

Background - Quality of Experience (QoE)

- · From QoS to QoE
 - QoE is a measure of the overall level of user satisfaction for application
 - · Improvement of QoS is not necessary improvement of QoE for a user
 - · QoE improvement for user by user is more important aspect

Background - mobile data traffic explosion

- Rapid increase in the volume of traffic by mobile device^[1]
 - From 2016 to 2021, the volume will be sevenfold
 - Video data traffic will account for 75% of the total traffic

Research Goal

- Problem
 - QoE degradation by QoS fluctuation and user's operation
 - e.g. A user watching a video sometimes underestimates the throughput and the delay time and selects higher bitrate video, which degrades user's own QoE
 - Misperception from cognitive limitations of human causes wrong decision
- Goal
 - QoE improvement by detecting and preventing user's wrong operation caused by recognition error of QoS

Approach

- 3 steps for creating human's cognition model in video streaming applications
 - 1. We clarify the reason of why misperception in human brain
 - 2. We propose a user agent model where the agent observes information about network performance, estimates the probability that observed performance is obtained, and makes some decisions on the operation for a video streaming application
 - 3. We reveal that the model proposed in step 2. has the misperception features of step 1.

Features in human perception

- Two factor of human perception
 - Probability estimation based on the Bayesian estimation
 - Decision making from experiences
 - Decision making from small samples^[3]
 - Unwilling to take much time to search for information causes limited short-term memory for decision making
 - Decision making with noisy retrieval from brain memory^[4]
 - Human sometimes makes a decision using relevant and irrelevant memory
 - \rightarrow Erroneous decision is made by over-estimation or underestimation of probability caused by the above 2 reasons

Decision making in BAM

- · Calculate posterior probability as a confidence of a choice
- Choose a choice with higher confidence than threshold λ

Simulation scenario

- The feature "The smaller the observation information is, the lower the accuracy rate becomes" [3]
 - A problem of choosing higher payoff distributions (decks) from two decks.
 - Each deck consisting of two outcomes of the type a probability p to win amount x; otherwise win amount y
 - (x, p, y) randomly sampled from certain range
- BAM
 - 1. Prepare an environment where there are three choices.
 - 2. At first, BAM receives observation value corresponding to ϕ_1 , and the state is shifted to a state where ϕ_1 is adopted.
 - 3. After this, BAM receives Observation value corresponding to another choice B. The confidence of ϕ_2 changes.
 - 4. Then, the time taken for making decision ϕ_2 is measured for various confidence threshold

[3] Ralph Hertwig, Timothy J. Pleskac, "Decisions from experience: Why small samples?"		

Simulation for validation

- Run simulation of BAM to see if a feature appearing in people who make a decision based on small observation information can be captured by BAM or not
 - The feature is "The smaller the observation information is, the lower the accuracy rate becomes"[3]
 - The accuracy rate corresponds with the height of confidence in BAM
 - The number of observation information corresponds with the time taken for decision-making
- · Consider the correspondence between the two tradeoffs
 - The smaller the observation information is, the lower the accuracy rate becomes
 - The shorter the time taken for decision-making is, the lower confidence threshold becomes

Result

- Left figure [3]: the rate of correct making-decision for the number of observation in the feature "decision making from small samples"
- Right figure: the time taken for decision-making for the height of confidence threshold in BAM

Conclusion

- We propose a human's cognition model
 - We show that our proposed model show the typical characteristics of human's misperception
 - By adjusting confidence threshold of the model, different behaviors of individual user's can be modelled
- Future work
 - Consider expressing the feature of Decision making with noisy retrieval from brain memory $^{\rm [4]}$ with BAM
 - Capture the features of human perception by BAM with fitted parameter and prevent human error of misrecognition

