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Percolation analysis for constructing a
robust modular topology based on a
binary-dynamics model
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Abstract
In the context of Internet of Things, virtualization of wireless sensor networks is a crucial technology for sharing sensors
as infrastructure. In our previous work, we proposed a brain-inspired method for constructing a robust and adaptive vir-
tual wireless sensor network topology and showed that the method of constructing links between modules has crucial
effect on robustness and adaptivity of the constructed virtual wireless sensor network topology. However, the best way
of constructing a robust and adaptive virtual wireless sensor network topology is still unclear. Therefore, in this article,
we use an analytical approach and propose a method for clarifying robustness of a topology according to the method of
constructing links between modules. We add a new tool to a binary-dynamics model which is an analytical method for
investigating percolation dynamics on a modular network. Evaluation by simulation showed that graphs in which the
number of nodes selected as endpoint nodes of inter-module links and the degrees of the endpoint nodes before the link
addition are large have robust connectivity in terms of the point of fragmentation of the network into modules when we
fix the degree of the endpoint nodes after the link addition. After the point, the internal structure of modules may mat-
ter more. We additionally investigate an applicable range of our proposed method.
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Introduction

In the context of Internet of Things, various devices,
such as sensor nodes or actuator nodes, are deployed
all over the world and each subset of them compose a
local network. When we consider user’s various service
demands, these networks are required to cooperate
with each other. Therefore, mechanisms for sharing
networks as infrastructure are quite important. As a
crucial technique for sharing substrates of networks,
virtualization of wireless sensor networks (WSNs) has
been attracting a great deal of attention.1 One way of
virtualization of WSN is to construct a logically con-
nected overlay network for each application. In a vir-
tualization scenario, multiple sensors in multiple WSNs
can be used as shared infrastructure, with some sensors

integrated for running each application. The virtualiza-
tion of WSNs improves manageability and flexibility.

When we integrate local networks, modular struc-
ture emerges. A module consists of a group of nodes
connected densely by a large number of intra-module
links and modules are connected sparsely by a few num-
ber of inter-module links. Such modular structure can
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be seen in many real networks such as Internet, social
networks, or biological networks. An artificial network
integrated by interdependent systems is highly vulnera-
ble to targeted attacks or cascading failures and results
in fragmentation.2 In sensor networks, the robustness
of the connectivity is a crucial issue because the robust
structure of the networks leads to low overhead of
maintaining stable services running over them. The
study of the way of connecting sensor networks to earn
the robustness thus leads to improve the cooperation of
deployed sensor devices. Therefore, it is important to
investigate effect of modular connection pattern on effi-
ciency of a network, especially robust connectivity.

In our previous work, we proposed a brain-inspired
method for constructing a robust and adaptive virtual
wireless sensor network (VWSN) topology.3 We
showed that the method of constructing links between
modules has crucial effect on robustness and adaptivity
of the resulting VWSN topology.3 However, the best
way of constructing a robust and adaptive VWSN
topology, and particularly of constructing links
between modules, is still unclear. Toward clarifying
this, we use an analytical method to study robustness
of a topology according to the method of constructing
links between modules. Note that we regard a network
topology as an undirected graph in analytical theory.

In this article, we use an analytical approach and
show the way of connecting modules so that a con-
structed network has the most robust connectivity. We
propose a method to investigate percolation dynamics
on a modular network, especially graph ensembles after
addition of inter-module links. In consideration of
addition of inter-module links, we add a new tool to a
binary-dynamics model4 which is an analytical method
for estimating robustness of modular networks.

Our main contribution is that our analytical method
considers the link addition and can be applied to make
a policy for embedding a new link. Existing studies can
be applied only for estimating robustness of given
graph ensembles. However, our proposal enables to
investigate percolation behavior according to different
embedding patterns of inter-module links when a prob-
ability distribution of intra-module graph ensembles
and that of inter-module link ensembles are given inde-
pendently. Note that rewiring strategy in which the
probability distribution does not change can make the
problem for the analytical theory simple. However, link
additions are more general than rewiring in the actual
environment. Also, our virtual topology construction
method proposed in our previous work3 is composed
of constructing intra-module topology and adding
inter-module links to connect them. Therefore, in this
article, we focus on the link additions for improving
our method proposed in our previous work.3

Through simulation evaluations, our analytical
results are in good agreement with numerical

simulations in a configuration model network.
Additionally, we show that it is hard to apply our pro-
posal to the graph in which the number of nodes is
small because the target of our approach is average
properties of random graph ensembles. For the similar
reason, we show that the result of analysis cannot com-
pletely capture the result of a percolation process on a
graph having special structural properties, such as ring-
shaped structure.

Related work

Many researchers have studied percolation processes
on various types of graphs using a generating function
approach. In this type of approach, the expected size of
the giant component of a random graph ensemble can
be derived from a probability distribution as given by a
degree distribution or a distribution of types of links.
We can then estimate robustness of a graph by evaluat-
ing percolation transitions of the size of the giant com-
ponent. However, prior studies have focused on
estimating robustness of given graph ensembles and not
considered changes in graphs, such as link additions.

