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Abstract—Traffic Engineering (TE) accommodates traffic
efficiently by dynamically configuring the routes so as to follow
traffic changes. If traffic changes frequently and drastically,
the interval to perform the route reconfiguration should be
set to a short value, to follow traffic changes. To shorten the
interval, obtaining the traffic information becomes a problem;
measuring traffic information accurately of the whole network,
which is required to calculate the suitable route, is difficult
to be obtained in a short interval, due to the overhead to
monitor and collect the traffic information. We have proposed
the framework of the TE for the case that only a part of traffic
information can be obtained at each time slot. This frame-
work was inspired by the human brain mechanism. In this
framework the conditional probability is considered to make
decisions. In this framework, a controller is deployed. The
controller (1) obtains a limited number of traffic information,
(2) estimates and predicts the probability distribution of the
traffic, (3) configures the routes considering the probability
distribution of the predicted future traffic, and (4) selects
the traffic to be monitored at the next period considering
the performance of the route reconfiguration using the traffic
information obtained at the next period. In this paper, we
discuss the details of the each step of our framework. Then,
we evaluate our framework.

I. INTRODUCTION

Traffic engineering (TE) is a method to configure the
network configuration such as routes so as to accommo-
date traffic efficiently, following traffic changes [1]–[4]. In
TE methods, a controller periodically collects the traffic
information, and changes the routes of the flows within
the network based on the collected traffic information. By
dynamically reconfiguring the routes, the controller avoids
congestion even when traffic change occures.

Traditionally, TE methods consider the daily traffic
changes and their control intervals are set to one hour or
more. However, if traffic changes frequently and drastically,
the control interval should be set to a shorter value; when
the traffic change causes congestion, congestion cannot be
mitigated until the next time slot. Benson et al. demonstrated
that the routes should be reconfigured every 5 seconds in
the network where traffic changes frequently and drastically,
such as datacenter networks [5].

TE methods require the traffic information to calculate
the suitable route at each time slot. If we set a short control
interval, the traffic information should also be obtained at the
short interval. However, in a large network, measuring traffic
information accurately of the whole network is difficult to be

obtained in a short interval, due to the overhead to monitor
and collect the traffic information. Instead, we consider the
case that only a part of traffic information can be monitored
and collected at each time.

The methods to estimate the traffic of the whole network
from a part of traffic information have also been proposed
[6], [7]. In these methods, the traffic information of the flows
that are not included in the collected traffic information is
estimated from the collected traffic information, considering
the spatial and temporal properties of the traffic. However,
the estimated traffic includes the estimation errors, and the
errors may affect the performance of the TE. To mitigate
the impact of the estimation errors, the TE method should
consider the estimation errors. On the other hand, the traffic
monitoring and estimation methods can avoid estimation
errors affecting the TE by improving the accuracy of the
estimation of the traffic of the flows which are important
for the TE. That is, the TE and traffic monitoring should
cooperate with each other.

We have proposed a framework in which TE and traffic
monitoring cooperate with each other to handle the situ-
ation that only a part of information is obtained at each
time slot [8]. This framework was inspired by the process
by which a human brain makes decisions from uncertain
and incomplete information. A human brain makes many
decisions well even under highly uncertain environment.
One promising theoretical model to explain how a human
brain makes decisions is the Bayesian decision making
model [9]. In this model, a human brain has stochastic
variables, and updates the variables by Bayesian estimation
every time a new observation is obtained. Then, a human
brain makes decision based on the stochastic variables. By
doing so, a human brain can make decisions even when
only uncertain and incomplete information can be obtained.
We apply this process to TE. Specifically, we apply the
feature that a human brain increases confidence by repeating
Bayesian estimation. In our framework, the controller has
stochastic variables about the traffic, and updates them every
time a part of traffic information is obtained. By repeating
the above steps, the controller understands the probability
distributions of traffic, even when only a part of traffic is
obtained at each time slot. The controller changes the routes
based on the probability distributions of traffic. In addition,
the controller decides the points to be monitored at the next
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Fig. 1. Overview of our framework

time slot based on the probability distributions of traffic.
In our previous work, we have only proposed the frame-

work, and have not discussed the details of each step.
Therefore, in this paper, we specify and discuss each step
of the framework. In addition, we evaluate our framework.

