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and robust. However, the uncertainty of information (with regard to incompleteness, vagueness, and dy-
namics) in self-organizing systems makes it difficult for them to work appropriately in accordance with the
network state. In this study, we apply a model of the collective decision-making of animal groups to enable
self-organizing control mechanisms to adapt to information uncertainty. Specifically, we apply a mathemat-
ical model of collective decision-making that is known as the effective leadership model (ELM). In the ELM,
informed individuals (those who are experienced or well-informed) take the role of leading the others. In
contrast, uninformed individuals (those who perceive only local information) follow neighboring individuals.
As a result of the collective behavior of informed/uninformed individuals, the animal group achieves consen-
sus. We consider a self-organizing control mechanism using potential-based routing with an optimal control,
and propose a mechanism for determining a data-packet forwarding scheme based on the ELM. Through
evaluation by simulation, we show that, in a situation in which the perceived information is incomplete and
dynamic, nodes can forward data packets in accordance with the network state by applying the ELM.
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1. INTRODUCTION
Self-organization is a promising approach for controlling complicated, large-scale net-
works. The components of a self-organizing system behave automatically and au-
tonomously based on simple rules and local interactions among components. This
leads to the emergence of global patterns or behavior at a macroscopic level [Dressler
2008; Müller-Schloer et al. 2011; Prokopenko 2014]. The bottom-up mechanism leads
to low communication and computational costs for such emergence. However, in prac-
tice there are some challenges to using self-organizing control systems in industrial
and business systems.

In most self-organizing systems, components have access to only local information.
Although this feature certainly lowers communication and computational costs, it also
sometimes leads the system to a solution that is only locally optimal. Moreover, the in-
formation that is available to components tends to be uncertain (i.e., incomplete, vague,
or dynamic) because of effects such as noise and fluctuation and because systems tend
to change dynamically, so information that components have already collected can be-
come outdated.

To address the issue of information uncertainty, we apply the collective decision-
making of swarms [Zhang et al. 2008; Conradt 2011; 2013] to self-organizing control
systems. In swarms of animals such as birds, fish, and insects, the ability and energy
of an individual is limited; a single member of a swarm perceives only itself and its sur-
rounding environment. However, convergence to a state in which all individuals make
the same, correct decision is achieved through local interactions among individuals. In
this study, we apply the effective leadership model (ELM) [Couzin et al. 2005; Conradt
et al. 2009], in which there are two types of individuals: those who are informed and
those who are uninformed. Informed individuals take leadership roles; using their su-
perior knowledge and experience, they can make correct decisions in accordance with
the states of the swarm and the surrounding environment. In contrast, uninformed
individuals perceive only the states of neighboring individuals and duly follow them.
Consequently, uninformed individuals follow informed individuals, and this leads all
individuals to make the same, correct decision. With the ELM, it has been demon-
strated that the fraction of leaders required for an identically correct decision to be
made diminishes with the size of the swarm [Couzin et al. 2005], thereby indicating
that the ELM is highly scalable. Moreover, it is worth noting that decision-making is
achieved without individuals knowing which individuals are the informed ones.

We apply the ELM to an optimal control mechanism for self-organizing systems that
we proposed in previous work [Kuze et al. 2016]. In self-organizing control systems
with this optimal control mechanism, an external controller monitors the system ’s
state via partial nodes known as controlled nodes, and provides control feedback to
them for faster convergence of self-organization. In other words, controlled nodes col-
lect a larger amount of information about the system than do the other nodes, and are
informed by the external controller as to how they should behave, thereby accelerating
convergence. We view the controlled nodes as leader nodes (corresponding to informed
individuals in the ELM) that lead all nodes in the system to make the same, correct
decision.

In this study, we consider potential-based routing with the optimal control mecha-
nism for wireless sensor networks (WSNs). Potential-based routing is a self-organizing
routing mechanism in which a gradient field (known as a potential field) is used to
determine the forwarding in a self-organizing manner. The next-hop nodes of data
packets are determined stochastically in accordance with the potential field. However,
which data-packet forwarding scheme is appropriate depends on the state of the sys-
tem. For example, data packets should not be forwarded based on the potential field if
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Fig. 1. Potential-based routing

that field is changing, because data packets could be forwarded to incorrect nodes. To
address this problem, we propose a mechanism for determining the data-packet for-
warding scheme based on the ELM. Note that although potential-based routing and
WSNs are good examples of the application of the ELM, it can in fact be applied to
many other mechanisms, situations, and environments.

The remainder of this paper is organized as follows. In Section 2, we briefly ex-
plain potential-based routing and how it can be improved by using an optimal control
mechanism. In Section 3, we propose and explain data packet forwarding based on
collective decision-making to deal with information uncertainty. We then conduct sim-
ulation experiments to demonstrate the advantages and properties of our proposed
scheme. Finally, we give our conclusions and mention possible future work.