A generating function approach has been proposed
for estimating robust connectivity of random graph
ensembles.5 In this method, the targeted ensemble of
random graphs is defined by a generating function
G(x), which represents a probability distribution, such
as the degree distribution, using an auxiliary variable x.
A generating function for the probability distribution
of component sizes, denoted by H(x), can then be cal-
culated from G(x). When a giant component exists, we
can calculate the size of the giant component by calcu-
lating the ratio of nodes that do not belong to the giant
component, from H(x). Note that, for commonly used
random networks (configuration model), although the
size of the giant component is related to the generating
function H(x), there is no need to calculate H(x) to
obtain the size of the giant component (although it is
possible to do so). In the simpler and more straightfor-
ward way, it is sufficient to use the generating functions
for the degree distribution (G0(x)) and for the excess
degree distribution (G1(x)) to calculate the size of the
giant component. In this research area, many research-
ers have studied percolation processes on various types
of graphs, such as random graphs,6 networks of net-
works,7 multiplex networks,8 and interdependent net-
works.9 However, the generating function approach is
complex because many auxiliary variables and generat-
ing functions are necessary, differing according to the
complexity of the targeted graphs.

Another important analytical method is a binary-
dynamics model for evaluating percolation and other
dynamic processes.4 This method is relatively simple. In
this method, the probability distribution of links is used
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to obtain the percolation behavior of the network. The
probability distribution of links represents modular
structure, degree–degree correlation within modules, and
degree–degree correlation between modules. The type of
the percolation model can be configured by changing
the definition of a response function. The detail of the
binary-dynamics model is shown in the next section. The
binary-dynamics model can be applied to broad classes
of graphs by configuring the probability distribution
according to the node types or link types.

Almost all existing methods, however, focus on eval-
uating percolation processes on graph ensembles where
a probability distribution is given, and the problem of
how to embed links for constructing a robust topology
is not examined. Therefore, we propose an analytical
method that takes into account changes in the probabil-
ity distribution due to addition of inter-module links.

Method

Binary-dynamics model

Before we explain our proposal, we explain the binary-
dynamics model in detail. For convenience of explanation,
we denote the type of a degree-k node belonging to mod-
ule i by (i, k) and the type of a link that connects (i, k)
node with (i0, k0) node by f(i, k), (i0, k0)g. The probability
distribution of links is then defined by tensor ½Pi, i0

k, k0 � in
which each element represents the probability that a ran-
domly chosen link is an f(i, k), (i0, k 0)g type link.

In the binary-dynamics model, each node takes one
of two states: active or inactive. An inactive node of
which a neighboring node is active changes its status to
active stochastically. The dynamics of binary state of
nodes can be regarded as a percolation process. The
probability that an inactive (i, k) node of which m
neighboring nodes are active changes status to active is
defined by Fi(m, k). Fi(m, k) is called response function.
Note that we can change the way of percolation by
configuring only Fi(m, k).

In the binary-dynamics model, when the probability
that an (i, k) node is active at time step n is denoted by
qi

k(n), the probability that a neighbor node of an inac-
tive (i, k) node is active at time step n is given by

�qi
k(n)=

P
i0, k0

P
i, i0

k, k0q
i0

k0 (n)P
i0, k0

P
i, i0

k, k0

ð1Þ

Then, qi
k(n) is given by

qi
k(n+ 1)= ri

k(0)+ (1� ri
k(0))Xk�1

m= 0

k � 1

m

� �
3 (�qi

k(n))
m(1� �qi

k(n))
k�1�mFi(m, k)

qi
k(0)= ri

k(0)

ð2Þ

where ri
k(0) is the ratio of the number of active (i, k)

nodes to all (i, k) nodes at the initial step. The ratio of
the number of active (i, k) nodes to all (i, k) nodes at
step (n+ 1) is then given by

ri
k(n+ 1)= ri

k(0)+ (1� ri
k(0))

Xk

m= 0

k

m

� �

3 (�qi
k(n))

m(1� �qi
k(n))

k�mFi(m, k)

ð3Þ

From the above, the ratio of the number of active
nodes to all nodes at step n, denoted as r(n), is given by

r(n)=
X

i

P
i0, k, k0

P
i, i0
k, k0
k

P
i, i0, k, k0

P
i, i0
k, k0
k

ri(n) ð4Þ

where ri(n)=
X

k

P
i0, k0

P
i, i0
k, k0
k

P
i0, k, k0

P
i, i0
k, k0
k

ri
k(n) ð5Þ

In percolation, the ratio of the active nodes to all
nodes at which the dynamics (i.e. the iterative calcula-
tion of equations (1), (2), and (4)) converge describes
the size of the giant component. Thus, r(n) for n! ‘

describes the size of the giant component consisting of
active nodes when the dynamics converge.

It is true that P
i, i0

k, k0 for the newly created network can
be easily calculated, given the adjacency matrix of the
network after inter-module links addition. However,
the P

i, i0

k, k0 derived from an adjacent matrix after inter-
module links addition denotes only one example, and
we only get the robustness of the adjacent matrix. In
this strategy, we need to try the whole connection pat-
terns of inter-module links to make topology robust
and it is only one result in the situation. This can result
in tremendous overhead. In contrast, our method can
get the expected robustness of the topology classified
according to the strategy of inter-module links addition.
Then, our approach narrows the candidates of the link
addition strategy to get the robust topology with low
overhead when the number of nodes is large. Therefore,
our approach can show the policy to make topology
robust according to the link addition strategy.