The rest of this paper is organized as follows. Section
II explains the overview of our framework. Section III
describes the details of each step of our framework. Section
IV presents an evaluation of our method. Section V presents
our concluding remarks.

II. FRAMEWORK FOR TRAFFIC ENGINEERING UNDER
UNCERTAIN TRAFFIC INFORMATION

Figure 1 shows the overview of our framework. In our
framework, a controller is deployed. The controller (1)
obtains a limited number of traffic information, (2) estimates
and predicts the probability distribution of the traffic, (3)
configures the routes considering the probability distribution
of the predicted future traffic, and (4) configures the traffic to
be monitored at the next period considering the performance
of the route reconfiguration using the traffic information
obtained at the next period. To perform above operations
based on the Bayes decision making theory, a controller
includes the following modules; estimator, predictor, route
controller and monitoring schedule controller. The rest of
this subsection explains these modules.

In this paper, we denote the traffic rates of all flows at time
slot t by Xt, the traffic rates of flow f at time slot t by xt,f .
In this paper, the controller observes a part of traffic. We de-
note the traffic observed at time slot t by X ′

t, and the element
of X ′

t corresponding to the flow f by x′
t,f . We also denote

the route at time slot t by Rt, and the set of the observed
flows at time slot t by Ot. Xt:t+k is (Xt, Xt+1, . . . , Xt+k).
Similarly, we also define X ′

t:t+k = (X ′
t, X

′
t+1, . . . , X

′
t+k),

and Ot:t+k = (Ot, Ot+1, . . . , Ot+k)

A. Estimator

The estimator estimates the amount of traffic in the current
network from the partially observed traffic information. In

our framework, estimator estimates the posterior distribu-
tion of the traffic volume Xt after obtaining the partially
monitored traffic X ′

t.
The posterior distribution of the traffic volume Xt is

calculated by

P (Xt|X ′
t;Ot) =

1

P (X ′
t|O(t))

P (X ′
t|Xt;Ot)P (Xt) (1)

where P (Xt) is a prior distribution of Xt. The traffic volume
predicted by the predictor at the time slot t− 1 can be used
as the prior distribution. That is, Posterior distribution of the
traffic volume Xt is calculated by

P (Xt|X ′
0:t;O0:t)=

1

P (X ′
t)
P (X ′

t|Xt;Ot)P (Xt|X ′
0:t−1;O0:t−1)

(2)
where P (Xt|X ′

0:t−1;O0:t−1) is the probability distribution
of Xt predicted at the time slot t − 1. By using the traffic
predicted at the previous time slots, the traffic volumes of
whole network can be estimated even when only a limited
part of traffic can be monitored.

B. Predictor

The predictor predicts the probability distribution of the
future traffic volumes from the past traffic. That is, the
predictor predicts P (Xt+k|X ′

0:t;O0:t).
The predictor uses the prediction model. By using the

prediction model with parameter θ, the traffic rates after
time slot t+1 can be predicted from the past traffic rates by
P (Xt+1:t+n|Xt−m:t; θ), where m is the length of the past
traffic rates used by the prediction, and n is the length of
the time slot that can be predicted.

By using this prediction model, the future traffic rates are
predicted from the previously monitored traffic.

P (Xt+1:t+n|X ′
0:t;O0:t,θ)=∑

Xt−m:t

P (Xt+1:t+n|Xt−m:t;θ)P (Xt−m:t|X ′
0:t;O0:t) (3)

Then, P (Xt+k|X ′
0:t;O0:t, θ) can be obtained by

P (Xt+k|X ′
0:t;O0:t, θ) =

∑
Xt:t+k−1,Xt+k+1:t+n

P (Xt+1:t+n|X ′
0:t;O0:t, θ).

(4)

C. Route controller

Route controller calculates routes so that required per-
formance is provided, considering the predicted probability
distribution of traffic rates.

