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Self-organization has the potential for high scalability, adaptability, flexibility, and robustness, which are
vital features for realizing future networks. The convergence of self-organizing control, however, is slow in
some practical applications in comparison with control by conventional deterministic systems using global
information. It is therefore important to facilitate the convergence of self-organizing controls. In controlled
self-organization, which introduces an external controller into self-organizing systems, the network is con-
trolled to guide systems to a desired state. Although existing controlled self-organization schemes could
achieve the same state, it is difficult for an external controller to collect information about the network and
to provide control inputs to the network, especially when the network size is large. This is because the com-
putational cost for designing the external controller and for calculating the control inputs increases rapidly
as the number of nodes in the network becomes large. Therefore, we partition a network into several sub-
networks and introduce two types of controllers, a central controller and several sub-controllers, that control
the network in a hierarchical manner. In this study, we propose a hierarchical optimal feedback mechanism
for self-organizing systems and apply this mechanism to potential-based self-organizing routing. Simulation
results show that the proposed mechanism improves the convergence speed of potential-field construction
(i.e., route construction) up to 10.6 fold with low computational and communication costs.
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1. INTRODUCTION
Self-organization, in which components behave individually and autonomously, is
a phenomenon in distributed systems such as physical, chemical, biological sys-
tems [Pintea 2014; Yang et al. 2013]. In a self-organizing system, each component
follows simple rules that rely on locally available information only. Through direct or
indirect interactions among components, a global behavior or pattern emerges at a
macroscopic level without a central control entity. In a self-organizing system, up-to-
date information regarding the entire system or many other components is unneces-
sary for emergence of a global behavior or pattern; this considerably reduces the com-
putational cost and communication overhead that collecting global information would
entail. This localized behavior affords the ability to handle local failures and small
environmental changes via the interaction of local components. Thus, self-organizing
systems are expected to automatically recover from failures and adapt to environmen-
tal changes. Therefore, various models based on self-organization have been applied to
information networking such as routing, synchronization, and task assignment [Zhang
et al. 2013; Zheng and Sicker 2013]. In future large-scale, complex networks, we can
expect that features such as scalability, adaptability, and robustness will be improved
to an extent not possible by conventional network control methods [Balasubramaniam
et al. 2011].

Although self-organization control that does not use global knowledge about the cur-
rent network state has various benefits, such control has critical disadvantages that
complicate practical use in industrial and business systems [Dressler 2008]. One draw-
back is that it may take a long time for global patterns to emerge in large-scale sys-
tems because they appear as a consequence of interactions between autonomous com-
ponents. This property also leads to slow adaptation to large environmental changes,
which is difficult to solve by solely local interactions in self-organizing systems. Fur-
thermore, self-organizing systems that use local information only sometimes become
trapped in local optima. This indicates that system requirements are not always sat-
isfied, which is a significant problem for practical use in industrial and business sys-
tems. In contrast, in conventional centralized systems, global information can lead to
an optimal solution, though the required computational cost may be extremely high.

Such disadvantages of self-organization noted in real applications led to the idea
of controlled (guided, managed) self-organization, in which the self-organizing system
is controlled through some constraints [Martius and Herrmann 2010; Müller-Schloer
et al. 2011; Prokopenko 2014]. For example, the authors of [Arakawa et al. 2011; Kom-
inami et al. 2013] used the concept of controlled self-organization, in which an external
observer/controller guides self-organizing optical networks [Arakawa et al. 2011] and
sensor network [Kominami et al. 2013] systems through a feedback mechanism that
leads them to a desired (globally optimal/semi-optimal) state. These studies showed
that self-organizing systems can be guided to the desired state by introducing an ex-
ternal observer/controller. Along another line, we proposed an optimal feedback mech-
anism for self-organizing systems [Kuze et al. 2014] to enhance the speed of conver-
gence to an optimal or semi-optimal solution. In this mechanism, an external controller
collects information about the network and provides optimal feedback inputs to cause
faster convergence. For calculating optimal feedback inputs, the external controller es-
timates the states of nodes in the entire network by using a mathematical model that
describes the network dynamics. The simulation results in [Kuze et al. 2014] showed
that optimal control by the external controller can facilitate the convergence of self-
organizing networks.

We showed that the introduction of an external controller into self-organizing net-
works can accelerate their convergence; however, this mechanism still has problems
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with scalability. The mechanism requires topology information about the whole net-
work, and the computational cost for designing the estimation model is roughly pro-
portional to the cube of the number of nodes, which makes it increasingly difficult
for the external controller to collect topology information and to obtain the estimation
model of the whole network as the network size becomes larger. These problems be-
come critical when topological changes occur, because the estimation model needs to
be redesigned to include the latest topology information so that the external controller
can guide the network to converge to a targeted state.

In this study, we propose a hierarchical optimal feedback mechanism to control a
self-organizing network while the system has the high scalability, and be able to keep
working even when local changes or failure occur, which are originally inherent in self-
organizing systems. The basic idea of the mechanism is shown in [Kuze et al. 2015],
in which a network has been partitioned into several sub-networks that are controlled
in a hierarchical manner by two types of controllers, i.e., a central controller and sub-
controllers. A sub-controller monitors a sub-network, that is, only a part of the entire
network, and provides optimal feedback inputs to the sub-network so that fast conver-
gence can be achieved. Specifically, the sub-controller collects information regarding
the sub-network, such as node states and network topology. Then, the sub-controller
estimates the dynamics of the sub-network by using a mathematical model that de-
scribes the sub-network dynamics, and calculates optimal feedback inputs that facili-
tate the convergence speed of self-organizing systems. This is based on robust control
theory [Zhou et al. 1995], in which a controller is designed to work with limited infor-
mation. However, sub-controllers cannot achieve a global optimality by themselves be-
cause they does not have information of sub-networks other than their corresponding
ones. The role of a central controller is to guide sub-networks to achieve the identical
global optimality. A central controller obtains information about the entire network
from sub-controllers, estimates the degrees of interactions among sub-networks, and
then returns feedback inputs to the sub-controllers. To reduce the computational cost
of the central controller and sub-controllers, we improve [Kuze et al. 2015] by reducing
the number of state variables of the estimation models for both the central controller
and the sub-controllers with a model reduction technique [Antoulas et al. 2006].