Deriving link probability distribution after addition of
inter-module links

To investigate differences in robustness depending on
the connection patterns between modules using the
binary-dynamics model, we analyze site percolation
when the connection patterns between modules are
changed and the probability distribution of links within
each module is given. However, we need to consider the
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change in the probability distribution of links within
each module according to addition of inter-module
links.

In this article, we consider that two previously iso-
lated modules are connected by newly created a fixed
number of inter-module links, and that these links con-
nect a number of nodes with a fixed degree k in module
i to a number of nodes with a fixed degree k0 in module
i0 such that the degrees of nodes that receive the inter-
module links are raised from k to d or from k0 to d0.

First, we define tensor ½Prev
i, i
a, b� in which each ele-

ment represents the probability that a randomly chosen
edge is present in the network and connects a degree-a
node to a degree-b node both located in module i. It is
actually the probability distribution of links considering
the newly added inter-module links but also neglecting
the new degrees of the boundary nodes. Because we use
the probability distribution of links between modules as
the target value, we define tensor ½Target

i, i0

a, b� in which
each element represents the probability that a randomly
chosen link is an f(i, a), (i0, b)g type link. Because tensor
½Prev

i, i
a, b� is for intra-module links and tensor ½Target

i, i0

a, b�
is for inter-module links, the conditions of equation (6)
are satisfied

Prev
i, i0

a, b = 0, for i 6¼ i0

Targeti, i0

a, b = 0, for i= i0
ð6Þ

We define Tintra as the number of links within mod-
ules and Tinter as the number of links between modules.
Then, we configure the tensors so as to satisfy the fol-
lowing equations

X
i, a, b

Prev
i, i
a, b +

X
i, i0, a, b

Target
i, i0

a, b = 1

X
i, a, b

Previ, i
a, b :

X
i, i0, a, b

Targeti, i0

a, b = Tintra : Tinter

ð7Þ

We consider the conditions specified by equations
(6) and (7) to calculate the probability distribution of
links after addition of inter-module links, denoted by

tensor ½Sub
i, i0

a, b�, using ½Prev
i, i0

a, b� and ½Target
i, i0

a, b�.
Therefore, Sub

i, i0

a, b is given by

Sub
i, i0

a, b =
Prev

i, i0

a, b +DPrev
i, i0

a, b where i= i0

Target
i, i0

a, b otherwise

(
ð8Þ

where DPrev
i, i0

a, b denotes the amount of change in the
probability distribution of links, which is what we need
to calculate. Then, we use Sub

i, i0

a, b instead of P
i, i0

k, k0 in
equations (1), (4), and (5) for analysis.

In this article, we consider the case that the number
of modules is two and the number of types of inter-
module links is one. When the type of inter-module
links is f(i, d), (i0, d0)g, it gives the following equation

Target
i, i0

a, b =
Tinter

Tintra + Tinter
where a= d, b= d0

0 otherwise

�
ð9Þ

Focusing on module i, if we consider that the degree
resulting from the addition of inter-module links is d,
then we add (d � k) links to some (i, k) nodes. Then,
Sub

i, i
k, b is smaller than or equal to Prev

i, i
k, b, and Sub

i, i
a, k is

smaller than or equal to Prev
i, i
a, k . Simultaneously, Sub

i, i
d, b

is larger than or equal to Prev
i, i
d, b and Sub

i, i
a, d is larger

than or equal to Prev
i, i
a, d . These relations can be hold

because we first configure Prev
i, i
a, b and Target

i, i0

a, b so as to
satisfy equations (7). This configuration enables us to
assume that some amount of the probability of Prev

i, i
a, k

(Prev
i, i
k, b) moves to Prev

i, i
a, d (Prev

i, i
d, b) when the inter-

module links are added in the way mentioned above
because some degree-k nodes change to degree-d nodes.

For example, we assume we use the topology shown
in Figure 1 and add an inter-module link to a degree-1
node. In this example, Prev

1, 1
a, b, Target

1, 2
a, b, and Sub

1, 1
a, b are

shown in equations (10), (11), and (12), respectively. b0

in equation (11) is some constant value. Then, we need
to derive equation (12) from equations (10) and (11)

b= 1, 2, 3

Prev1, 1
a, b =

1

26

0 0 4

0 0 2

4 2 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð10Þ

Target1, 2
a, b = Target2, 1

b, a =
1

26
where a= 2, b= b0

0 otherwise

(

ð11Þ

b= 1, 2, 3

Sub
1, 1
a, b =

1

26

0 0 3

0 0 3

3 3 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð12Þ

Figure 1. Example of inter-module link addition.

4 International Journal of Distributed Sensor Networks



Next, we define the magnitude of influence by link
addition. Here, the magnitude of influence means the
ratio of the number of intra-module links which change
their type because of the change in degree of their end-
point nodes. The magnitude of influence by link addi-
tion to a degree-k node is k times as large as that by
link addition to a degree-1 node because the number of
links changing their type is proportional to the degree
of the node that receives the inter-module links. Also,
the magnitude of influence by addition of (d � k) links
to a degree-k node is 1=(d � k) times as large as that by
addition of one link to a degree-k node because the
number of links changing their type is proportional to
the inverse of the number of links added to one node.
Therefore, in the case when the number of created
inter-module links is fixed and these inter-module links
are connected only to nodes with a fixed degree k such
that their degree is raised to d, we can define the magni-
tude of influence by adding (d � k) links to some
degree-k nodes, denoted by Inf (d, k), as follows

Inf (d, k)=H(d � k)
k

(d � k)
Target

i, i0

d, d0 ð13Þ

whereH is the Heaviside step function. As the networks
considered here have only two modules and also as just
one fixed value of d and d0 is considered, Target

i, i0

d, d0 rep-
resents only one scalar quantity.