We have proposed a method called stochastic MP-TE,
which configures the routes, considering the predicted prob-
ability of the future traffic [10]. In the stochastic MP-TE, the
routes are calculated so as to minimize the weighted sum
of the cost function indicating the network performance and
the cost of changing routes under the constraint that the
probability that traffic passing a link exceeds the threshold
should be kept less than the threshold. In this framework,
the route controller is based on the stochastic MP-TE,



and calculates routes by solving the following optimization
problem.

minimize : E

[
t+h∑

i=t+1

{(1− w)f(Xi, Ri) + w||Ri −Ri−1||2}

]
(5)

s.t. : P
(
yli(Xi, Ri) > cl

)
≤ p (6)

where f(Xi, Ri) is a cost function indicating the network
performance, ||Ri − Ri−1||2 is a cost caused by changing
routes from Ri−1 to Ri, and yli(Xi, Ri) is the amount of
traffic passing the link l when the traffic rates is Xi and
the routes are set to Ri. h is the length of the predictive
time series considered by the route controller, and w is the
weight to the cost of changing routes. cl is threshold to the
traffic amount passing the link i, and p is the acceptable
probability that the traffic exceeds a threshold.

Although the routes Rk+1, . . . , Rk+h are obtained by
solving the above optimization problem, the route controller
actually sets Rk+1 to the network. After collecting the
data at the following time, the later routes are recalculated
with the new prediction result. By doing so, the route
controller adaptively corrects the route even if the predictive
distribution is temporally wrong.

D. Monitoring schedule controller

In this framework, the monitoring schedule controller
decides the traffic to be monitored at the next time slot so
as to minimize the expectation value of the cost after the
route changes using the traffic monitored at the next time
slot.

The monitoring schedule controller decides the traffic to
be monitored by solving the following optimization problem.

minimize : EP (Xt+1)P (X′
t|Ot) [f (Xt+1, Rk+1(X

′
t, Ot))]

(7)
s.t.C(Ot) ≤W (8)

where EP (X)[f(X)] is the expectation value of f(X) under
the probability distribution P (X), and Rt+1(X

′
t, Ot) is the

route configuration for the time slot t+ 1 calculated by the
route controller when the X ′

t is observed at the time slot t by
monitoring the flows included in Ot. C(Ot) is the overhead
required to monitor the traffic in Ot, and W is the ac-
ceptable overhead. P (X ′

t|Ot) =
∑

Xt
P (X ′

t|Xt;Ot)P (Xt)
is the probability of the observed traffic Xt when the
traffic in Ot is monitored. When solving the above opti-
mization problem, the probability distributions P (Xt) and
P (Xt+1) are unknown. In this framework, we use the pre-
dicted probability distributions P (Xt|X ′

0:t−1;O0:t−1) and
P (Xt+1|X ′

0:t−1;O0:t−1) instead of them.

III. DYNAMIC TRAFFIC ENGINEERING AND TRAFFIC
MONITORING BASED ON THE FRAMEWORK

In this section, we specify the dynamic traffic engineering
and traffic monitoring based on our framework. We call
this method Stochastic Control with Considering Uncertainty

(SCCU). Our framework is constructed of the estimator, pre-
dictor, route controller and monitoring schedule controller.
Therefore, in this section, we specify these modules.

A. Estimator

The estimator estimates P (Xt|X ′
0:t;O0:t). To estimate

P (Xt|X ′
0:t;O0:t), we need to define P (X ′

t|Xt;Ot), which
indicates the probability distribution of the observed traffic.

Assuming that the monitoring Ot does not provide any
information about the traffic rates of the flow xt,f unless the
flow f is not included in Ot, and that the flow f included
in Ot can be observed accurately, P (X ′

t|Xt;Ot) is

P (x′
t,f |Xt;Ot) =

{
δ(x′

t,f − xt,f ) (f ∈ Ot)

U(0,∞) (otherwise)
(9)

where δ(x) is Dirac delta function, and U(a, b) is an uniform
distribution between a and b.