The main contribution of this study is that we realize a hierarchical control mech-
anism for enhancing the convergence speed of self-organizing systems at fairly low
computational cost and reveal the effectiveness of our proposed mechanism through
computer simulation. The number of state variables of the estimation model is pro-
portional to the size of the actual network model, namely, the number of nodes. The
computational cost needed for the dynamics estimation and the control input calcula-
tion by controllers increase rapidly as the number of nodes becomes large. The exter-
nal controller or sub-controller needs a computational cost on the order of O(Ndim

2) for
the dynamics estimation and of O(Ndim

3) for the design of the estimation model, where
Ndim is the number of state variables of the estimation model. The sum of the compu-
tational cost of each sub-controller is much smaller than the computational cost of the
external controller (Table I). Moreover, we reduce the number of state variables of the
estimation model (Ndim) via a model reduction technique to reduce the computational
cost. Note that the smaller size of a reduced model leads to the loss of the original
model while decreasing the computational cost. This trade-off relation requires us to
further examine the number Ndim of state variables of the model. Furthermore, lo-
cal environmental changes can be handled by the corresponding sub-network because
each sub-controller monitors/controls the corresponding sub-network in an individual
and automatic manner. This contributes to high scalability and adaptability of the
system.
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Table I. Computational costs in each scheme. N is the total number of nodes; Nsub is the number of nodes in a
sub-network; hex is the number of state variables in the estimation model used by the external controller in PBR-
opt-mr, a non-hierarchical optimal control mechanism proposed in previous work [Kuze et al. 2014]; h and hsub

are the number of state variables in the estimation model used by the central controller and each sub-controllers,
respectively, in PBR-h-opt-mr.

Scheme Controller type Ndim
Computational cost

Controller design Calculation of feedback inputs
PBR-no-ctrl - - 0 0
PBR-opt-mr External hex(< 2N) O(N3

dim) O(N2
dim)

PBR-h-opt Sub 2Nsub(< 2N) O(N3
dim) O(N2

dim)
Central 2N O(N2

dim) O(N2
dim)

PBR-h-opt-mr Sub hsub(< 2Nsub) O(N3
dim) O(N2

dim)
Central h(< 2N) O(N2

dim) O(N2
dim)

The effectiveness of our proposal is evaluated through computer simulation stud-
ies in which we consider potential-based routing—a self-organizing routing mecha-
nism for wireless sensor networks—with optimal feedback and evaluate the conver-
gence speed after environmental changes. Our proposal is suitable for wireless sensor
networks because the simple behavior of each component in self-organizing systems
needs neither much capability nor much energy, whereas optimal control by the ex-
ternal controller improves the performance of these systems. It is worth mentioning
that potential-routing for wireless sensor networks is an example of an application of
our proposal, and our proposal can be adapted to other types of mechanisms, networks
and situations. The optimality of our feedback mechanism is analytically guaranteed
in synchronous systems but not in asynchronous systems. In our evaluation, we first
assume a wireless sensor network where nodes behave asynchronously for revealing
the advantages and properties of our proposal. To evaluate the scalability of our pro-
posal, we next conduct a simulation with a larger network. Finally, we evaluate our
method in the case where a new sub-network is added to the network and show that
local environmental changes can be handled by the corresponding sub-controller with
our method.

The remainder of this paper is organized as follows. First, we briefly explain
potential-based routing in Section 2. We propose and explain potential-based routing
with optimal feedback in Section 3. We then show, through simulation, the proposed
method’s ability to facilitate fast adaptation to environmental changes and discuss our
proposal in Section 4. Finally, in Section 5, we present our conclusions and suggest
areas for future work.

2. POTENTIAL-BASED ROUTING
Potential-based routing is a self-organizing routing mechanism in which each node
chooses a route with a hop-by-hop forwarding rule. Such mechanisms are actively used
in the fields of wireless sensor networks, mobile ad-hoc networks, and information-
centric networks [Kominami et al. 2013; Basu et al. 2003; Jung et al. 2009; Wu et al.
2008; Sheikhattar and Kalantari 2014; Eum et al. 2014; Lee et al. 2014]. Here, we
assume that potential-based routing is used in wireless sensor networks, where infor-
mation gathering is not frequent and the capacity of each node is strictly limited.

In potential-based routing, each node has a scalar value called its potential, and
data packets are forwarded to a neighbor whose potential is lower than that of the
forwarder. In wireless sensor networks, data packets are generally sent to a sink node,
and fewer hops to the sink node is reflected in a lower potential value. The simple for-
warding rule “forward data to a neighboring node with lower potential” can therefore
result in data packet collection toward sink nodes, as illustrated in Figure 1. Potential-
based routing has high scalability because each node uses only local information for
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Sensor node Sink node Traffic

Fig. 1. Potential-based routing

calculating potentials and a local rule for forwarding data. In Sections 2.1 and 2.2, we
describe a potential field construction and show how to select the next hop node by
using the potential field.

2.1. Potential Field Construction
Sheikhattar and Kalantari [Sheikhattar and Kalantari 2014] focused on the conver-
gence of potential-based routing and enhanced the potential convergence speed. They
proposed a potential calculation method based on not only current potentials but also
prior potentials to accelerate potential convergence. Node n’s potential at time t, θn(t),
is calculated by Equation (1).

θn(t+ 1) = θn(t) + α(θn(t)− θn(t− 1)) + βσn

 ∑
k∈N (n)

{θk(t)− θn(t)}+ fn(t)

 . (1)

Here, N (n) is a set of node n’s neighbors, and α is a parameter that determines the
weights of the increased amount of the potential value from time t − 1 to t when cal-
culating the next potential. Larger values of α mean that the amount of the potential
change is more heavily weighted, and therefore the system becomes less subject to cur-
rent noise, though the convergence speed is slower. The parameter β determines the
amount of influence of neighbor-node potentials. In this, σn is defined as σ0/|N (n)| (σ0

is a parameter), and fn(t) corresponds to the flow rate of node n at time t. For sensor
node n, fn(t) is a negative value that indicates the data generation rate of node n. The
data generation rates of sensor nodes are generally determined by the applications.
On the other hand, for sink node n, fn(t) is a positive value that determines the rate
of data packets delivered to the node. The network manager can set the data packet
delivery rate to an arbitrary value. If the flow conservation constraint is satisfied, that
is,

∑
n∈{1, ··· , N} fn(t) = 0, then a potential field is constructed such that the actual

rates of data packets delivered to nodes satisfy the given flow rates (i.e., all gradients),
which are potential differences between next-hop nodes, correspond to the appropriate
flow rates.

The convergence speed based on Equation (1) is faster than that of simple Jacobi
iterations (such as in our previous work [Kominami et al. 2013]), but it still takes a
long time to converge owing to its calculation being based on local information only. We
introduce external controllers into potential-based routing to observe network states
(potential values), estimate future states, and regulate the potentials of a partial set
of nodes for faster convergence.
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2.2. Routing
If a node has a data packet, then it forwards the packet according to the potential
values of itself and its neighbors. In our potential-based routing, when a sensor node
generates or receives a data packet, it probabilistically selects a next node having a
lower potential value than itself, and the packet eventually arrives at a sink node in
this way. Specifically, a next-hop node is selected with a probability in proportion to the
difference of potential values, that is, the probability pi→j(t) that sensor node i selects
a neighbor node j as the next-hop node for a data packet at time t is given by

pi→j(t) =

{
θi(t)−θj(t)∑

k∈Nl(i)
{θi(t)−θk(t)} , if j ∈ Nl(i)

0, otherwise
.