2. POTENTIAL-BASED ROUTING WITH AN OPTIMAL CONTROL MECHANISM
Potential-based routing is a self-organizing routing mechanism in which each node
chooses a route by means of a hop-by-hop forwarding rule. Such mechanisms are ac-
tively used in the fields of WSNs, mobile ad-hoc networks, and information-centric
networks [Kominami et al. 2013; Basu et al. 2003; Jung et al. 2009; Wu et al. 2008;
Sheikhattar and Kalantari 2014; Eum et al. 2014; Lee et al. 2014]. Here, we assume
that potential-based routing is used in a WSN in which information gathering is infre-
quent and the capacity of each node is strictly limited.

In potential-based routing, each node has a scalar value called its potential, and
data packets are forwarded to a neighbor whose potential is lower than that of the for-
warder. In WSNs, data packets are generally sent to a sink node, and a smaller number
of hops to the sink node is reflected in a lower potential value. The simple forwarding
rule to “forward data to a neighboring node with a lower potential” can therefore re-
sult in data packets gathering at sink nodes, as illustrated in Figure 1. Potential-based
routing is highly scalable because each node uses only local information to calculate
potentials and uses a local rule to forward data. In Sections 2.1 and 2.3, we describe a
method for constructing a potential field and show how to use it to select the next hop
node.

2.1. Potential-field Construction
Sheikhattar and Kalantari [Sheikhattar and Kalantari 2014] focused on the conver-
gence of potential-based routing and enhanced the potential convergence speed. They
proposed a potential-calculation method based on not only current potentials but also
prior potentials to accelerate the convergence. The potential θn(t) of node n at time t is
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given by

θn(t+ 1) = θn(t) + α(θn(t)− θn(t− 1)) + βσn

 ∑
k∈N (n)

{θk(t)− θn(t)}+ fn(t)

 . (1)

Here, N (n) is the set of the neighbors of node n, and α is a weighting parameter for the
increase in potential from time t− 1 to t when calculating the potential at t+1. Larger
values of α mean that the amount by which the potential changes is more important
and, therefore, the system becomes less subject to current noise but it converges more
slowly. The parameter β determines the amount of influence exerted by the potentials
of neighboring nodes. The node-dependent weighting σn is defined as σ0/|N (n)| (where
σ0 is a parameter), and fn(t) corresponds to the flow rate of node n at time t. For
sensor nodes, fn(t) is a negative value that indicates the data-generation rate; this
rate is generally application-dependent.

In contrast, for sink nodes, fn(t) is a positive value that determines the rate at which
data packets are delivered to the node. The network manager can set the data-packet
delivery rate to an arbitrary value. If the flow-conservation constraint is satisfied (i.e.,∑

n∈{1, ··· , N} fn(t) = 0), then a potential field is constructed such that the actual rates
at which data packets are delivered to nodes satisfy the given flow rates (i.e., all gradi-
ents). Specifically, the potential differences between next-hop nodes correspond to the
appropriate flow rates.

2.2. Potential-field Construction with Optimal Control
We now describe our construction of a potential-field with an associated optimal con-
trol mechanism using a method that we proposed in previous work [Kuze et al. 2016].
The convergence of potentials based on Equation (1) is faster than that of simple Ja-
cobi iterations (as used in our previous work [Kominami et al. 2013]), but it still takes
a long time to converge because the calculation is based on local information only. We
therefore introduce a controller to observe and estimate the network state (potential
values) and to regulate the potentials of a partial set of nodes to achieve faster conver-
gence.

The controller monitors network information, in particular the potential values of a
partial set of nodes, which we call the observable nodes. The controller then returns
suitable control inputs to a partial set of nodes, which we call the controllable nodes,
to accelerate the convergence of the potential distribution toward the target potential
distribution. We assume that the controller has direct connections with the controlled
nodes to regulate their potentials. The controller collects the potential information of
observable nodes via controlled nodes, as illustrated in Figure 2. The controller cannot
directly access node potentials of non-observable nodes, but it can estimate them by
utilizing a model of the potential dynamics, which describes potential changes based
on local node interactions.

Note that information about the network topology and the flow rates of nodes is
needed to design a controller and to calculate target potential values. Such information
is difficult to estimate, and is reported to the controller only when it changes because
we assume that the intervals over which the network topology and flow rates change
are lower than the convergence time of the potentials. This assumption is plausible
because potential convergence is generally achieved as a result of iterative behavior
(nodes’ potential updates and the controller’s feedback) in potential-based routing with
optimal feedback. This requires the frequencies of potential updates and controls to be
much higher than those of changes in the network topology and flow rates.
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Fig. 2. Potential-based routing with controller feedback in which an external controller collects potential
values from observable nodes and periodically provides control inputs to controllable nodes.

2.2.1. Network Dynamics. Let the dynamics of potentials be given by a determinis-
tic discrete-time model. Nodes interact locally with each other to update their po-
tentials. With our proposed mechanism, the controller sends feedback inputs u(t) =

[η1(t) · · · ηNctrl
(t)]

T to Nctrl controllable nodes to facilitate potential convergence. In
this study, the update rule of each potential is the same as that in [Sheikhattar and
Kalantari 2014], except for the controllable nodes. Node n updates its potential at
time t by

θn(t+ 1) = (α+ 1)θn(t)− αθn(t− 1) + βσn

 ∑
k∈Nb(n)

{θk(t)− θn(t)}+ f̄n

+ ηn(t). (2)

If node n is not controllable, then ηn(t) = 0. We set σn to a constant value σ (0 <
σ < 1) for all n (∈ {1, · · · , N}) because the original value of σn (σ0/|N (n)|) proposed
in [Sheikhattar and Kalantari 2014] leads to oscillation of potentials in some situa-
tions.

