when a request from a

UE arrives, and it also updates m using the activity. The

ADMME in the candidate set with the largest state value is

then selected as the new ADMME. The state vector, activity,

and delay history are transmitted to the ADMME that is

newly taking control.

Upon the h-th request, the ADMME calculates its activ-

ity α as

α(h) = ρ · αd(h) + (1− ρ) · αl(h), (2)

where ρ takes a value in [1 . . . 0] that determines the weight

of activities αd(h) and αl(h), which are described below.

In attractor selection-based ADMME selection, ADMMEs

use an estimated delay d̂. ADMMEs estimate d̂i as the

expected communication delay from node i to a UE via the

ADMME. If node i is on the shortest path between the UE

and the ADMME, d̂ is the combined delay from the UE to

the ADMME and then to node i. Otherwise, d̂i = 0. Delay

information for the previous W steps is stored as a delay

history. To maintain this, while collecting the load status of

nodes in the current candidate sets, ADMMEs periodically

send probe packets to nodes in their candidate set. Note that

in the candidate set, a larger d̂i indicates closer proximity

of node i to the corresponding UE.

The activity based on d̂, αd(h), is calculated as

αd(h) =

( ∑W
k=1

d̂cm(h−k)
k

max1≤i≤M

∑W
k=1

d̂i(h−k)
k

)ε

, (3)

where d̂cm is the delay of the current ADMME and ε is a

parameter to determine the output level for αd(h). Activity

based on load status αl(h) is calculated as

αl(h) =
min1≤i≤M li(h)

lcm(h)
, (4)

where li(h) is the latest load status of node i for the h-th

request, and lcm is the load of a current ADMME.

Using the α(h) calculated from the above αd(h) and

αl(h), the ADMME updates m as

dmi

dt
=

s(α(h))

1 +m2
max −m2

i

− α(h) ·mi + ηi, (5)

where mmax = max1≤j≤M{mj}, s(α) = α(h)[β ·α(h)γ +
1/

√
2], and ηi is white Gaussian noise with mean 0 and

variance 1.

III. CONTROL METHOD FOR AUTONOMOUS ADMME

SELECTION

It is difficult to predict performance emerging across the

entire network using ADMME selection based on attractor

selection, particularly due to the nonlinearity of its dynam-

ics. Also, the algorithm cannot deal with instabilities near

local optima. Connection switching between UEs and AD-

MMEs increases C-plane load, and the handover procedure

causes delays. To solve these problems, we propose a novel

architecture for controlling such systems by defining a new

activity function that allows system managers to control

system stability and performance.

A. New activity function
The activity α in the attractor selection algorithm ex-

presses the fitness of the current ADMME state, so α
determines ADMME behavior. When α for a UE is larger

than about 0.8, an ADMME does not relinquish control

of the UE. When α is smaller than 0.8, an ADMME is

more likely to delegate mobility management of the UE to

another ADMME. Since system performance predictions are

difficult, the activity α in (2) does not necessarily exceed 0.8.

We therefore use a sigmoid function σ(α), defined as

σ(α) =
1

1 + e−g(α−αth)
, (6)

instead of α to guarantee that activity exceeds 0.8. Here,

g is a non-negative parameter that determines the decay

characteristics of the sigmoid function. The sigmoid function

decays more quickly with larger g. αth is the inflection point

of the function.

Although the sigmoid function yields the advantage of

stability, it introduces another problem. When αi, the activity

for UE i, is smaller than αth, the ADMME may hand a
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(b) Static & controlled
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(c) Random walk & autonomous
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Figure 3. Activity and ADMME switching vs. weight parameter ρ

Table I
PARAMETERS FOR THE ATTRACTOR SELECTION ALGORITHM

Parameter Value

β 10
γ 10
ε 2
W 5

UE i over to another ADMME even if the current ADMME

is a good fit. This occurs when σ(αi) is nearly zero,

which causes less convergence of the system. To solve

this problem, σ(α) should not be too small, specifically

0 ≤ αi ≤ αth. We therefore use

σ′(α) = max
(
α, σ(α)

)
(7)

as a new activity function and control its threshold parameter

αth to realize high stability and convergence speed in the

system.