Nl(i) is the set of node i’s neighbor nodes that are assigned lower potential values than
node i is. In other words, θi(t) − θj(t) > 0 for all j (∈ Nl(i)). If node i has no neighbor
node with lower potential, that is, |Nl(i)| = 0, then the data packet is not sent to any
node and is dropped; however, such cases generally occur only in transient cases, such
as node failures or changes of potential values at the sink node.

3. POTENTIAL-BASED ROUTING WITH HIERARCHICAL OPTIMAL FEEDBACK
In this section, we describe a model of the network dynamics and explain our hierar-
chical optimal control scheme.

3.1. Overview
We propose a hierarchical optimal feedback mechanism that facilitates the conver-
gence speed of self-organizing systems. We apply our proposed mechanism to potential-
based routing since potential-based routing, whose dynamics routing can be described
as a simple linear system, is appropriate for our goal to reveal the upper limit of self-
organizing network control systems with the hierarchical optimal feedback. Our pro-
posed mechanism is shown in Figure 2. A network is partitioned into several sub-
networks. Each sub-network is connected to a sub-controller via a part of the nodes
that belong to the sub-network, whereas a central controller is connected to all sub-
controllers. Note that our proposed mechanism work without controllers because nodes
behaves autonomously and automatically in a self-organizing manner although the
convergence speed is low.

A sub-controller monitors information about its corresponding sub-network, and in
particular the potential values of a partial set of nodes, which we call observable
nodes. The sub-controller then returns suitable control inputs to another partial set
of nodes, which we call controllable nodes, for accelerating the convergence of the po-
tential distribution of the sub-network toward the target potential distribution, which
is described in Section 3.2. The control input from the sub-controller affects the po-
tential values of the controllable nodes. Nodes interact with each other in a self-
organizing manner so that the effect of the control inputs propagates to the entire
network through local interactions. The information about the sub-network topology
is needed for designing the sub-controller. Furthermore, we need the flow rates of nodes
in the sub-network for calculating target potential values. Although this information
cannot be estimated with our proposal, we assume that changing the frequencies of
the network topology and flow rates occurs much less frequently than changes to po-
tentials and that changes can be reported to the sub-controllers only when they occur.
Such data collection is feasible with the proper choice of control interval.

The role of the central controller is to estimate interactions among sub-networks and
to provide feedback inputs to sub-controllers so that the whole network reaches the
targeted state. For this purpose, the central controller obtains the network informa-
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Fig. 2. Potential-based routing with a hierarchical optimal control scheme

tion from sub-controllers and then returns suitable feedback inputs to sub-controllers.
Without the central controller, the ignored interactions among sub-networks lead to
an undesirable target potential distribution and can even cause network instability.
Because the estimation by the central controller needs a high computational cost, we
introduce the reduced-order model to reduce this computational cost for estimating the
potential values of non-observable nodes, as explained in Section 3.4.2.

We assume that the sub-controllers and sink nodes are supplied power so that these
sink nodes can have a reliable direct connection with sensor nodes and sub-controllers
at all times. Therefore, in our proposal, sub-controllers monitor sub-network infor-
mation and provide control inputs via connected sink nodes. We consider controllable
nodes as sink nodes and observable nodes as nodes within p hops from sink nodes. For
estimating the interactions among sub-networks, the central controller obtains the po-
tential information about all observable nodes from the sub-controllers.

3.2. Dynamics of Sub-networks
Let the dynamics of the potentials be given by a deterministic discrete-time model.
Nodes locally interact with each other for updating their potentials. With our pro-
posed mechanism, sub-controllers send feedback inputs u(t) = [η1(t) · · · ηNctrl

(t)]
T to

Nctrl controllable nodes for facilitating potential convergence. In this study, the update
rule of each potential is the same as that in [Sheikhattar and Kalantari 2014], except
for the controllable nodes. Node n updates its potential at time t by
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θn(t+ 1) = θn(t) + α(θn(t)− θn(t− 1)) + βσn

 ∑
k∈N (n)

{θk(t)− θn(t)}+ fn

+ ηn(t).

(2)

If node n is not controllable, ηn(t) = 0. We set σn to a constant value σ (0 < σ < 1) for
all n (∈ {1, · · · , N}) because the original value of σn (σ0/|N (n)|) proposed in [Sheikhat-
tar and Kalantari 2014] leads to oscillation of potentials in some situations.

Next, we describe the potential dynamics of sub-networks. Potentials of nodes in
a sub-network are updated in accordance not only with interactions of nodes within
sub-network i but with interactions among sub-networks. We define S as a set of sub-
networks, where a sub-network i (∈ S) includes N i nodes. The potential values of nodes
in sub-network i are described as a vector Θi(t) =

[
θi1(t) · · · θiNi(t)

]T using θn(t) =
[θn(t) θn(t+ 1)]. The potential dynamics of sub-network i is given by Equation (3) using
flow matrix F i and control inputs ui.

Θi(t+ 1) = AiΘi(t) +
∑

j∈S−{i}

Ai,jΘj(t) +
(
βσF i + ui(t)

)
⊗
[
0
1

]
. (3)

Ai and Ai,j are matrices that describe interactions, respectively, within sub-network i
and between sub-network i and j. Ai and Ai,j are given by

Ai = INi×Ni ⊗
[

0 1
−α α+ 1

]
+ (Li

intra −Gi)⊗
[
0 0
0 βσ

]
,

Ai,j =Li,j
inter ⊗

[
0 0
0 βσ

]
,

where the (N i × N i)-matrix Li
intra and the (N i × N i)-matrix Gi correspond to the ad-

jacency and degree matrices of sub-network i, respectively. Li,j
inter is an (N i × N j)-

matrix that describes links connecting between sub-networks i and j. The ele-
ment li,jinter(n,m) ∈ {0, 1} of Li,j

inter is 1 if and only if there is a link between node n
of sub-network i and node m of sub-network j. IN×N is the N ×N identity matrix.

Under these dynamics, the potentials Θi converge to Θ̄i and we consider them as
the target potentials, as given by the solution of

(Ai − I2Ni×2Ni)Θ̄i +
∑

j∈S−{i}

Ai,jΘ̄j = −βσF i ⊗
[
0
1

]
. (4)

Each sub-controller calculates the target potential distribution of the corresponding
sub-network in advance for calculating control inputs.