Next, we describe the potential dynamics of the network. The potential values of
N nodes in the network are described as a vector Θ(t) = [θ1(t) · · · θN (t)]

T using
θn(t) = [θn(t) θn(t+ 1)]. The potential dynamics of the network are given by Equa-
tion (3) using the flow matrix F i and control inputs ui:

Θ(t+ 1) = AΘ(t) + (Eu(t) + βσF )⊗
[
0
1

]
, (3)

where

A = IN×N ⊗
[

0 1
−α α+ 1

]
− Γ⊗

[
0 0
0 βσ

]
. (4)

Matrix IN×N is the N ×N identity matrix, and Γ corresponds to the graph Laplacian,
which represents the network topology. The (N ×Nctrl)-matrix E specifies the control-
lable nodes: that is, element eij ∈ {0, 1} of E is 1 if and only if node i receives the j-th
element of u(t) as control input ηi(t).

Under these dynamics, the target potential distribution is given by a solution of

(I2N×2N −A)Θ̄ = βσF ⊗
[
0
1

]
. (5)
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The controller calculates the target potential distribution of the network to calculate
the control inputs.

2.2.2. Optimal Controller Design. We now explain how the controller calculates the con-
trol feedback given to the controlled nodes. To calculate the control inputs u, the
controller monitors the potentials Y of the observable nodes in the network via the
controllable nodes. The (2Nobs × 1)-vector Y (t) is given by Y (t) = HX(t) using
X(t) = Θ̄ − Θ(t), the gap between the current and target potential values. Nobs is
the number of observable nodes in the network, and the (2Nobs × 2N)-matrix H deter-
mines the observable nodes. The element h(2n, 2m), h(2n+1, 2m+ 1) ∈ {0, 1} of H is 1
if and only if the controller monitors the potential value of node m as the nth element
of Y .

The controller estimates X(t) from the observable information Y , and then calcu-
lates the control inputs u. The (2N × 1)-vector X̃(t) is the estimation of X(t) by the
controller, where X̃(t) and u(t) are given by

X̃(t+ 1) = AcX̃(t) +BcY (t), (6)

u(t) = CcX̃(t) +DcY (t). (7)

If X̃i(t) is close to zero, then the potentials are estimated to be close to their target
values. Ac, Bc, Cc, and Dc are design parameters.

Concerning the performance criteria, let us define

ϕ(k) = X(k)TX(k) + ru(k)Tu(k)

as the stage cost, where r specifies the trade-off between convergence speed and input
energy. With a larger r, control inputs become smaller and the stability of the system
is enhanced. Specifically, potentials change more gently; however, the convergence of
the potentials is slower. Our design objective is then to minimize the worst-case error

sup
d

∑∞
k=0 ϕ(k)∑∞

k=0 d(k)
Td(k)

.

This min–max-type problem is called H∞ optimization [Zhou et al. 1995].
With the estimation model described by Equations (6)–(7), which has 2N state

variables, the optimal feedback u(t) is calculated with computational cost O(N2). To
reduce the computational cost, the controller uses reduced-order models that have
h (< 2N ) state variables [Zhou et al. 1995; Antoulas et al. 2006] for which the com-
putational cost is O(h2). The details are explained in previous work [Kuze et al. 2016].

2.3. Routing
A node with a data packet forwards it according to the potential values of itself and its
neighbors. In our potential-based routing, when a sensor node generates or receives
a data packet, it probabilistically selects a subsequent node that has a lower poten-
tial value than its own, and the packet eventually arrives at a sink node in this way.
Specifically, a next-hop node is selected with a probability that is proportional to the
difference of potential values: the probability pn→j(t) that sensor node n selects neigh-
bor node j as the next-hop node for a data packet at time t is given by

pn→i(t) =

{
θn(t)−θi(t)∑

k∈Nl(n){θn(t)−θk(t)} , if i ∈ Nl(n)

0, otherwise
, (8)

where Nl(n) is the neighbor node set of node n that are assigned lower potential values
than node n. In other words, θn(t)−θi(t) > 0 for all i (∈ Nl(n)). If node n has no neighbor
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node with lower potential, that is, |Nl(n)| = 0, then the data packet is not sent to any
node and is dropped; however, this generally occurs only in transient cases, such as
node failures or changes of potential values at the sink node.

3. DATA PACKET FORWARDING BASED ON COLLECTIVE DECISION-MAKING TO DEAL
WITH INFORMATION UNCERTAINTY

We now propose a mechanism for determining a scheme for data-packet forwarding
based on the ELM.