By using Eq. (9), P (xt|X ′
0:t;O0:t) is estimated by

P (xt|X ′
0:t;O0:t) =

{
δ(x′

t,f − xt,f ) (f ∈ Ot)

P (Xt|X ′
0:t−1;O0:t−1) (otherwise)

(10)
In this paper, we approximate δ(x′

t,f − xt,f ) in Eq. (10)
by the Gaussian distribution with a quite small variance, so
that the probability distribution can be easily handled.

B. Predictor

The predictor predicts P (Xt+k|X ′
0:t;O0:t) by using the

model P (Xt+1:t+n|Xt−m:t; θ). In this paper, we use the
following simple model,

xt+1,f = xt,f + ϵt,f (11)

where ϵt,f is a Gaussian noise, though there may be more
sophisticated models. By using this model, P (Xt+1|Xt; θ)
is obtained by

P (xt+1,f |xt,f ;σt,f ) = N (xt,f , σ
2
t,f ) (12)

where N (µ, σ2) is a Gaussian distribution whose mean and
variance are µ and σ2, and σ2

t,f is a variance of the traffic
rates of the flow f in time slot t.

By using P (xt+1,f |xt,f ;σt,f ),

P (xt+1,f |X ′
0:t;O0:t, σt,f ) =∑

xt,f

P (xt+1,f |xt,f ;σt,f )P (xt,f |X ′
0:t;O0:t) (13)

where P (xt,f |X ′
0:t;O0:t) is probability distribution of the

current traffic rates estimated by the estimator. By continuing
the following calculation, we can obtain the probability
distribution of more future traffic rates.
P (xt+k,f |X ′

0:t;O0:t, σt,f ) =∑
xt+k−1,f

P (xt+k,f |xt+k−1,f ;σt,f )P (xt+k−1,f |X ′
0:t;O0:t, σt,f )

(14)

This model has the parameter σt,f for each flow. σt,f

can be updated by obtaining the variance of the previously
observed traffic rates of the flow f .



Though this model is simple, this model captures the
following features of the traffic prediction.

• The variance of the traffic of the flow with large
fluctuations becomes large.

• The variance of the far future predicted traffic rates
increases.

Therefore, this model can be used to identify the flows
whose traffic rates are uncertain, and can be used by the
route controller considering the uncertainty of the traffic
rates.

C. Route controller

The route controller calculates routes so that required per-
formance is provided, considering the predicted probability
distribution of traffic rates.

In this paper, multiple routes between the source and
destination node pairs are calculated in advance, and the
route controller calculates the suitable ratio of traffic of the
flow passing the routes calculated in advance. We define the
element of Rt so that Ri,j

t is the ratio of the traffic of flow
j passing the route i. We also define a matrix G, whose
element Gi,j takes 1 if the route j goes through the link i,
0 otherwise. The traffic passing link l at the time slot t can
be obtained by

∑
f,j G

l,jRj,f
t xt,f .

In this paper, we aim to avoid congestions, and define the
optimization problem solved by the route controller as

minimize :

h∑
k=1

∥Rt+k −Rt+k−1∥ (15)

subject to :∀1≤k≤h,∀l,P

∑
f,j

Gl,jRf,j
t+kxt+k,f >cl

≤ pk

(16)

∀1 ≤ k ≤ h,∀i,∀j, Ri,j
t+k ∈ [0, 1] (17)

∀1 ≤ k
∑

i∈℘(j)

Ri,j
t+k = 1 (18)

where cl is the threshold to the traffic passing the link l, and
pk is the acceptable probability that the traffic passing the
link l exceeds a threshold. P [

∑
i,l G

l,jRf,j
t+kxt+k,f > cl] is

the probability that the rates of the traffic passing the link l
exceeds cl. This probability is obtained from the probability
distribution of the predicted traffic, P (Xt+k|X ′

0:t;O0:t). The
optimal solutions are not necessary. The routes without
congestion are sufficient. Thus, we obtain the routes by

minimizing the below equation instead of solving the above
optimization problem.