3.3. Optimal Control of Sub-networks by Sub-controllers
3.3.1. Design of Sub-controllers. We explain how the sub-controllers calculate control

feedback to corresponding sub-networks. For all i (∈ S), sub-network i is connected
to sub-controller i, For calculating control inputs ui, sub-controller i monitors poten-
tials Y i of observable nodes in sub-network i via nodes that have a direct connection
to the sub-controller, and receives information Zi of interactions among sub-networks
from the central controller. The (2N i

obs × 1)-vector Y i(t) is given by Y i(t) = CiXi(t)
using Xi(t) = Θ̄i − Θi(t), the gap between the current and target potential values.
N i

obs is the number of observable nodes in sub-network i, and (2N i
obs × 2N i)-matrix Ci

determines the observable nodes. The element c2i(n,m), c2i+1(n,m) ∈ {0, 1} ofCi is 1 if
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and only if sub-controller i monitors the potential value of node m as the nth element
of Y i.

First, sub-controller i estimates Xi(t) from observable information Y i and inter-
action information Zi. The (2N i × 1)-vector X̃i(t) is the estimation of Xi(t) by sub-
controller i and is given by

X̃i(t+ 1) = AiX̃i(t) +Biui(t) +Qi
(
Y i(t)− Ỹ i(t)

)
+Zi(t), (5)

Ỹ i(t) = CiX̃i(t). (6)

If X̃i(t) is close to 0, then the potentials are estimated to be close to their target values.
We need to select Qi such that it satisfies “Ai − QiCi is stable,” which allows the
potentials to converge. The matrix Bi, which determines the weight of control inputs
from the sub-controller i, is given by

Bi = Si ⊗
[
0 0
0 1

]
.

The (N i × N i
ctrl)-matrix Si specifies the controllable node of sub-network i. The ele-

ment si(n,m) ∈ {0, 1} of Si is 1 if and only if node n receives the mth element of ui(t)
as control input ηn(t). Next, the control inputs ui(t) is calculated according to

ui(t) = −V iX̃i(t). (7)

V i is the optimal gain matrix that minimizes the quadratic cost function Hi(ui) =∑∞
n=1

(
||X̃i(n)||+ r||ui(n)||

)
for the system. In other words, the control inputs ui is

calculated to make potentials fast converge to their target values and to reduce the
changing amount of potendials due to the control feedback. r is a parameter that regu-
lates the trade-off between the convergence speed and the stability of potentials. With
lower values of r, the convergence speed of potentials is faster, but potentials change by
larger amounts at one time because the sub-controller is allowed to provide larger ui.

3.3.2. Model Reduction for Sub-controllers. With the estimation model described by Equa-
tions (5)–(7), which has 2N i state variables, the optimal feedback ui(t) is calculated
with computational cost O(N i2). For reducing the computational cost, sub-controllers
use reduced-order models that have fewer state variables [Antoulas et al. 2006]. We
approximate the original model based on a ‘balanced realization’ that is highly com-
patible with the model expressed in the state space representation [Zhou et al. 1995;
Antoulas et al. 2006].

In the reduced-order model for sub-controller i, the estimation model is expressed
as an (hi × 1)-vector X̃i

r whose elements are linear transformations of the original
model X̃i. A constant number hi is given by the network manager. X̃i

r is caluculated
by

X̃i
r(t+ 1) = Ai

rX̃
i
r(t) +B

i
ru

i
r(t) +Q

i
r

(
Y i(t)− Ỹ i(t)

)
+Zi(t), (8)

Ỹ i(t) = Ci
rX̃

i
r(t), (9)

ui
r(t) = −V i

r X̃
i
r(t). (10)

The (2N i
ctrl×1)-vector ui

r(t) corresponds to control inputs provided to sub-network i by
the sub-controller i with the reduced-order model. We choose matrices Ai

r, Bi
r, Qi

r, Ci
r,

and V i
r of compatible dimensions such that ui

r(t) ≈ ui(t) for all input Y i(t), Zi(t).
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With a reduced-order model, control inputs ui
r(t) are calculated with computational

cost O(hi2). In general, a model that has more state variables allows the controller
to perform estimations more accurately; however, the computational cost is larger. In
contrast, the computational cost is smaller but the estimation error can be larger in a
model that has fewer state variables. Therefore, hi needs to be properly determined in
accordance with the requirements or system properties.

3.4. Estimation of Interactions among Sub-networks
3.4.1. Design of Central Controller. We explain how the central controller estimates

interactions among sub-networks. Many researchers have studied hierarchical sys-
tems [Sandell et al. 1978; Herrmann et al. 2004] in which components of different
layers interact for controlling systems. In our proposed mechanism, we take prior
work [Ishizaki et al. 2014], which focused on model reduction for large-scale systems.

The central controller first obtains potential information w(t) =[
Y 1(t)T · · · Y |S|(t)T

]T from sub-controllers for estimating the interactions among sub-
networks. Then, the central controller estimates degrees Z(t) =

[
Z1(t)T · · · Z|S|(t)T

]T
of interactions among sub-networks by

ψ(t+ 1) = Jψ(t) +Ku(t) +Ow(t), (11)
Z(t) = Tψ(t). (12)

The (2N × 1)-vector ψ describes an estimation model for the central controller. J , K,
O, and T are given by

J =


A1 A1,2 · · · A1,|S|

A2,1 A2 · · · A2,|S|

: :
A|S|,1 A|S|,2 · · · A|S|

−Q

 C
1 0 · · · 0

0 C2 · · · 0
: :
0 0 · · · C|S|

 , K =

 B1

B2

:
B|S|

 ,

O = Q, T =


0 A1,2 · · · A1,|S|

A2,1 0 · · · A2,|S|

: :
A|S|,1 A|S|,2 · · · 0

 ,

where (2N × 2Nobs)-matrix Q satisfies “J is stable.” 0 is a zero matrix.

3.4.2. Model Reduction for Central Controller. With the estimation model described by
Equations (11) and (12), which has 2N state variables, degrees Z(t) are calculated
with O(N2). For reducing the computational cost, the central controller also uses a
reduced-order model.

In the reduced-order model for the central controller, the estimation model is ex-
pressed as an (h× 1)-vector ψr(t), and the reduced-order model is given by

ψr(t+ 1) = Jrψr(t) +Kru(t) +Orw(t), (13)
Zr(t) = Trψr(t). (14)

The (2N × 1)-vector Zr(t) corresponds to feedback inputs provided to sub-controllers
by the central controller. We need to choose matrices Jr, Kr, Or, and Tr of compatible
dimensions such that Zr(t) ≈ Z(t) for all inputs u(t), w(t).

With a reduced-order model, feedback inputs Zr(t) are calculated with computa-
tional cost O(h2). The value of h needs to be properly determined as with hi because
there is a trade-off between the accuracy of the estimation and the computational cost
for it.
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4. PERFORMANCE EVALUATION
We evaluate our proposal to clarify the advantages and properties of hierarchical opti-
mal feedback using the reduced-order model.