3.1. Overview
The ELM [Couzin et al. 2005; Conradt et al. 2009] is a mathematical model that de-
scribes collective decision-making in swarms. There are two types of individuals: in-
formed ones and uninformed ones. Informed individuals that have a preferred direc-
tion lead uninformed individuals in that direction. In contrast, uninformed individuals
perceive only the positions and velocities of their neighbors in order to follow them. As
a result, all individuals in the group go in an accurate direction.

For potential-based routing with optimal control, we introduce the concept of leader
nodes and follower nodes, corresponding to informed individuals and uninformed in-
dividuals, respectively. We consider controlled nodes to be leader nodes, and the oth-
ers to be follower nodes. This is because the controller collects information about the
system via controlled nodes so that controlled nodes have a larger amount of infor-
mation than the others, which allows controlled nodes to determine which forwarding
scheme should be used for data-packet forwarding. Leader nodes, whose role is to guide
follower nodes, use the collected information to determine which forwarding scheme
is preferred, and make their decision accordingly. In contrast, follower nodes decide
which forwarding scheme to use in accordance with the decisions of their neighbors.

We explain the ELM briefly in Subsection 3.2. We then describe our scheme in Sub-
section 3.3.

3.2. Effective Leadership Model
Given a group of N individuals, individual n has position vector cn(t) and velocity
vector vn(t) at time t. Individuals move at a distance from each other to avoid collisions.
If there are individuals within distance α, individual n changes its direction to be
farther from them. The desired direction dn(t) of individual n at time t is updated by

dn(t+∆t) = −
∑

i∈Nb(n,α)

ci(t)− cn(t)

|ci(t)− cn(t)|
, (9)

where Nb(n, α) is the set of individuals within distance α from individual n. Otherwise,
uninformed individual n determines its direction by following neighboring individuals,
and updates its desired direction by

dn(t+∆t) =
∑

i∈Nb(n,ρ)

ci(t)− cn(t)

|ci(t)− cn(t)|
+

∑
i∈Nb(n,ρ)

vn(t)

|vn(t)|
, (10)

where ρ corresponds to the range that individuals can perceive.
In contrast, informed individual n determines its desired direction d′

n(t) based not
only on the local coordination but also on the preferred direction gn. Its desired direc-
tion is calculated by

d′
n(t+∆t) =

d̂n(t+∆t) + ωgn

|d̂n(t+∆t) + ωgn|
, (11)
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where d̂n(t + ∆t) = dn(t + ∆t)/|dn(t + ∆t)|. The parameter ω (≥ 0) determines the
weight of the preferred direction to the desired direction. The larger the value of ω, the
more an informed individual attempts to go in its preferred direction. On the contrary,
the smaller the value of ω, the more the individual is influenced by local coordination.
In the original context, ω was regarded as the degree of assertiveness [Conradt et al.
2009].

3.3. Data-packet Forwarding Mechanism Based on the Effective Leadership Model
We propose a mechanism for determining a data-packet forwarding scheme based on
the ELM. In our proposal, a node decides based on the ELM which forwarding scheme
it uses when transmitting data packets. Note that a node does not move in itself and
we do not consider the mobility of nodes in this paper.

A node n with a data packet selects forwarding scheme ri from the set R =
{r1, · · · , rM} of forwarding schemes and uses it to forward the data packet. Node n
has a decision vector cn(t) = [c1n(t), · · · , cMn (t)], and stochastically selects a forwarding
scheme in accordance with cn. Element cin is a real value, and its lower and upper
bounds are cimin and cimax (i.e., cin ∈ [cimin, c

i
max] for all nodes n). The probability that

node n selects scheme i at time t is given by

P i
n(t) =

cin(t)∑
j∈{1,··· ,M} c

j
n(t)

. (12)

The larger the value of cin, the more likely node n is to select scheme i.
Decision vector c is updated based on the ELM. Follower node n updates its decision

vector cn with local coordination by

cn(t+ 1) =
∑

n′∈Nb(n)

cn′(t)

|Nb(n)|
+ δn(t)

∑
n′∈Nb(n)

cn′(t)− cn′(t− 1)

|Nb(n)|
, (13)

where Nb(n) is the set of neighboring nodes of node n. Equation (13) corresponds to
the direction update of uninformed individuals, as described in Equation (10). Vector
δn = {δ1n, · · · , δMn } is a parameter vector that determines the weight given to the change
of c of the neighboring nodes. Element δin is given by

δin(t) =

 cimax −
∑

n′∈Nb(n)
ci
n′ (t)

|Nb(n)| , if
∑

n′∈Nb(n)
ci
n′ (t)

|Nb(n)| ≥ cimax/2∑
n′∈Nb(n)

ci
n′ (t)

|Nb(n)| − cimin, otherwise
. (14)

In contrast, leader node n updates its decision vector cn using both local coordination
and its preferred decision vector gn by

c′n(t) = (1− ω)cn(t) + ωgn(t), (15)

where ω ∈ [0, 1] is a parameter that determines the weight given to the preferred
decision vector g. The larger the value of ω, the more leader node n is influenced by its
preferred decision vector.