L(Rt+1:t+h) =

h∑
k=1

∥Rt+k −Rt+k−1∥+

h∑
k=1

∑
l

λl,h

P

∑
j

Gl,jRf,j
t+kxt+k,f > cl

− pk

+

+

h∑
k=1

∑
l

Λl,h

EXt+k

∑
j

Gl,jRf,j
t+kxt+k,f

− cl

+

(19)

Here, (x)+ is x if x ≥ 0, otherwise 0. The constraints
related to the third term of Eq. (19) are not included in
Eq. (15) and (16) but the third term of Eq. (19) is added
to accelerate to search the solution when the predicted link
utilization is larger than cl. λl,h and Λl,h are the weights to
the constraints.

The suitable routes Rt+1:t+h are calculated so that
L(Rt+1:t+h) is minimized. In this paper, we use the steepest
decent method to minimize L(Rt+1:t+h). In the steepest de-
cent method, the optimal Rt+1:t+h is obtained by continuing
the following update.

• Update Rt+1:t+h so as to make L(Rt+1:t+h) small.

Ri,j
t+k ←

(
Ri,j

t+k − α
∂L(Rt+1:t+h)

∂Ri,j
t+k

)+

• Scale Ri,j
t+k so that Eq. (18) is satisfied.

Ri,j
t+k ←

1∑
n R

n,j
t+k

Ri,j
t+k

Assuming that the control interval is short enough, we do not
need to obtain the optimal solution at each control interval,
because the difference between the optimal solution of Rt+k

and the current routes Rt is small unless significant traffic
change occurs. In addition, even if the current solution is not
optimal, the solution which is closer to the optimal solution
than the current solution is obtained at the next time slot.
Therefore, a small number of iterations of the above update
is sufficient.

D. Monitoring schedule controller

The monitoring schedule controller decides the traffic to
be monitored. In this paper, the traffic to be monitored is set
by selecting the node that monitors the traffic. We denote the
set of nodes by N . We also denote the set of flows whose
traffic rates can be monitored by the node n by Fn. If n is
selected as the node that monitors the traffic at the time slot
t, all flows in Fn are added to Ot.

In this paper, the traffic to be monitored is obtained based
on the following optimization problem.

minimize : Lopt(Ot+1) (20)
subject to : C(Ot+1) ≤W (21)



where Lopt(Ot+1) is the optimal value of the Lagrange
function L(Rt+1:t+h) defined in the previous section when
Ot+1 is observed, and C(Ot+1) is the overhead required to
observe Ot+1.

In this paper, we obtain the value of Lopt(Ot+1), as-
suming that x′

t+1,f for the flow f included in Ot+1

is EP (Xt+1|X′
0:t;O0:t)[Xt+1,f ]. To obtain the value of

Lopt(Ot+1), the optimization problem defined in the pre-
vious subsection is required to be solved. It requires a
large calculation time to obtain the optimal solution of Ot.
Therefore, in this paper, we use a heuristic method.

In addition to selecting the traffic to be monitored based
on the above optimization problem, we should consider the
interval to monitor the flows. If the flow f was not monitored
for a long time, P (xt,f |X ′

0:t, O0;t) may be different from the
actual traffic. Therefore, we set the maximum interval I to
monitor the traffic. That is, if there are the nodes that were
not selected for more than I time slots, we first select them
as the nodes that monitor the traffic. Then, we select the
other monitoring nodes by the following steps.

1) Set N −N selected as the candidate nodes that monitor
the traffic, where N selected is the set of nodes that are
already selected as the node monitoring the traffic.

2) For all n ∈ N − N selected, calculate the Ot+1 when
n is added to the nodes monitoring the traffic, and
calculate C(Ot+1) and Lopt(Ot+1).

3) Select n whose corresponding Lopt(Ot+1) is the
smallest among the nodes whose corresponding
C(Ot+1) is less than W .

4) If a node is selected in Step 3, add n selected in Step 3
to N selected go back to Step 1. Otherwise, end.

After completing the above steps, Ot+1 is set by adding all
flows in Fn for all n ∈ N selected.