4.1. Overview
We conduct a computer simulation and evaluate the convergence speed by comparing
the results with our proposal (potential-based routing using hierarchical optimal feed-
back with and without model reduction [PBR-h-opt-mr and PBR-h-opt, respectively])
with potential-based routing using non-hierarchical optimal feedback including model
reduction (PBR-opt-mr) as proposed in [Kuze et al. 2014], and with the non-control
scheme (PBR-no-ctrl) proposed in [Sheikhattar and Kalantari 2014]. First, in Sec-
tion 4.3, we evaluate the potential convergence speed after traffic changes to show
that our proposed methods enhance the convergence speed of the self-organizing sys-
tem. Moreover, we show that our proposal can be adapted to massive and frequent
environmental changes, in Section 4.4. Finally, in Section 4.5, to demonstrate that
our proposal can handle topological changes via redesigning the estimation model of
the corresponding sub-controller, we evaluate the case in which a new sub-network is
added to the network.

For the network simulator, we use an event-driven packet-level simulator writ-
ten in Visual C++ that calls MATLAB functions dlqr to design an optimal central
controller/sub-controllers with PBR-h-opt and PBR-h-opt-mr, dhinflmi to design an op-
timal external controller with PBR-opt-mr, and balred to obtain a reduced-order model
with PBR-opt-mr and PBR-h-opt-mr on a 64-bit PC with an Intel(R) Xeon(R) CPU with
2.70 GHz and 64.0 GB memory. The simulator has been developed by us. In the MAC
layer, each node sends information about its own potential to its neighbors for their
potential updates using intermittent receiver-driven data transmission (IRDT) [Komi-
nami et al. 2013], an asynchronous receiver-driven data transmission protocol. We use
a disk model as a physical layer model where data packets drop with chance 100% if
they collide with each other. As the capacity of each sensor node is limited in wireless
sensor networks, we set the queue size of each sensor node to 1.

In the simulator, nodes are not synchronized; in contrast, controllers, including the
central controller and sub-controllers, are synchronized. Nodes do not match their tim-
ing to receive feedback from the corresponding sub-controller or the external controller
and update their potentials. We set the interval of the control feedback by the central
controller, that of the control feedback by sub-controllers, and that of potential updates
in nodes to be equal so that the controllers can estimate the dynamics of the network
with small errors.

4.2. Simulation Settings
We evaluate changes in potentials in potential-based routing and the number of data
packets delivered to each sink node after environmental changes, such as traffic
changes or the addition of a new sub-network. To measure the convergence speed of
potentials, we define the degree ϵn(t) of the potential convergence for each node that
is given by ϵn(t) = |θ̄n − θn(t)|, where θ̄n corresponds to the target potential value of
node n. We consider convergence to be achieved when ϵn(t) is sufficiently small for all
nodes. The convergence time of potentials is defined as the minimum time taken by all
sensor and sink nodes to satisfy the condition

ϵn(t) < δ, (15)

where δ is constant value 0.01. In an ideal situation, where all nodes are completely
synchronized and there is no noise, all sensor and sink nodes satisfy Equation (15)
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finally, even if δ = 0; however, in an actual situation, not all nodes can satisfy Equa-
tion (15).

In a real network, it is difficult for sub-controllers to monitor up-to-date potential
values of all nodes in the corresponding sub-networks because of the overhead for
collecting potential values, especially when the number of nodes of each sub-network
increases. Therefore, sub-controllers monitor only nodes within p hops from the cor-
responding sink nodes. Nodes within p hops from sink nodes send a control message
to sink nodes at interval Ts to notify sub-controllers of their potential values. The nth
element cin of Ci (i ∈ S), which determines a set of observable nodes, is set to

cin =

{
1, if node n is within p hops from a sink node in sub-network i
0, otherwise .

Sub-controllers do not directly monitor node potentials beyond p hops from their
connected sink nodes; instead, they only estimate them, using the estimation model.
Each sub-controller calculates an optimal control using the potential information ob-
tained through the observation and estimation at interval Ts. Similarly, the central
controller obtains the potential information about observable nodes from all sub-
controllers at interval Tc for estimating interactions among sub-networks. In contrast,
each node updates its next potential value at an interval Tp. Typically, Tc = Ts = Tp

for matching with the potential dynamics. In our evaluations, we consider a control
cycle (Tc = Ts = Tp) as a unit time step.

At the beginning of the simulation, the potential values of all nodes are initialized
to 0. During the first 20 steps, each node exchanges its potential value with neighbor
nodes and updates its potential value so that the potential values are stabilized. At
20 steps, data packets begin to be generated at sensor nodes according to the Poisson
process with their flow rates. We evaluate the convergence speed of potentials and data
packets delivered to each sink node after traffic changes.

Energy efficiency is a significant and challenging task for wireless sensor networks.
It is true that our proposal needs more computational cost than PBR-no-ctrl for cal-
culating control inputs. However, the computational cost for each sensor node still
be very low since sensor nodes, non-controllable nodes, act on local information and
simple rules. Moreover, our proposal can achieve load balancing by setting the flow
matrix F such that each sink node receives data packets at the same rate as other
sink nodes, which we explain in Section 4.3. Finally, our proposal does not depend on
specific MAC-layer protocols. Therefore, we can reduce the energy required for data
transfer between adjacent nodes by introducing energy-efficient MAC-layer protocols,
such as IRDT.

The values of parameters (α, β, σ, r) are set to (0.4, 0.2, 0.1, 10). The optimal parame-
ters (α, β, σ) for PBR-no-ctrl are given in [Sheikhattar and Kalantari 2014], but poten-
tials of nodes diverge to infinity and do not converge. Therefore, we use the settings
above even for PBR-no-ctrl. All results presented below are averaged over 30 simula-
tion runs for each parameter setting.

4.3. Performance Evaluation of Hierarchical Control Method with Reduced-order Model
First, we evaluate the convergence speed of potentials after traffic changes considering
the constraints in wireless sensor networks. To reveal the performance and properties
of our proposal, we consider the case where the data generation rates of a partial set
of sensor nodes change once, simultaneously.

Figure 3 shows the network model with 309 nodes (including 9 sink nodes) that is
used in this evaluation. In this figure, sink nodes (resp., sensor nodes) are illustrated
with squares (resp., dots). As shown in the figure, each sub-network is connected to a
sub-controller via the sink node, whereas the central controller has direct connections
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Central controller

Sub-controller 1

Sub-network 1

Sink node Sensor node

Sub-network information / Control input

Sub-network information /
Interaction between sub-networks

Fig. 3. Network topology (N = 309)

Table II. Observable nodes in each sub-network with PBR-h-opt and PBR-h-opt-mr.