4. PERFORMANCE EVALUATION
4.1. Overview
We conducted a computer simulation to demonstrate the advantages and properties
of our proposed scheme. We first show in Section 4.3 that, in our proposed scheme
based on ELM, nodes can select the proper forwarding scheme according to the net-
work condition. Then, we investigate in detail the properties of our proposed scheme
in Sections 4.4 and 4.5.
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For the network simulator, we use an event-driven packet-level simulator written
by us in Visual C++ that calls MATLAB functions dlqr to design an optimal central
controller and sub-controllers with PBR-h-opt and PBR-h-opt-mr, dhinflmi to design
an optimal external controller with PBR-opt-mr, and balred to obtain a reduced-order
model with PBR-opt-mr and PBR-h-opt-mr on a 64-bit PC with a 2.70-GHz Intel Xeon
CPU and 64.0 GB of memory. In the MAC layer, each node sends information about its
own potential to its neighbors for their potential updates using intermittent receiver-
driven data transmission (IRDT) [Kominami et al. 2013], which is an asynchronous
receiver-driven data transmission protocol. We use a disk model as a physical layer
model in which data packets drop with 100% probability if they collide with each other.
Because the capacity of each sensor node is limited in a WSN, we set the queue size of
each sensor node to 1.

In the simulator, nodes are not synchronized. Nodes do not match their timing to
receive feedback from the controller or to update their potentials. We set the interval
of the control feedback by the controller, and that of potential updates in nodes, to
be equal so that the controller can estimate the dynamics of the network with small
errors.

4.2. Simulation Settings
In this evaluation, nodes select a scheme for data-packet forwarding from two types
of scheme: potential-based forwarding and hop-based forwarding. Leader nodes choose
a preferred scheme in accordance with the state of the potential field. If the potential
value changes by only a small amount, the leader nodes assume that the potential
field has already converged to the target potential distribution: that is, potential-based
forwarding is preferred. Otherwise, if the potentials are changing by large amounts,
the leader nodes assume that the potential field has not yet converged, in which case
hop-base forwarding is preferred. As for the follower nodes, they select a scheme in
accordance with local coordination.

The detailed implementation is as follows. The decision vector c of nodes is given
by [cpotential, chop]

T . The proportion of nodes that select potential-based forwarding
is cpotential

cpotential+chop
, and the proportion of nodes that select hop-based forwarding is

chop

cpotential+chop
. If the amount by which the potential changes is lower than a specified

threshold, τ , the leader nodes set their preferred decision vector g to [1 0]T ; otherwise,
they set g to [0 1]T . Nodes that select potential-based forwarding choose the next-hop
nodes of their data packets stochastically in accordance with the potential field, that is,
by using Equation (8). In contrast, nodes that select hop-based forwarding send their
data packets to nodes that are close to a sink node. The assertiveness ω of the leader
nodes is set to 1. In other words, the decision vector c of a leader node is always equal
to its own preferred decision vector g. Note that cpotential and chop are initialized with
random values.

We use the network with 100 nodes that is depicted in Figure 3. This network in-
cludes four sink nodes (red dots) and 96 sensor nodes (black dots). The 96 sensor nodes
are randomly placed in a field of 550 m × 550 m; the four sink nodes are placed at the
points (137.5 m, 137.5 m), (137.5 m, 412.5 m), (412.5 m, 137.5 m) and (412.5 m, 412.5 m).
The communication range of all nodes is set to 100 m. In this evaluation, we assume
that the controller can access the potential information of all nodes with no delay.

In the MAC layer, nodes send data packets to their neighbors using IRDT [Kominami
et al. 2013]. If a node has no data packets to send, it intermittently broadcasts ID
packets to its neighbors at a specified interval to inform them that it is ready to receive
a data packet. Note that such a node also informs its neighbors of its own potential
value with an ID packet so that its neighbors can update their own potentials. A node
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Fig. 3. Network topology

Table I. Network settings

Parameter Value
Buffer size 1

Interval of ID packet emissions 0.5 s
Potential update interval 50 s
Control feedback interval 50 s

that has a data packet to send to a neighbor node does so when it receives an ID packet
from a neighbor node. The network settings are summarized in Table I. The values of
parameters (α, β, σ, r) for optimal control are set to (0.4, 0.2, 0.1, 10).

4.3. Adaptation to Environmental Changes Based on Our ELM-based Mechanism
To evaluate and demonstrate the advantages and properties of ELM-based data-packet
forwarding we consider four scenarios. First, we compare the following two cases to
evaluate the impact of selecting the forwarding scheme.

— Without data-packet-forwarding selection. Nodes forward data packets with an iden-
tical forwarding scheme (potential-based or hop-based forwarding).

— Data-packet forwarding based on ELM with leaders sharing their preferred decision
vectors. There are leaders and followers. Leaders update their decision vectors with
the same preferred decision vector. Specifically, each leader shares information about
its own preferred decision vector and uses the one that is preferred by most lead-
ers to update its decision vector. Followers update their decision vectors using local
coordination.