B. System control
As described in the previous section, an ADMME uses

local information to select new ADMMEs to manage its

UEs. The attractor selection model dynamically updates the

system state to adapt to changing environments. When the

activities of all ADMMEs are close to 1, load balancing and

delay minimization are realized in all ADMMEs. However,

load balancing and delay minimization among all the nodes

are not compatible. If multiple objectives are incompatible,

ADMME activities are unlikely to become 1 in the at-

tractor selection-based ADMME selection algorithm. Since

ADMMEs operate in an autonomous, distributed manner,

they cannot know performance values of the entire network

before the system operation. The attractor structure of each

ADMME is determined by its activity and the performance

it locally experiences.
The difficulty of predicting the system performance indi-

cates that we cannot determine the best value of αth before-

hand. When αth is comparatively high, frequent ADMME

switching may occur if σ′(α) cannot be larger than 0.8.

When αth is smaller, an ADMME may stop with a relatively

poor choice, which worsens system performance.

To determine the best αth, a control node manages αth to

achieve high system stability and performance (Fig. 2). The

control node should control individual ADMME behavior

and network performance. In the proposed method, the

control node monitors the performance of the whole network

and introduces control input to each ADMME so that it

satisfies performance requirements and reduces connection

switching between UEs and ADMMEs.

IV. SIMULATION EXPERIMENTS

This section evaluates the proposed method using com-

puter simulations. We show the simulation results for a

purely autonomous distributed system and a controlled sys-

tem. Comparing these results shows both the advantages and

the disadvantages of the proposed method.

A. Settings
We assume a mobile core network consisting of one PGW

and four SGWs. Each SGW corresponds to one TA and

each TA comprises 37 hexagonal cells, as shown in Fig. 1.

There is one eNodeB in each cell, so there are 148 eNodeBs

in total. For simplicity, delays between nodes are static:

Δ0 = 2 ms, Δ1 = 20 ms, and Δ2 = 3 ms. The number

of ADMMEs in an eNodeB, an SGW, and a PGW is set to

1, 5, and 5, respectively. At the beginning of the simulation,

100 UEs are deployed in each cell and they connect to an

ADMME on the nearest SGW, so each ADMME on a SGW

has 740 UEs. In our simulation, the TAU timer of each UE

is set to 30 min.

We consider a static pattern and a random-walk pattern. In

the static pattern, no UEs move to other cells. In the random-

walk pattern, each UE stays in a cell for Ts min, then moves

to a neighboring cell. After moving, the UE sends a handover

request to its current ADMME via an eNodeB in a new cell.

Ts is set to 100 min. Table I lists parameters in the attractor

selection algorithm, which are used in [4]. We set g to 30

and all ADMMEs in this evaluation use the same value of

αth.

Here, we describe metrics for our evaluation. As we

discussed in Section II, we examine the delay, the load

balancing, and the ADMME switching in the C-plane. For
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Figure 4. Performance in the immobility scenario

this, in our simulation, we show the average round-trip delay

time (denoted as RTT) between ADMMEs and UEs, the

Jain’s fairness index among the loads of nodes, and the

number of ADMME switching. Here, fairness index (FI) is

calculated as follows.

FI(h) =
(leNodeB(h) + lSGW (h) + lPGW (h))2

3 · ((leNodeB(h))2 + (lSGW (h))2 + (lPGW (h))2
) ,

where ln(h) is an average load status of eNodeBs,

SGWs, or a PGW at current time step h (n ∈
{eNodeB, SGW, PGW}).
B. Results

1) ADMME switching: We first show that ADMME

switching occurs more frequently when α gets smaller. Here,

we set αth to 0.6. Figure 3 shows the average activity over

ADMMEs and the average number of ADMME switches

every 30 min while changing ρ. In that figure, the nota-

tion “autonomous” indicates the original ADMME selection

method in [4], and “controlled” indicates the proposed

method. When UEs do not move, the average α in Fig. 3(a)

does not reach 1 except when ρ = 0 or 1. Therefore,

ADMME switching occurs even in the case of immobile

UEs, especially when ρ is about 0.5. This is because αl and

αd do not simultaneously become 1 for almost all ADMMEs

when ρ is not 0 or 1. By setting αth to 0.6, the average value

of σ′(α) exceeds 0.9 for all values of ρ, which drastically

reduces ADMME switching (Fig. 3(b)). Here, the average

σ′(α) is comparatively small when ρ is 0.55 or 0.60 for the

same reason as in Fig. 3(a).