Sub-network No. 1 2 3 4 5 6 7 8 9 Total
# of nodes 43 39 38 51 12 25 56 16 29 309

# of observable nodes 10 17 15 16 3 9 22 10 14 116

with all sub-controllers. Observable range p of sub-controllers is set to 2. Details of
observable nodes are shown in Table II.

The data generation rates are initially set to be 0.050 packets/step for all sensor
nodes. At 200 steps from the beginning of the simulation, the data packet generation
rates of sensor nodes are changed to examine the convergence speed of our proposed
mechanism. After the traffic changes, the data packet generation rates are increased
to 0.075 packets/step for a partial set Ninc (∈ N 1

sen) of sensor nodes included in sub-
network 1. The number of nodes whose data generation rates increase is set to 20 (i.e.,
|Ninc| = 20). Note that Nsen and Nsin are the set of sensor nodes and that of sink nodes,
respectively. N i

sen corresponds to the set of sensor nodes in sub-network i. The initial
data generation rate of sensor nodes (0.050 packets/step) corresponds to f̄n = −1.0;
therefore, before traffic changes, the flow rate vector F =

[
f̄1 · · · f̄N

]T is given by
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f̄n =

{ −1.0, if n ∈ Nsen
1.0×|Nsen|

|Nsin| , if n ∈ Nsin
. (16)

We construct the potential fields such that all sink nodes can receive data packets
equally because load balancing is known to be a challenging task for wireless sen-
sor networks. For the purpose, the flow rate at each sink node is ideally given by
1.0×|Nsen|

|Nsin| (= 25). Similarly, after the traffic changes, F is given by

f̄n =


−1.0, if n ∈ Nsen −Ninc

−1.5, if n ∈ Ninc
1.0×(|Nsen|−|Ninc|)+1.5×|Ninc|

|Nsin| , if n ∈ Nsin

. (17)

Because the data generation rates of sensor nodes included in Ninc increase, the flow
rate at each sink node also increases to 1.0×(|Nsen|−|Ninc|)+1.5×|Ninc|

|Nsin| . In the evaluation
of PBR-h-opt-mr, we set hi to the same value (hsub) for all i ∈ S. The degrees (h, hsub) of
the reduced order models for controllers are set to (18, 2) and (27, 3). Although it is diffi-
cult to quantitatively express the relation between h and hsub (we note that h = |S|·hsub

is not always satisfied), h is typically larger than hsub because the central controller
manages a larger amount of information than each sub-controller. The degree hex of
the external controller in PBR-opt-mr is set to 18.

Figure 4 shows the changes in the potential values of PBR-no-ctrl, PBR-opt-mr, PBR-
h-opt, and PBR-h-opt-mr. More precisely, this figure shows a plot of X(s) = Θ̄ −Θ(s)
against step s, and potential convergence is achieved when each element ofX(s) is suf-
ficiently close to 0, that is, when Equation (15) is satisfied. In this figure, thick colored
lines correspond to potential changes of the 9 sink nodes and thin gray lines correspond
to potential changes of sensor nodes. Sink node potentials change more than those of
sensor nodes because they receive feedback inputs u from the sub-controllers, whereas
sensor nodes are indirectly affected by them via sink nodes.

As shown in Figure 4, the convergence speed of potentials is enhanced by introduc-
ing optimal feedback mechanisms, including non-hierarchical and hierarchical mecha-
nisms. This proves the effectiveness of optimal feedback in a hierarchical manner. Our
result indicates that sub-controllers can correctly estimate node potentials in their cor-
responding sub-network even though they do not directly observe nodes outside their
corresponding sub-network. Moreover, it is worth mentioning that each sub-controller
of PBR-h-opt and PBR-h-opt-mr observes node potentials within at most 2 hops of
the sink nodes in its corresponding sub-network. Sub-controller i estimates the poten-
tials of non-observable and future potentials of nodes in its corresponding sub-network
using feedback inputs Zi, which are provided from the central controller to each sub-
network, and then determines the optimal feedback inputs ui. Table III shows the
time needed from traffic changes until the potential convergence is achieved (with
δ = 0.01). Figure 4 shows potential changes only within 180–600 steps; however, it
takes 1484.0 steps for the potential to converge with PBR-no-ctrl. From the result,
compared with PBR-no-ctrl, potential convergence is accelerated around 10.8 fold with
PBR-opt-mr, 10.6 fold with PBR-h-opt, and 7.97 and 8.93 fold with PBR-h-opt-mr with
(h, hsub) = (18, 2) and (h, hsub) = (27, 3), respectively. The convergence speed of poten-
tials with our proposed mechanisms (PBR-h-opt, PBR-h-opt-mr) is a bit slower than
that with PBR-opt-mr. This is because each sub-controller directly collect and esti-
mate the potential values of only the nodes in the corresponding sub-network, and
they receive the potential information about other sub-networks only via the central
controller.
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-4

-2

 0

 2

 4

 6

 200  300  400  500  600

P
ot

en
tia

l

Time [step]

Sensor
Sink 1
Sink 2
Sink 3
Sink 4
Sink 5
Sink 6
Sink 7
Sink 8
Sink 9

(b) PBR-opt-mr (hex = 18)
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(d) PBR-h-opt-mr (h = 18, hi = 2)
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(e) PBR-h-opt-mr (h = 27, hi = 3)

Fig. 4. Potential convergence in the case with a large-scale network

Table III. Potential convergence time in the case with a large-scale
network

Scheme Convergence time [step]
PBR-no-ctrl 1484.0

PBR-opt-mr (hex = 18) 137.61
PBR-h-opt 140.47

PBR-h-opt-mr (h = 18, hi = 2) 186.18
PBR-h-opt-mr (h = 27, hi = 3) 166.18

The computational cost O(hi2) of each sub-controller for estimating the potential
dynamics and calculating control inputs is much smaller than the computational
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Table IV. Computational time for each scheme

Computational time [s]
Scheme Controller Type Controller design Model reduction Calculation of