At the beginning of the simulation, the potential values of all nodes are initialized
to zero. During the first 1, 000 s, each node exchanges its potential value with neighbor
nodes and updates its potential value so that the potential values are stabilized. At
1, 000 s, data packets begin to be generated at sensor nodes according to the Poisson
process for their flow rates. At 10, 000 s after the start of the simulation, the data-
generation rates at the nodes are changed. We evaluate the changes in the decision
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Fig. 4. Potential changes

vectors, data packets delivered to each sink node, and data-packet delays after traffic
changes.

The data-generation rates are set initially to 0.02 packets/s for the sensor nodes in
the left-hand half of the network depicted in Figure 3, and to 0.06 packets/s for the
remaining sensor nodes. After the traffic change at 10, 000 s, the data-generation rates
are increased to 0.06 packets/s for the sensor nodes in the left-hand half, whereas those
for the remaining sensor nodes are decreased to 0.02 packets/s. Note that we construct
the potential fields such that all sink nodes can receive data packets at equal rates
because load balancing is known to be a challenging task for a WSN. We set the four
sink nodes to be controlled nodes that receive control feedback from the controller. The
four sink nodes are also set to be leader nodes that guide the other nodes to their
preferred states.

Figure 4 shows potential changes against time. The horizontal axis represents the
elapsed time after traffic changes, and the vertical axis represents X(t) = Θ̄(t)−Θ(t),
the difference between each potential and its target value. The colored lines corre-
spond to sink nodes, whereas the gray lines correspond to sensor nodes. Note that the
potential changes do not depend on changes in the decision vectors.

Figure 5 shows the results for the case in which data-packet forwarding is based
on effective-leadership nodes. In that figure, the horizontal axes represent the elapsed
time after traffic changes. The vertical axes in Figures 5(a) and 5(b) represent the
values of cpotential and chop, respectively. Figure 5(c) shows the numbers of data pack-
ets delivered to each sink node in the previous 100 s and their average values. Fig-
ure 5(d) shows data-packet delays before arrival at sink nodes, averaged over the pre-
vious 100 s. In this case, leader nodes change their decision vectors [cpotential chop]

T

to [0 1]T just after traffic changes, as shown in Figures 5(a) and 5(b). This is because
leader nodes perceive changes of potentials according to traffic changes, and set their
preferred decision vectors to [0 1]T . Follower nodes follow leader nodes through local
coordination, and their decision vectors approach [0 1]T . When the potential changes
become small, the leader nodes change their preferred decision vectors to [1 0]T , and
follower nodes follow them. Under this situation, data packets are forwarded in accor-
dance with the state of the network, specifically the state of potentials, in this evalua-
tion.

For comparison, we show in Figure 6 changes in the data packets delivered to each
sink node in the case in which nodes all use the same data-packet forwarding scheme—
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(c) Data packets delivered to each sink node
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Fig. 5. Results for data-packet forwarding based on the effective leadership model (ELM)

either potential-based forwarding or hop-based forwarding. In this evaluation, the po-
tential field is constructed so that the numbers of data packets delivered to each sink
node are equal for load balancing. With potential-based forwarding, the numbers of
data packets delivered to each sink node become different after traffic changes, as
shown in Figure 6(a). This is because the potential field is reconstructed according
to the traffic changes. Roughly 3, 000 s after the traffic changes, the potentials come
close to converging to their target values, and therefore the numbers of data packets
delivered to each sink node become approximately equal.

One problem in the case with potential-based forwarding is that, during the
potential-field reconstruction, the next-hop nodes of the data packets are not selected
correctly. Consequently, the average number of data packets reaching the sink nodes
is reduced. This is because some sink nodes temporarily have the largest potential val-
ues within their communication ranges according to the control inputs, so data packets
cannot arrive at sink nodes and are sometimes dropped. In contrast, with hop-based
forwarding, data packets can be delivered to sink nodes with a small delay regardless
of environmental changes because each node forwards data packets to neighbor nodes
that are closer to a sink node. One problem with hop-based forwarding is that load bal-
ancing is not considered. The numbers of data packets delivered to each sink node are
different all the time, as shown in Figure 6(b), which indicates that traffic is concen-
trated in a part of the network. Such concentration of traffic can shorten the network
lifetime. The appropriate forwarding scheme depends on the network state.

With data-packet forwarding based on the ELM, nodes select the data-packet for-
warding scheme stochastically in accordance with the state of the potentials. For
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Fig. 6. Data packets received by each sink node when all nodes use the same mechanism for data-packet
forwarding

Table II. Data-packet drop rates during the
5,000 s after the traffic changes

Data-packet forwarding Drop rate [%]
Based on ELM 3.53
Potential-based 8.86

Hop-based 1.41

roughly 1,800 s after the traffic changes, the numbers of data packets delivered to
each sink node are different, as shown in Figure 5(c), as they are in the hop-based for-
warding case shown in Figure 6(b). This is because, according to the potential changes,
the decision vectors of nodes approach [0 1]T through leaders’ preference and local coor-
dination. The number of data packets delivered to sink nodes is also reduced just after
the traffic changes, when the decision vectors are still close to [1 0]T and the nodes are
likely to select potential-based forwarding. However, the decision vectors of the nodes
approach [0 1]T soon after and, as a result, data packets arrive at the sink nodes.