IV. EVALUATION

A. Simulation Environment

1) Network Topology and Network Traffic: We use the
backbone network topology and traffic trace data of Inter-
net2. The Internet2 has 9 PoP (Point of Presence) routers,
but our method should be evaluated in larger network.
Therefore, we connect three access routers to each PoP
router. That is, the topology used in our evaluation has 27
access routers and 9 PoP routers. The flows are generated
between each pair of access routers. We assign the flows
included in the traffic trace data to pairs of the access routers
by setting the range of IP addresses connected to each access
router. In our evaluation, we consider the case that only the
access routers can monitor the traffic sent from the access
routers. We set the cl to 2.5 Gbps for all links to evaluate
the case that congestion may occur without dynamically
reconfiguring the routes.

We use the traffic trace data monitored from November
13, 2011 07: 00 to November 13, 2011 10:00. These traffic
data are collected by the Netflow protocol at each of the PoP
routers. The sampling rate is one out of every 100 packets,

and aggregated data are exported every 5 minutes. Though
these traffic data do not include the information on the traffic
rate whose granularity is less than 5 minutes, these traffic
data includes the start and end times of each flow, and traffic
amount of the flow. In this evaluation, we generate the traffic
rate of each flow, assuming that the traffic rate of each flow
is constant from the start time to the end time.

Our method needs σf which are calculated and updated
by using the monitored traffic. Before monitoring the traffic
rates of the flow f , σf cannot be calculated. Therefore, we
use the first 1 hour as the time slots where σf are calculated,
and evaluate the performance of our method by using the
traffic trace data of the last two hours.

2) Parameter Settings: For simplicity, we set parameters
as below. In this evaluation, we consider only the next time
slot to focusing on the impact of considering the probability
distributions. That is, we set h to 1. In addition, we ignore
|Rt+1 − Rt| in Eq. (19), and set λl,h and Λl,h to 1 to
focus on the link utilization achieved by our method. We
set pk to 0.10. We set the number of iterations to minimize
L(Rt+1) to 15.We set the control interval to 10 seconds.
For simplicity, we set the overhead required to observe the
traffic at a monitoring node to 1.

3) Metric: In this evaluation, we evaluate the rate of
links where congestion occurs, because the aim of the TE
in this paper is to avoid congestion. The rate of links where
congestion occurs M are defined by

M =

∑
t,l g(y

l
t)

TL
(22)

g(ylt) =

{
1 (ylt(Xt, Rt) > cl)
0 (otherwise) (23)

where yli(Xi, Ri) is the amount of traffic passing the link l
when the traffic rates is Xi and the routes are set to Ri, cl

is threshold to the traffic amount passing the link i, L is the
number of links, and T is the number of time slots.

4) Compared method: In this evaluation, we conpare
SCCU with the following methods.

a) Control Based on Expected Rate (CBER): This
method calculate routes without considering the probability
distribution of the traffic. This method performs the follow-
ing steps at each time slot. 1) The controller collects the
traffic information from the randomly selected monitoring
nodes. 2) The controller predicts the traffic rate by the same
way as SCCU. 3) The controller calculates the routes by
using the expected values of the traffic rate at the next time
slot. The routes are calculated so as to minimize the traffic
amount on each link exceeding the threshold cl −∆c. That
is, the controller solves the following problems.

minimize :
∑
l

EXt+k

∑
j

Gl,jRf,j
t+kxt+k,f

− (cl −∆c)

+

(24)

where (x)+ is x if x ≥ 0, otherwise 0. In this method, setting
∆c to a large value makes the amount of traffic on each



link small. In this evaluation, we set ∆c to several values.
Compared with this method, we demonstrate the impact of
considering the probability distribution of traffic amounts.

b) Stochastic Control with Random Select (SCRS): In
this method, the controller randomly selects nodes monitor-
ing the traffic at each time slot. Then, traffic are predicted,
and routes are calculated by the same way as SCCU.
Comparison with this method demonstrates the effect of
selecting the nodes monitoring traffic at each time slot
considering performance.

c) LongTermControl: This method does not change
routes until traffic information of all flows are obtained. In
this method, the controller simply calculates the routes so as
to minimize the amount of traffic exceeding the target link
capacity at each control interval based on the expected traffic
rates obtained by the prediction. Comparing the LongTerm-
Control with our proposed method, we demonstrate that
shortening the control interval reduces congestions in spite
of the uncertainty of observed traffic.