(dlqr or dhinflmi) (balred) feedback inputs
PBR-no-ctrl – 0 0 0

PBR-opt-mr (hex = 18) External 6398 4.084 6.313× 10−5

PBR-h-opt Sub 0.04003 0 9.360× 10−5

Central 30.75 0 1.798× 10−3

PBR-h-opt-mr Sub 0.08880 0.04311 3.853× 10−6

(h = 18, hsub = 2) Central 35.38 2.196 3.815× 10−5

PBR-h-opt-mr Sub 0.09006 0.04396 4.125× 10−6

(h = 27, hsub = 3) Central 34.35 2.428 4.810× 10−5

cost O(h2) of the external controller of PBR-opt-mr proposed in [Kuze et al. 2014],
where only one controller monitors/controls the network. This is because the number
of state variables that suffices to describe the network/sub-network is generally larger
if the number of nodes in the network/sub-network is larger. Moreover, given the in-
formation about the network topology and flow rates, the central controller is designed
with the computational cost O(h2) as described in Section 3.4, which is much smaller
than the computational cost O(h3) needed for designing the external controller pro-
posed in [Kuze et al. 2014]. Table IV shows the computational time required for the
controller design, model reduction, and calculation of feedback inputs. The computa-
tional time for the controller design and the model reduction results from one simula-
tion run for each scheme are shown, as measured by using the timeit function in MAT-
LAB. The computational time for the calculation of feedback inputs is averaged over 30
calculations of u or ui for each scheme and measured by using the QueryPerformance-
Counter function in C++. The computational time for the sub-controller corresponds to
the average amount of time required for each sub-controller. As shown in Table IV, the
computational time for the controller design with our proposed mechanisms are much
smaller than that with PBR-opt-mr. Moreover, the time required for the calculation of
feedback inputs with our proposed mechanisms is a little smaller than that with PBR-
opt-mr. It is worth mentioning that because feedback inputs are calculated at every
step, the difference in the computational time for each step is small but makes a good
contribution to the reduction in the computational time in the long run. Therefore, our
proposed mechanisms can enhance the convergence speed of potentials with low com-
putational cost, even in large-scale networks. Consequently, the hierarchical optimal
feedback mechanism is more scalable than the non-hierarchical one.

In general, as degree hi of the reduced-order model becomes smaller, the approxima-
tion error becomes larger while the computational cost becomes much smaller. Actu-
ally, as shown in Figures 4(c)–4(e) and Table III, the convergence speed of PBR-h-opt-
mr with h = 18 and hsub = 2 is a bit slower than that of PBR-h-opt and PBR-h-opt-mr
for higher values of h and hsub. Consequently, there is a trade-off between the compu-
tational cost and the performance of our proposal.

The estimation errors of the potentials cannot be avoided completely because of dis-
turbances, modeling errors of the system dynamics, and so on. Specifically, in our eval-
uations, nodes are not synchronized against the potential dynamics described by Equa-
tion (2) and the potential values the controller collects are not always correct owing to
communication delays, dropped data, or interference. Our evaluations prove that our
proposal can work even when there are such estimation errors. In this evaluation,
a partial set of control messages drop because traffic congestion occurs around sink
nodes. This occurs because the external controller/sub-controllers collect the network
information via sink nodes in potential-based routing with optimal feedback. Control
messages are sent by sensor nodes within p hops from sink nodes for sending potential
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information to sub-controllers. If control messages drop, sub-controllers cannot receive
potential information, which leads to errors in the estimation of potentials. Moreover,
the asynchrony of the controller and nodes is also a cause of estimation errors because
PBR-h-opt and PBR-h-opt-mr, as well as PBR-opt-mr, inherently assume synchronous
systems. Nevertheless, our proposal can achieve fast convergence of potentials despite
such errors, which clearly shows that our proposal works well in an asynchronous en-
vironment where noise or disturbances exist.

In Sections 4.3, we have shown that a hierarchical optimal control by the central con-
troller and sub-controllers is effective in wireless sensor networks where the capacity
and energy of each node are limited. Moreover, PBR-h-opt-mr enhanced the conver-
gence speed of potentials with much lower computational cost than PBR-opt-mr. This
indicates that a reduced-order model reflects the dominant characteristics of the origi-
nal model. It is also worth mentioning that even when some amount of approximation
error exists, fast convergence of potentials can be achieved.

4.4. Adaptability to Massive and Frequent Environmental Changes
Next, we evaluate the changes in potential values and traffics in cases where the data
generation rates of all sensor nodes change several times, using this to demonstrate
that our proposal can work even if there are frequent and massive environmental
changes. We use the network model with 104 nodes (including 4 sink nodes) described
in Figure 5 for this evaluation, and the data packet generation rates of sensor nodes
in sub-network 1 (resp., 3) and that in sub-network 2 (resp., 4) are exchanged every
200 steps. Each sub-controller collects potential information about nodes within 1 hop
from its connected sink node; that is, p is set to 1.

The data packet generation rates are initially set to be 0.025 packets/step for sensor
nodes in sub-networks 1 and 3 of Figure 5, and 0.075 packets/step for sensor nodes in
sub-networks 2 and 4. After traffic changes at 200 steps, the data packet generation
rates are increased to 0.075 packets/step for the left half sensor nodes and decreased to
0.025 packets/step for the right half nodes. Subsequently, the data packet generation
rates of sensor nodes in sub-network 1, 3 and that in sub-network 2, 4 are exchanged at
interval 200 step. The average data generation rate of a node of 0.050 packets/step cor-
responds to f̄n = −1.0, and therefore, the flow rate vector F during the first 200 steps
is given by

f̄n =


−0.5, if n ∈ N 1

sen ∪N 3
sen

−1.5, if n ∈ N 2
sen ∪N 4

sen
0.5×(|N 1

sen|+|N 3
sen|)+1.5×(|N 2

sen|+|N 4
sen|)

|Nsin| , if n ∈ Nsin

. (18)

Similarly, F during the next 200 steps is given by

f̄n =


−1.5, if n ∈ N 1

sen ∪N 3
sen

−0.5, if n ∈ N 2
sen ∪N 4

sen
1.5×(|N 1

sen|+|N 3
sen|)+0.5×(|N 2

sen|+|N 4
sen|)

|Nsin| , if n ∈ Nsin

. (19)

Figure 6 shows the changes in the potential values of PBR-no-ctrl, PBR-opt-mr with
hex = 8, and PBR-h-opt-mr with h = 8 and hi = 2. Specifically, Figure 6 shows a
plot of X(s) against step s. As shown in Figure 6, the hierarchical control feedback
mechanism can enhance the convergence speed of potentials, as compared with the
case of the non-control scheme.

Figure 7 shows changes in the number of data packets delivered to each sink node
every 20 steps. In each case, the number of data packets delivered to each sink node
becomes disproportionate after the traffic changes at 200 steps. Then sink nodes grad-
ually become able to receive data packets equally, because potentials are updated to
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Fig. 5. Network topology (N = 104)

adapt to the current packet rate. We can observe that the traffic convergence speed is
also accelerated by optimal feedback. This is because the potential convergence speed
is enhanced by the optimal feedback mechanism. As shown in Figures 6(a) and 7(a),
as the convergence speed of potentials is too low, traffic cannot adapt to frequent and
massive changes with PBR-no-ctrl. In contrast, by introducing optimal control mech-
anisms, the adaptability to adapt to such changes is improved (Figures 6(b)–6(d) and
7(b)–7(d)).