Moreover, when we add some links to a degree-k
node, the probability that degree of its neighbor is k0 is
Prev

i, i
k, k0=

P
k0 Prev

i, i
k, k0 . When we consider the above, the

amount of change in the probability distribution of
links, denoted by DPrev

i, i
a, b(d, k), can be calculated by

the following equations

DPrev
i, i
a, b(d, k)= � da, k

Previ, i
k, bP

k0 Prev
i, i
k, k0
� Inf (d, k)

� db, k

Prev
i, i
a, kP

k0 Prev
i, i
k, k0
� Inf (d, k)

+ da, d

Prev
i, i
k, bP

k0 Prev
i, i
k, k0
� Inf (d, k)

+ db, d

Prev
i, i
a, kP

k0 Previ, i
k, k0
� Inf (d, k)

ð14Þ

where d is the Kronecker delta function.

When we calculate DPrev
1, 1
a, b(2, 1) for the example

shown in Figure 1, DPrev
1, 1
1, 3(2, 1)=DPrev

1, 1
3, 1(2, 1)

= � 1=26, DPrev
1, 1
2, 3(2, 1)=DPrev

1, 1
3, 2(2, 1)= 1=26, and

the others equal to zero. This is consistent with equa-
tion (12). In another example shown in Figure 2, we
can get different probability distributions according to
the connected node. We assume an inter-module link is

added to a degree-1 node. Prev
1, 1
a, b and Target

1, 2
a, b are

shown in equations (15) and (16), respectively. b0 in
equation (16) is some constant value. In this case,
f(1, 1), (1, 3)g link changes its type to f(1, 2), (1, 3)g and
f(1, 3), (1, 1)g link changes its type to f(1, 3), (1, 2)g
with probability 2=3. Also, f(1, 1), (1, 2)g link changes
its type to f(1, 2), (1, 2)g and f(1, 2), (1, 1)g link changes

its type to f(1, 2), (1, 2)g with probability 1=3. Sub
1, 1
a, b is

shown in equation (17) for the former case and in equa-
tion (18) for the latter case. We average them and can
obtain the expected probability distribution shown in

equation (19). When we calculate DPrev
1, 1
a, b(2, 1) for this

example, the result is consistent with equation (19)

b= 1, 2, 3,

Prev
1, 1
a, b =

1

18

0 1 2

1 0 1

2 1 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð15Þ

Target
1, 2
a, b = Target

2, 1
b, a =

1
18

where a= 2, b= b0

0 otherwise

�
ð16Þ

b= 1, 2, 3

Sub
1, 1
a, b =

1

18

0 1 1

1 0 2

1 2 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð17Þ

b= 1, 2, 3

Sub
1, 1
a, b =

1

18

0 0 2

0 2 1

2 1 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð18Þ

b= 1, 2, 3

Sub
1, 1
a, b =

1

54

0 2 4

2 2 5

4 5 0

0
B@

1
CA

a= 1

a= 2

a= 3

ð19Þ

Figure 2. Example of link addition in which different
probability distributions arise according to the connected node.
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However, the case of adding links to multiple nodes
is not considered in equation (14) because the equation
cannot describe the change in link type from
f(i, k), (i, k)g to f(i, d), (i, d)g even though it can
describe the change from f(i, k), (i, b)g to f(i, d), (i, b)g
and from f(i, a), (i, k)g to f(i, a), (i, d)g. Our method
cannot be directly applied to the example shown in
Figure 3. We assume two inter-module links are added
to two degree-2 nodes, respectively. In this example,
Prev

1, 1
a, b and Target

1, 2
a, b are shown in equations (20) and

(21), respectively. b0 in equation (21) is some constant
value. The expected probability distribution after inter-
module link addition is shown in equation (22). When
we calculate DPrev

1, 1
a, b(3, 2) for this example, equation

(23) is derived and Sub
1, 1
3, 3 remains zero

b= 2, 3

Prev
1, 1
a, b =

1

20

8 0

0 0

� �
a= 2

a= 3

ð20Þ

Target
1, 2
a, b = Target

2, 1
b, a =

2

20
where a= 3, b= b0

0 otherwise

(

ð21Þ

b= 2, 3

Sub
1, 1
a, b =

1

60

4 8

8 4

� �
a= 2

a= 3

ð22Þ

b= 2, 3

Sub
1, 1
a, b =

1

20

0 4

4 0

� �
a= 2

a= 3

ð23Þ

This problem can be solved by replacing Inf (d, k)
with Inf (d, k)=Mi

k(d) and applying equation (14) Mi
k(d)

times with recalculating ½Prev
i, i
a, b� each time, where

Mi
k(d) is the number of (i, k) nodes selected as boundary

nodes (i.e. endpoint nodes of inter-module links) and
connected by (d � k) inter-module links. This config-
uration enables our method to derive equation (22) for
the example shown in Figure 3.