B. Results

1) Comparison between methods with 10-second control
interval: Figure 2 shows the relationship of between the
number of nodes monitoring traffic at each time slot and the
rate of congestion. ∆c in Figure 2 means ∆c in Eq. (24).
In this figure, the perfect Performance indicates the rate of
congestion achieved by the method that can use measuring
traffic information accurately at the next time slot. In this
figure, we first compare CBER and SCRS to evaluate the
impact of considering the probability distributions.

This figure indicates that M depends on ∆c in CBER. If
∆c is small, the prediction error causes congestion, because
the expected traffic passing the link l may be close to cl.
On the other hand, if ∆c is large, we do not have the
enough resources allocated flows with a large traffic. As
a result, congestion may occur. In this evaluation, ∆c = 0.6
achieves the smallest M . However, the optimal ∆c depends
on the patterns of traffic changes, and is difficult to be set
in advance.

Figure 2 shows that SCRS achieves smaller M than
CBER with ∆c = 0.6, unless the number of monitoring
nodes is 1. This is because SCRS allocates the resources,
considering the probability distributions; more resources are
allocated to the flows whose rates are large or uncertain. As
a result, the probability that congestion occur is reduced.
However, when the number of monitoring nodes is 1, most
of the flows that have a large impact on the performance
become uncertain. This uncertainness causes the lack of
resources that can be allocated. As a result, M becomes
large.

Figure 3 compares M of SCRS and SCCU. similar to
Fig 2. This figure indicates that SCUU achieves small M
even when the number of monitoring nodes is 1, while the
rate of congestion of SCRS becomes large as the number of
monitoring nodes becomes small. This is because SCUU
selects the monitoring nodes that can monitor the flows
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Fig. 2. The effect of stochastic control

whose uncertainties has the large impacts on the TE. As
a result, SCUU accurately estimates the traffic rates of the
flows.

2) Comparison with the LongTermControl: The SCRS
can configure the routes even when only a part of traffic
information is observed at each time slot. This enables to
shorten the control interval. In this paragraph, we evaluate
the impact of shortening the control interval by comparing
our method with LongTermControl.

In this evaluation, we can obtain the traffic information
from n of 27 monitoring nodes every 10 seconds. In this
case, SCRS and SCCU can change routes every 10 seconds,
while the LongTermControl can change routes every 240

n
seconds.

Figure 3 shows the rate of congestion achieved by each
method. This figure indicates that SCRS and SCCU achieves
a smaller rate of congestion than the LongTermControl.
That is, shortening the control interval reduces the rate of
congestion. This is because the method with short intervals
detects the risk of congestion and changes the routes so as
to mitigate the risk soon after the risk becomes large. On
the other hand, the method with large intervals cannot detect
congestion and cannot mitigate congestion before the next
control time slot.

V. CONCLUSION

We have proposed the framework of the TE for the
case that only a part of traffic information can be obtained
at each time slot. This framework was inspired by the
human brain mechanism. In this framework the controller (1)
obtains a limited number of traffic information, (2) estimates
and predicts the probability distribution of the traffic, (3)
configures the routes considering the probability distribution
of the predicted future traffic, and (4) selects the traffic to
be monitored at the next period considering the performance
of the route reconfiguration using the traffic information
obtained at the next period.

In this paper, we discussed the details of the each step
of our framework. Then, we evaluated our framework. The
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results demonstrate that our framework in which the TE and
the traffic monitor cooperate with each other improves the
performance of the TE even when only a part of the traffic
information is monitored at each time slot. It enable us to
shorten the control interval. Our results also demonstrate that
shortening the control interval improves the performance of
the TE.

Our future work includes the evaluation of our method in
an actual larger network. We will also discuss the parameter
settings of our method for a larger network. Especially,
the number of iterations to solve the optimization problem
may have a large impact on the calculation time and the
performance of the TE.
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