Table II gives the data drop rates during the 5,000 s after the traffic changes. Com-
pared with potential-based forwarding, the data drop rate is lower for data-packet
forwarding based on the ELM. From roughly 1,800 s after the traffic changes, the num-
bers of data packets delivered to each sink node are approximately equal, as shown in
Figure 5(c), as they are in the potential-based forwarding case shown in Figure 6(a).
This is because potentials come close to converging to their target values, and the de-
cision vectors of the nodes approach [0 1]T .

It is worth mentioning that nodes select the data-packet forwarding scheme in accor-
dance with the network state, although each follower node perceives only information
about its neighbors; that is, the information held by each follower node is incomplete.
Moreover, follower nodes do not know which nodes are leaders, and simply follow their
neighbors through local interactions. Consequently, with data-packet forwarding based
on the ELM, nodes can forward data packets in accordance with the network state even
when the perceived information is incomplete and dynamic.

Next, we evaluate the following case to demonstrate the role of the leader nodes.

— Data-packet forwarding based on only local coordination. There are no leader nodes.
Each node updates its own decision vector using local coordination, and decides
stochastically which forwarding scheme to use in accordance with its decision vec-
tor.
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Fig. 7. Results for the case in which data-packet forwarding is based on only local interactions

Figure 7 shows the results for the case in which data-packet forwarding is based on
only local coordination. In that case, both cpotential and chop converge to roughly 0.5 and
do not change, as shown in Figure 7(a) and 7(b), despite the changes in potential after
the traffic changes, as described for Figure 4. Without leader nodes, all nodes update
their decision vectors with local coordination. For this reason, the decision vector of
each node converges to the average values of all initial decision vectors. In this evalua-
tion, cpotential and chop are initialized with random values so that the average values of
the initial decision vectors are approximately 0.5. Therefore, cpotential and chop finally
converge to roughly 0.5. Moreover, because there are no leaders to update the decision
vectors with a preferred decision vector determined in accordance with the state of the
potentials, the decision vectors do not change even when the potentials are changing.

In that situation, the proportions of nodes that select potential-based forwarding
and that select hop-based forwarding are approximately equal. As a result, both the
load balancing of potential-based forwarding and the small communication delay of
hop-based forwarding are lost, as shown in Figures 7(c) and 7(d). This indicates that
leader nodes play an important role in selecting the means of data-packet forwarding
according to the network state.

Finally, we evaluate the following case.

— Data-packet forwarding based on the ELM with leaders not sharing their preferred de-
cision vectors. There are leaders and followers. Leaders update their decision vectors
with their own preferred decision vectors, whereas followers update their decision
vectors using local coordination.
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Fig. 8. Results in the case in which data-packet forwarding is based on ELM (but leaders do not share their
preferred decision vectors)

Figure 8 shows the results for data-packet forwarding based on the ELM with lead-
ers not sharing their preferred decision vectors. In this case, leader nodes change their
decision vectors [cpotential chop]

T to [0 1]T just after the traffic changes, as shown in
Figures 8(a) and 8(b), as in the case with data-packet forwarding based on the ELM
with leaders sharing their preferred decision vectors, which is shown in Figures 5(a)
and 5(b). However, some leader nodes change their preferred decision vectors to [1 0]
faster than other leader nodes. This is because the information that can be perceived
is different among leader nodes. As a result, the decision vectors of follower nodes do
not approach either [0 1] or [1 0].

In that situation, either the potential-based or hop-based forwarding scheme can be
selected for data-packet forwarding. The difference from the case in which data-packet
forwarding is based on only local coordination is that each leader node can adapt to
environmental changes and follower nodes are affected more by closer leader nodes.
This indicates that nodes can adapt to local environmental changes even if leader
nodes are in conflict with each other.

4.4. Influence of the Network Density on Adaptability
Intuitively, given a certain number of leader nodes, the speed of adaptation of follower
nodes is faster in a denser network. To investigate the influence of network density
on adaptability, we use the network shown in Figure 3, and set the communication
range of nodes to 90, 100, or 120 m. We set the four sink nodes to be controlled nodes
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Table III. The diameter and the minimum/average/maximum dis-
tance between a node and its nearest leader node in the networks
used in the evaluation of Section 4.4

Communication Diameter Distance to the leader node
range Min Avg Max

90 12 1 1.81 4
100 10 1 1.62 3
120 7 1 1.36 2

that receive control feedback from the controller. The four sink nodes are also set to be
leader nodes that guide the other nodes to their preferred states.

At the beginning of the simulation, the potential values of all nodes are initialized
to zero. During the first 1, 000 s, each node exchanges its potential value with neighbor
nodes and updates its potential value so that the potential values are stabilized. At
1, 000 s, data packets begin to be generated at sensor nodes according to the Poisson
process for their flow rates. At 10, 000 s after the start of the simulation, the data-
generation rates at the nodes are changed. At 11, 000 s and 12, 000 s, the generation
rates at nodes are changed again. Finally, at 13, 000 s, the generation rates at nodes
are changed back to the initial values. We evaluate the adaptation speed after traffic
changes (from 10, 000 s to the ending of the simulation). Note that the networks whose
communication ranges are 90, 100, and 120 m have different topologies which affects
data-packet flow and delays as well as potential changes. Therefore, in this evaluation,
we focus on the adaptation speed of the decision vectors of the follower nodes.