To calculate Mi
k(d), we calculate the total number of

inter-module links between (i, d) nodes and (i0, d0) nodes
after the link addition, denoted by M

i, i0

d, d0 . This is given
as follows

M
i, i0

d, d0 =
1

2
Nzprev

(Target
i, i0

d, d0 + Target
i0, i
d0, d)P

i, i0, a, b

Prev
i, i0

a, b

=Nzprev

Target
i, i0

d, d0P
i, i0, a, b

Prev
i, i0

a, b

ð24Þ

where N is the total number of nodes and zprev is the
average degree of the graph before adding inter-module
links. For this, zprev equals

P
i, k kpi

k where pi
k is the ratio

of the number of (i, k) nodes to the total number of
nodes before the inter-module link additions and can
be calculated as follows

pi
k =

P
b

Prev
i, i

k, b

k

P
i, i0, a, b

Prev
i, i0
a, b

a

ð25Þ

Note that (1=2)Nzprev describes the total number of
intra-module links and (Target

i, i0

d, d0 + Target
i0, i
d0, d)=P

i, a, b Prev
i, i
a, b describes the ratio of the number of

inter-module links that connect degree-d nodes from
one module to degree-d0 nodes of another module to
the number of intra-module links. The second equality
in equation (24) is satisfied because our target is an
undirected graph. When we add all inter-module links
to some degree-k nodes and add (d � k) inter-module
links to each of them, Mi

k(d) can be calculated by the
following equation

Mi
k(d)=

M
i, i0

d, d0

d � k
ð26Þ

Therefore, when the expected total number of nodes
is given, Mi

k(d) can be calculated.

Constraints of input variables

In our approach, ½Target
i, i0

k, k0 � needs to satisfy some con-
straints. First, the number of endpoint (i, k) nodes of
inter-module links must be less than the number of
(i, k) nodes. Second, the number of endpoint (i, k) nodes
of inter-module links must be more than (d0 � k0) and
the number of endpoint (i0, k0) nodes of inter-module
links must be more than (d � k) because we assume that

Figure 3. Example of multiple links addition in which different
probability distributions arise according to the connected node.
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multiple links between a pair of nodes are not allowed.
Therefore, the constraints can be described as follows

(d0 � k0)�Mi
k(d)�Npi

k

(d � k)�Mi0

k0(d
0)�Npi0

k0

ð27Þ

We can rewrite the above into a constraint on
Target

i, i0

d, d0 as follows

(d � k)(d0 � k0)

P
i, a, b

Prev
i, i
a, b

N zprev

� Targeti, i0

d, d0

�min (d � k)pi
k , (d

0 � k0)pi0

k0

� � P
i, a, b

Prev
i, i
a, b

zprev

ð28Þ

Because the lower bound depends on N, there are
cases where the desired graph cannot be constructed if
N is small.

Simulation evaluation

We investigate robustness according to the connection
patterns of inter-module links using our proposed
method. To evaluate validity of our proposal, we com-
pare the analysis results with the numerical results. In
numerical simulations, we evaluate the site percolation
process on a graph constructed by a configuration
model according to ½Prev

i, i
a, b�, ½Target

i, i0

a, b�, and N.
The method for constructing a graph based on

½Prev
i, i
a, b�, ½Target

i, i0

a, b�, and N is listed as follows:

1. Constructing a graph within each module
(a) Calculating a degree distribution of each

module from ½Prev
i, i
a, b� and assigning

degree to each node;
(b) Calculating the number of each type of

intra-module links from ½Prev
i, i
a, b� and N;

(c) Selecting a pair of endpoint nodes of each
intra-module link from the candidates at
random and connecting them.

2. Adding inter-module links
(a) Calculating the number of the specified

type of inter-module links from the ratio
of Tinter to Tintra;

(b) Determining a set of the candidates for
the boundary nodes at random according
to the connection pattern of inter-module
links;

(c) Selecting a pair of boundary nodes of
each inter-module link from the candi-
dates at random and connecting them.

In numerical simulations, we assume that inactive
nodes are failed nodes.

Percolation on graph ensembles with a given
probability distribution

Simulation settings. We assume that the number of mod-
ules is two and the probability distributions of intra-
module and inter-module links are given by equations
(29) and (30), respectively. Equation (29) describes that
the degree distribution of each module is uniform. In
this case, the ratio of the number of intra-module links
to inter-module links is 200 to 3. The expected total
number of nodes is 1000 when we analyze the percola-
tion process using our proposed method. We analyze
the site percolation process with various combinations
of d, d0, k, and k0

b= 2, 3, 4, 5, 6

Prev
i, i
a, b =

1

812

4 6 8 10 12

6 9 12 15 18

8 12 16 20 24

10 15 20 25 30

12 18 24 30 36

0
BBBBBB@

1
CCCCCCA

a= 2

a= 3

a= 4

a= 5

a= 6

ð29Þ

Target
1, 2
a, b = Target

2, 1
b, a =

6
812

where a= d, b= d0

0 otherwise

�
ð30Þ

In the percolation process, we use two modes of
node removal: random failure and targeted attack. In
random failure mode, a removal node is selected uni-
formly at random, while in targeted attack mode, a
removal node is selected in order of decreasing degree.
We then define a response function for each node
removal mode in order to analyze the site percolation
process using our method. In the binary-dynamics
model,4 the response function for the site percolation is
defined as follows

Fi(m, k)=
0 where m= 0

Qi
k otherwise

�
ð31Þ

where Qi
k is the occupation probability of (i, k) nodes.