As Fig. 3(c) shows, the number of ADMME switches

becomes very large as the node moves. The activities of

almost all nodes become 1 only when ρ = 1, because load

balancing does not depend on current UE positions. If ρ
has any other value, the delay time between a UE and

an ADMME increases as the UE moves to another cell,

resulting in decreased activity. When ρ exceeds 0.3, the

activity value changes little. By using a control threshold

αth, we can bring the average activity to almost 1 when

ρ ≤ 0.5 (Fig. 3(d)), greatly reducing the number of ADMME

switches. When ρ ≥ 0.5 the average activity is slightly larger

than that in Fig. 3(c), but the number of ADMME switches

can be reduced by about half, because the number of

ADMMEs whose activities take values close to 1 increases.

We can thus reduce the number of ADMME switches by

setting an appropriate value for αth. In the following section,

we examine the effect of αth on network performance.

2) Network performance: Figure 4 shows average RTT

and fairness indices resulting from changing ρ. As this figure

shows, performance in the original method irregularly varies

depending on the value of ρ. The important point here is that

ρ, which is a weight parameter between delay reduction and

load balancing, cannot fulfill its role. This demonstrates the

difficulty of predicting the performance of self-organizing
systems.

Using a control node, network managers can adjust RTT

and the fairness index. The lower the value of αth, the

greater the influence of ρ, which makes it possible to assign

different performance weights. The figure shows the results

of setting αth to 0.6, 0.7, and 0.8. Increased αth indicates

increased “autonomy.” Also, if αth is small, the system will

tend to fall into local optima when searching for the best

state, so we need to set an appropriate αth. Fortunately,

network managers can control αth through the control node

in our proposal. Network managers can confirm performance

information and the number of ADMME switches, providing

feedback for αth.

With respect to the network performance, when activity is

higher than about 0.8, m converges and ADMME switching

is suppressed. However, as mentioned above, this leads to

the system falling into local optima, so network performance

may become worse than before.

Figure 4 shows the network performance without consid-

eration of node movement. When ρ ≤ 0.2, RTT is increased

by adding control (Fig. 4(a)). In contrast, RTT decreases

when ρ ≥ 0.3. In both cases, the effect of the weight

parameter ρ powerfully emerges from the control method.

In the figure, as αth gets smaller RTT approaches about
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4 ms with smaller ρ. Here, a 4 ms RTT means that all UEs

belong to ADMMEs in eNodeBs. By the control method,

when ρ ≥ 0.8 the fairness index of the control method is

lower than that of the original method (Fig. 4(b)). However,

setting αth to a lower value brings the fairness index to about

1 within a broader range of ρ. From these results, although

the original method fails to adjust the balance between delay

reduction and load distribution by ρ, the proposed method

improves this point, particularly when αth = 0.6.
Figure 5 describes network performance in consideration

of node movement. The difference between the RTT of

“controlled” and “autonomous” systems widens as compared

with the case where node movement is not considered.

When the node moves with a sojourn time of 100 min, the

“autonomous” results show the shortest value of those cases

shown in Fig. 5(a). Here, the RTT of all results approach

about 52 ms, meaning that most UEs connect to SGWs’

or PGW’s ADMMEs. Contrary to the results for RTT, the

fairness index of the control method outperforms original

values for almost every ρ.
It is unknown what results will be obtained in advance

even when using αth, but it is important to introduce a

control method that can manage them. Since the appropriate
threshold value changes according to the moving speed of

UEs, it is important to deal with environments in which

various moving patterns coexist. One solution for this is to

set an appropriate value of αth for individual ADMMEs

according to the frequency of node movement, which we

will address in future work.

V. CONCLUSION AND FUTURE WORK

We proposed a method for controlling network stabil-

ity and performance in an autonomous system for fifth-

generation mobile and wireless communication systems. We

introduced a control node into the self-organized ADMME

selection algorithm. Through computer simulations, we first

showed that although the proposed method is very sim-

ple, the introduction of a control method positively im-

pacts system stabilization and performance control, reducing

overhead of the control plane in a 5G network. We also

showed that the original attractor selection-based ADMME

selection method cannot predict its performance due to

its nonlinear dynamics. This suggests that control methods

are indispensable for actual use of such autonomous and

distributed methods. Various distributed systems can utilize

the proposed algorithm. Our future work will investigate

applications to mobile edge computing architectures, where

virtual computing functions are dispersed over the network

and users select an appropriate function for processing

requests. Our mechanism can be helpful in such systems.
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