The data-generation rates are set initially to 0.04 packets/s for all sensor nodes. Dur-
ing 10, 000 ∼ 11, 000 s and 12, 000 ∼ 13, 000 s, the data-generation rates are set to
0.06 packets/s for the sensor nodes in the left-hand half of the network depicted in Fig-
ure 3, and to 0.02 packets/s for the remaining sensor nodes. During 11, 000 ∼ 12, 000 s,
the data generation rates are set to 0.02 packets/s for the sensor nodes in the left-hand
half, whereas those for the remaining sensor nodes are set to 0.06 packets/s. After
13, 000 s, the data generation rates are set to the initial values, that is, 0.04 packets/s
for all nodes. In this simulation, we also construct the potential fields such that all
sink nodes can receive data packets at equal rates.

We show the results of our proposal when the communication range is set to 90,
100, and 120 m in Figures 9, 10, and 11, respectively. These figures plot changes of
cpotential, chop, and potential values after traffic changes (from 10, 000 s to the ending of
the simulation).

Figures 9, 10, and 11 indicate that the adaptation of decision vectors to changes of
network condition is faster with a larger communication range. The larger the com-
munication range is, the shorter are the distances between follower nodes and leader
nodes. The influence of the leader nodes ’preferred values of decision vectors is prop-
agated hop by hop so that the speed of adaptation of the decision vectors of followers is
faster when these distances are shorter. In Table III we show the graph diameter (the
length of the longest shortest path between any two nodes) and the distance between
a node and its nearest leader node in these networks.

4.5. Influence of the Number of Leader Nodes on Adaptability
To investigate the influence of the number of leader nodes on adaptability we compare
networks with 2, 5, and 10 leader nodes.

To shorten the distance between each node and a leader node, we select leader
nodes as follows. When we select l leader nodes, we first divide the network into l sub-
networks according to coordinates of nodes using k-means clustering. We then select a
node in each sub-network as a leader node so that the maximum distance between the
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Fig. 9. Results for the case when the communication range is 90 m

leader node and nodes within the corresponding sub-network is minimized. Note that
leader nodes are also set to be the controlled nodes. The settings of traffic changes are
the same as in Section 4.4. Since the number of leader nodes affects data-packet flow
and delays as well as potential changes, in this simulation we also focus on the speed
of adaptation of decision vectors of follower nodes.

We show the results for 2, 5, and 10 leader nodes in Figures 12, 13, and 14, respec-
tively. These figures plot changes of cpotential, chop, and potential values after traffic
changes (from 10, 000 s to the ending of the simulation).

Figures 12, 13, and 14 indicate that the adaptation of the decision vectors to changes
of network condition is faster with a larger number of leader nodes. With 2 leader
nodes, as shown in Figure 12, the values of cpotential and chop of follower nodes reach at
most 0.05 and 0.95, respectively, although the potential values are changing and leader
nodes prefer to select the hop-based forwarding scheme. In contrast, with 5 or 10 leader
nodes, as shown in Figures 13 and 14, the values of cpotential and chop of followers reach
nearly 0 and 1 in 2,000 s (from 1,000 s to 3,000 s). Comparing the case with 5 leader
nodes with that with 10 leader nodes, the speeds of adaptation of the decision vectors
are not so different although the number of leader nodes increases twofold.

In conclusion, if the number of leader nodes is too small, the speed of adaptation of
decision vectors is slow, which leads slow adaptation to environmental changes. How-
ever, if the number of leader nodes is larger than a certain value (5 in the evaluation
of this section), decision vectors can adapt quickly to environmental changes. This in-
dicates that fast adaptation can be achieved with a comparatively small number of
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Fig. 10. Results for the case when the communication range is 100 m

leader nodes, which is an advantage of our proposed scheme because the deployment
cost of leader nodes is higher than that of follower nodes.

5. CONCLUSION AND FUTURE WORK
Uncertainty of information is a significant problem for the practical use of self-
organizing control systems. To develop a system that can overcome this problem,
we applied a mathematical model based on the collective decision-making of animal
groups. The model used is the effective leadership model (ELM). This enables the sys-
tem to achieve consensus even under adverse conditions. In this study, we considered
a network using potential-based routing with optimal control and supplemented it
with a variant of the ELM applied to the selection of a packet-forwarding scheme by
network nodes. Through computer simulations, we demonstrated the advantages and
properties of our proposed scheme.

In future work, we will investigate the relationships among network size, leader
node proportion, and performance in other information networks. In the original ELM,
it has been demonstrated that the fraction of informed individuals required to achieve
consensus decreases as the group becomes larger [Couzin et al. 2005]. Moreover, we
intend to investigate the influence of information ambiguity.
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Fig. 11. Results for the case when the communication range is 120 m
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Fig. 13. Results in the case with 5 leader nodes
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Fig. 14. Results in the case with 10 leader nodes
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