When we assume (1� p) of all nodes have failed, then
Qi

k is defined by equation (32) for random failure mode4

and by equation (33) for targeted attack mode

Qi
k = p ð32Þ

Qi
k =

1 where
Pk

l = 1

P
i

fi
l� p

p�
Pk�1

l= 1

P
i

fi
lP

i

fi
k

where

Pk�1

l= 1

P
i

fi
l\p

�

\
Pk

l= 1

P
i

fi
l

�
0 otherwise

8>>>>>>>>><
>>>>>>>>>:

ð33Þ
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where fi
l is the ratio of the number of (i, l) nodes to the

total number of nodes after the inter-module links addi-
tion and can be calculated from Sub

i, i0

a, b.
Pk�1

l = 1

P
i fi

l

describes the ratio of the number of nodes that have
lower degree than k to the total number of nodes.
Therefore, the first line of equation (33) means that all
nodes that have lower degree relative to the value of p
are occupied. The second line means that degree-k
nodes are occupied with the probability which equals to
the ratio of active degree-k nodes to all degree-k nodes.
The third line means that all nodes that have higher
degree relative to the value of p are not occupied.

Here, we consider that analytical results are obtained
by iterative calculation of equations (1), (2), and (4).

Analysis of percolation in random failure mode. The results
of analysis in random failure mode are shown in
Figure 4. We evaluate the percolation with various
combinations of d, d0, k, and k0. The results for the case

of d = 5 and d0= 5 are shown in Figure 4(a) and the
results for the case of d = 7 and d0= 7 are shown in
Figure 4(b). Each legend shows the connection pattern
of inter-module links and formatted as
i-k-(d-k) i0-k0-(d0 � k0). In each figure, the horizontal
axis shows the ratio of the failed nodes, denoted by
(1� p), and the vertical axis shows the size of the giant
component. We assume that the ranking of the robust-
ness of networks is equivalent to the ranking of the size
of the giant component at each p value.

As shown in Figure 4, there is little difference
depending on the connection pattern of inter-module
links in random failure mode.

To evaluate validity of our analytical results shown
in Figure 4, we construct a graph with the number of
nodes set at 1000 and investigate the site percolation
process on it in random failure mode. The number of
trials is 500. Figure 5 shows the results of the site perco-
lation process in random failure mode with k and k0

fixed. Each figure shows that there is little difference
but the graph in which the number of boundary nodes
is small has a slightly more vulnerable structure.
Because the graph is divided into modules when the
boundary nodes are removed, the graph in which the
number of boundary nodes is large has a slightly more
robust connectivity.

To compare the graphs in which the number of
boundary nodes is the same, we show the results of the
site percolation process in random failure mode with
(d � k) and (d0 � k0) fixed in Figure 6. There are small
differences in each of the figures even though the num-
ber of boundary nodes is the same. This difference
arises from differences in the number of neighbors of
boundary nodes. Because the graph is divided and iso-
lated when all neighbors of boundary nodes are
removed, the graph in which the average number of
intra-modular connections of the boundary nodes is
large has a slightly more robust connectivity.

Analysis of percolation in targeted attack mode. The results
of analysis in targeted attack mode are shown in
Figure 7. The results for the case of d = 5 and d0= 5

are shown in Figure 7(a) and the results for the case of
d = 7 and d0= 7 are shown in Figure 7(b).

In Figure 7(a), all results show that the size of the
giant component decreases sharply at (1� p) ’ 0:4 and
there is little difference between them. Because nodes
are removed in order of decreasing degree, all degree-6
and degree-5 nodes are removed when (1� p) is larger
than 0:4. In this evaluation, the fragmentation of a
graph within a module occurs before the removal of all
inter-module links because d and d0 are set to 5.

In Figure 7(b), every result shows a phase transition
at small (1� p) value, and the size of the giant compo-
nent decreases gradually after that. In this evaluation, a

Figure 4. Analytical results of percolation analysis in random
failure mode: (a) d= 5, d0= 5 and (b) d= 7, d0= 7.
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Figure 6. Numerical results of the site percolation process on graphs in random failure mode with (d� k) and (d0 � k0) fixed: (a)
d� k= 1, d0 � k0= 1, (b) d� k= 2, d0 � k0= 2, (c) d� k= 3, d0 � k0= 3, and (d) d� k= 4, d0 � k0= 4.

Figure 5. Numerical results of the site percolation process on graphs in random failure mode with k and k0 fixed: (a) k= 2, k0= 2,
(b) k= 3, k0= 3, (c) k= 4, k0= 4, and (d) k= 5, k0= 5.
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phase transition indicates the division of the graph into
modules by removal of all inter-module links. Because
the maximum degree is 7 when d and d0 equal 7, con-
nectivity of the graph makes it vulnerable to targeted
attack. In addition, robustness of connectivity is differ-
ent according to k and k0. The larger Mi

k(d) means the
graph has more robust connectivity for small (1� p)
values because modules are connected until removal of
all (i, d) or (i0, d0) nodes. In this evaluation, because all
(1, 7) nodes and all (2, 7) nodes are the boundary nodes
and a removal node is selected uniformly and randomly
from degree-7 nodes at small (1� p), the larger
(M1

k (7)+M2
k0(7)) means the graph has more robust

connectivity for small (1� p) values. Therefore, the
graph with larger (1=(d � k)+ 1=(d � k0)) has more
robust connectivity in terms of the point at which the
network fragments into two modules. But for large
(1� p) values, the network robustness is not signifi-
cantly different for networks with different Mi