One problem we note is that our proposal reduces the average number of data pack-
ets delivered to each sink node immediately after traffic changes. This is because some
sink nodes temporarily have the largest potential values within their communication
ranges according to the control inputs, so data packets cannot arrive at sink nodes.
Therefore, data packets will drop when the controller makes large changes to the po-
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(d) PBR-h-opt-mr (h = 8, hi = 2)

Fig. 6. Potential convergence in case of traffic changes

tentials, which contributes to the faster convergence speed of potentials. However, the
data packet drops are immediately reduced and the traffic finally converges faster than
the non-control scheme because of the faster potential convergence. Note that in an
actual situation, data packets may be retransmitted instantly. Here, we evaluate only
the case in which data packets are never retransmitted because the main purpose of
this paper is to reveal the upper limit of convergence speed of self-organizing systems.
Moreover, Figures 7(b)–7(d) show worst-case scenarios for temporal packet drops, be-
cause the controller changes sink node potentials (in other words, data packet desti-
nations), and therefore, many data packets are dropped when a sink node temporarily
gets the highest potential within its communication range owing to control inputs. If
the sub-controller provides an optimal feedback to several sensor nodes where only
some data packets arrive, the number of data packet drops will be smaller. With a
lower r, sink nodes are more likely to be assigned higher potential values as the sub-
controller can make large changes to the potentials, whereas the recovery speed of
data packets delivered to each sink node increases. This indicates that there is trade-
off between the convergence speed of potentials and potential fluctuations.

In Section 4.4, we have shown that our proposal can adapt to frequent and massive
environmental changes.

4.5. Integration of Two Different Networks
We finally evaluate how our proposal works when a new sub-network is added to the
network. The network model shown in Figure 5 is used in this evaluation. First, the
network only consists of nodes of sub-networks 1, 2, and 3. Then, at 200 steps from
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Fig. 7. Data packets delivered to each sink node in case of traffic changes

the beginning of the simulation, sub-network 4 is added to the network. To evaluate
the influence of the addition of a new sub-network, and not that of traffic changes, the
data packet generation rates of all sensor nodes are fixed at 0.050 packets/step, and
therefore, F before the addition of a new sub-network is given by

f̄n =

{
−1.0, if n ∈ N 1

sen ∪N 2
sen ∪N 3

sen
1.0×|N 1

sen|+|N 2
sen|+|N 3

sen|
|N 1

sin|+|N 2
sin|+|N 3

sin|
, if n ∈ N 1

sin ∪N 2
sin ∪N 3

sin
. (20)

Then, F after the addition of a new sub-network is given by

f̄n =

{ −1.0, if n ∈ Nsen
1.0×|Nsen|

|Nsin| , if n ∈ Nsin
. (21)

In this evaluation, we set degrees (h, hsub) to (6, 2) before the addition of a new sub-
network at 200 steps, whereas we set (h, hsub) to (8, 2) after 200 steps with PBR-h-opt-
mr. After the addition of a sub-network, we increase the degree h of the estimation
model for the central controller because the number of nodes in the entire network
increases. With PBR-opt-mr, we set degree hex to 6, 8 before and after the addition
of a new sub-network, respectively. Other simulation settings are the same as in Sec-
tion 4.4.

Figure 8 shows the potential changes with PBR-no-ctrl, PBR-opt-mr, PBR-h-opt, and
PBR-h-opt-mr, and Table V shows the convergence time of potentials. The figure plots
X(t) against step s. As the figure and table show, the convergence speed of potentials
is improved by 1.87 times with PBR-opt-mr, 2.02 times with PBR-h-opt, and 2.75 times
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Fig. 8. Potential convergence in case of addition of new sub-network

Table V. Potential convergence time in the case of adding a new
sub-network

Scheme Convergence time [step]
PBR-no-ctrl 234.71

PBR-opt-mr (hex = 8) 125.33
PBR-h-opt 116.28

PBR-h-opt-mr (h = 8, hi = 2) 85.500

with PBR-h-opt-mr. This indicates that both the hierarchical optimal feedback mecha-
nism and the non-hierarchical one can enhance the convergence speed in cases where
a new sub-network is added to the network.

The dynamics of potentials depends on the network topology, and therefore, the es-
timation model of the dynamics also depends on the network topology. In other words,
unlike cases of traffic changes (Subsections 4.3 and 4.4), the estimation model needs to
be redesigned when topological changes occur. With PBR-opt-mr, the estimation model
needs to be redesigned entirely and the computational cost for redesigning is given by
O(h3). On the contrary, with PBR-h-opt and PBR-h-opt-mr, the estimation model is de-
signed for each sub-network. Therefore, only the estimation model of the sub-network
whose topology changes needs to be redesigned and the computational cost is given by
O(N i3) and O(hi3) with PBR-h-opt and PBR-h-opt-mr, respectively. The degree of the
approximation model for a sub-network is generally smaller than that for the entire
network. Consequently, the computational cost for redesigning the estimation model
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due to topological changes is smaller with the hierarchical optimal feedback mecha-
nism (PBR-h-opt-mr) than that with the non-hierarchical one (PBR-opt-mr).

In conclusion, hierarchical optimal feedback by several controllers can work with low
computational cost even in the case of topological changes in the network. Specifically,
owing to the high adaptability to the integration of several networks as shown in this
evaluation, our proposal can be adapted to much larger-scale networks.

5. CONCLUSION AND FUTURE WORK
In self-organizing systems, each component behaves according to only local informa-
tion, which leads to slow convergence. We propose and evaluate potential-based rout-
ing with hierarchical optimal feedback using a reduced-order model, in which several
controllers monitor and estimates system states, and provide optimal feedback in a hi-
erarchical manner. Simulation results have shown that hierarchical optimal feedback
using a reduced-order model can facilitate the convergence of potentials while reduc-
ing costs for collecting system information and estimating system dynamics. Moreover,
our proposal has high scalability because the computational cost is much smaller than
in the non-hierarchical scheme.

However, some challenges still need to be overcome. First, the optimal feedback
mechanism assumes that the controller has information about the network topology
and flow rates, which reduces the practicality of our proposal. Second, the potential
convergence is achieved as a result of the iterative behavior, i.e., the controller’s opti-
mal feedback and nodes’ potential updates, and therefore, the potential cannot con-
verge if environmental changes occur more frequently than the iterative behavior.
Third, the controllability and stability of the networks depends on the network topol-
ogy. Finally, the optimal control improves the convergence speed of potentials but also
causes potential fluctuations, as shown by the simulation results. These fluctuations
lead to data packet drops because sink nodes temporally have the highest potentials
between their neighbors. There is a trade-off between the improvement of the potential
convergence speed and the potential fluctuations.

We are now studying a predictive control method that can adapt to the dynamically
changing network. For this purpose, it would be a promising direction to design a
controller based on Bayesian inference.
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