k(d)
values. For such (1� p) values, parameters of the

intra-modular structure determine the slight differences
between the sizes of the giant component for different
networks exemplified. Note that the targeted attack we
use in this evaluation is based on the nodes’ degrees.
This means these results can be different according to
the definition of Qi

k .
To evaluate validity of our analytical results showed

in Figure 7, we construct a graph with the number of
nodes set at 1000 and investigate the site percolation
process on it in targeted attack mode. The number of
trials is 500. Figure 8 shows the results of the site perco-
lation process in targeted attack mode. By comparison
with Figure 7, although the giant component size in
each method is slightly different, the order of robust-
ness of each connection pattern is the same. From these
results, analytical results are in good agreement with
numerical results and the graph in which the number of
boundary nodes is large has more robust connectivity

Figure 8. Numerical results of the site percolation process on
graph in targeted attack mode: (a) d= 5, d0= 5 and (b)
d= 7, d0= 7.

Figure 7. Analytical results of percolation analysis in targeted
attack mode: (a) d= 5, d0= 5 and (b) d= 7, d0= 7.
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for small (1� p) values when we use the targeted attack
mode in which a removal node is selected in order of
decreasing degree. After the fragmentation of the net-
work, the network robustness is not significantly differ-
ent for networks with different Mi

k(d) values.

Applicable range of our proposed method. When we con-
sider the IoT environment, there may be cases where
the number of nodes belonging to each module is large.
Given this context, we need to investigate the applica-
ble range of our proposed method for making policies
according to the results of analysis.

To show the applicable range of our proposed
method, we compare the results of analysis to the
results of the percolation process on the graph when
the number of nodes is one of 100, 200, 500, 1000,
10,000 and 20,000, respectively. We use the method
of 1-6-1 2-6-1 as an example, the number of trials is
100, and the expected number of nodes for analysis
is 1000.

Figure 9(a) shows the results in random failure mode
and Figure 9(b) shows the results in targeted attack
mode. Both show that difference between analytical
and numerical results becomes larger as the number of
nodes becomes smaller. This means that it is hard to
apply our proposal to a graph in which the number of
nodes is small because our approach derives average
properties of random graph ensembles. However, such
a small graph can be analyzed by numerical simula-
tions. Therefore, this is not a problem for our proposal
whose target is the graphs in which the number of
nodes is large.

In Figure 9(b), however, the results of analysis can-
not completely capture any of the numerical results. In
this evaluation, degree-7 nodes are 6% of the total
nodes and half of them belong to module 1 and the rest
belong to module 2. In the analysis method, the selec-
tion of a removal node is regarded as completely uni-
form. This means that the graph is not divided into
modules until all degree-7 nodes are removed. In the
numerical simulations, however, the graph can be
divided into modules when half of degree-7 nodes are
removed because removal of all degree-7 nodes belong-
ing to module 1 or 2 results in fragmentation of the
graph. Therefore, the numerical results show a phase
transition at an earlier stage than the analysis. In addi-
tion, Figure 9(b) shows that a graph with a small num-
ber of nodes becomes vulnerable because the number
of degree-7 nodes is small and the graph fragments
easily.

The analytical results cannot completely capture any
of the numerical results in targeted attack mode because
of the reasons described above. The result for 10,000
nodes is almost the same as for 20,000 nodes, which

means that the difference between numerical and analy-
tical results cannot get any closer. Because this differ-
ence comes from the difference of an order of node that
fails in the numerical simulation, the way that nodes fail
is also an important factor which determines whether
analytic results completely capture numerical results or
not.

Percolation on graph ensembles with a probability
distribution derived from a given intra-module
topology

The results shown above are obtained when we first
give a probability distribution and investigate the site
percolation process on a graph constructed by the con-
figuration model to evaluate validity of our proposed
method. When we consider an actual situation, how-
ever, we need to show a policy to make a graph robust
by connecting multiple existing networks.

Figure 9. Comparison of the analytical and numerical results:
(a) random failure mode and (b) targeted attack mode.
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Simulation settings. In this part, we investigate robustness
of a graph in which modules are constructed by Erdó́s–
Rényi (ER) model, Barabási–Albert (BA) model, and
Watts–Strogatz (WS) model,10 respectively. We use the
parameters shown in Table 1 for constructing a module.
Using these parameters, the expectation of the average
degree in a module is 6 when the number of nodes in a
module is 500. The number of modules is two, the num-
ber of nodes in a module is 500, and the number of links
added between modules is 1% of the total number of
links within modules. We compare the numerical results
for the site percolation process on a graph constructed
by modules and inter-module link, with the analytical
results using the probability distribution obtained from
existing modules.

Results using ER model. The numerical and analytical
results for the random failure mode in a network com-
posed of ER modules are shown in Figure 10. The num-
ber of trials for numerical simulations in each topology
is 100. The minimum degree within a module is 1 and
the maximum degree within a module is 15.

The numerical and analytical results for the case of
d = 7 and d0= 7 are shown in Figure 10(a) and (b),
respectively. All of them are consistent with the results
shown above. For the random failure mode, the analy-
tical results depend only slightly on the connection pat-
tern of inter-module links. In numerical results, the
graph in which the number of boundary nodes is small
has a slightly vulnerable structure.

When we use the ER model for constructing a topol-
ogy within a module, the numerical and analytical
results in targeted attack mode are shown in Figure 11.
The results in Figure 11(b) are consistent with the
results shown above in terms of the first sudden decay
of the size of the giant component. After the fragmen-
tation of the network, the ranking of the size of the
giant component changes. This is because the connec-
tivity of the intra-module network remains high after
the fragmentation when k (or k0) is set to small value.
When we set k and d to 6 and 7, respectively, little
number of degree-6 nodes remain after all degree-7

nodes are removed, and degree-6 nodes are crucial for
the connectivity of the intra-module because of their
high degrees. This leads to the vulnerable connectivity
of intra-module network after the fragmentation. In
most of the results of Figure 11, after removal of the
boundary nodes, the internal connectivity of module 1
is larger than that of module 2. Therefore, in such
cases, k is more dominant than k0 after the fragmenta-
tion. Figure 11(a) shows that the order of robustness of
each connection pattern is the same as the results of
analysis although the giant component sizes are not
completely the same.

Results using BA model. The numerical and analytical
results for the random failure mode in a network com-
posed of BA modules are shown in Figure 12. The num-
ber of trials for numerical simulations in each topology
is 100. The minimum degree within a module is 3 and
the maximum degree within a module is 76.

Figure 10. The results in random failure mode (ER model):
(a) numerical and (b) analytical results.

Table 1. Parameters for constructing a topology within a
module.

Model Parameter Value

ER p(ER) 0.012
BA m0(BA) 7

m(BA) 6
WS m(WS) 6

b(WS) 0.01

ER model: Erdó́s–Rényi model; BA model: Barabási–Albert model; WS

model: Watts–Strogatz model.
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The numerical and analytical results for the case of
d = 7 and d0= 7 are shown in Figure 12(a) and (b),
respectively. These results show that there is little dif-
ference depending on the connection pattern of inter-
module links in random failure mode. Because we use
BA model for constructing an intra-module graph, it
has a power-law degree distribution. Therefore, differ-
ence of robustness will not occur unless we set d and d0

to greatly high value.
When we use the BA model for constructing a graph

within a module, the numerical and analytical results in
targeted attack mode are shown in Figure 13. The
numerical and analytical results for the case of d = 7

and d0= 7 are shown in Figure 13(a) and (b), respec-
tively. Although the sizes of the giant components are
almost the same, the graph in which the number of
boundary nodes is large has a slightly higher robust
connectivity before the fragmentation of the network
into two modules, in both analytical and numerical

simulations. After the fragmentation of the network,
the ranking of the sizes of the giant components
changes. The reason for this is the same as that men-
tioned for the results of Figure 11.

Results using WS model. The numerical and analytical
results for the random failure mode in a network com-
posed of WS modules are shown in Figure 14. The
number of trials for numerical simulations in each
topology is 100. The minimum degree within a module
is 4 and the maximum degree within a module is 8.

The numerical and analytical results for the case of
d = 7 and d0= 7 are shown in Figure 14(a) and (b),
respectively. Each figure shows that the locus of giant
component size in each method is almost same.
However, the giant component size in numerical simu-
lation decreases at an earlier step compared with the
results of analysis. This is because the graph con-
structed by the WS model has a ring-shaped structure

Figure 11. The results in targeted attack mode (ER model):
(a) numerical and (b) analytical results.

Figure 12. The results in random failure mode (BA model):
(a) numerical and (b) analytical results.
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and can fragment easily in numerical simulations, while
the theory assumes random intra-module connections.

When we use the WS model for constructing a graph
within a module, the numerical and analytical results in
targeted attack mode are shown in Figure 15. From the
results shown in Figure 15(a) and (b), the results of
analysis are consistent with the results shown above.
A graph constructed by method in which (1=(d
�k)+ 1=(d � k 0)) is large has high robustness for small
(1� p) values. After a graph fragments into modules,
however, the giant component size in numerical simula-
tion decreases at an earlier step compared with the
results of analysis because of the same reason discussed
in random failure mode.

From these results, our proposal can capture the
order according to which the networks fragment into
two modules. However, because we do not consider the
structural properties of a graph within a module, a dif-
ference of analytical and numerical results occurs when

a graph within a module has a special structure. It is
our future work how to resolve this problem.

Conclusion

In this article, we propose a method for estimating
robustness of graph ensembles after addition of inter-
module links when the probability distribution of links
within a module is given. Our proposal is to a binary-
dynamics model4 and add a new tool for the model.
We investigate robustness according to the connection
patterns of inter-module links.

In our simulation evaluation, we compare the
robustness of the networks in various connection pat-
terns of inter-module links when we fixed the values d
and d0 that describe the degrees of the boundary nodes
after the link addition. Simulation experiments showed
that graphs have robust connectivity in terms of the
point at which the network fragments into two modules

Figure 14. The results in random failure mode (WS model):
(a) numerical and (b) analytical results.

Figure 13. The results in targeted attack mode (BA model):
(a) numerical and (b) analytical results.
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when the number of nodes selected as boundary nodes
and the degrees of the boundary nodes before the link
addition are large. After the point, the internal struc-
ture of modules may matter more. To evaluate validity
of the analysis results, we evaluate the percolation pro-
cess on a graph constructed by a configuration model
and find that the analysis results are in agreement with
the numerical results. For the targeted attack mode,
although the analytical results do not match well to the
numerical results, the results are in agreement qualita-
tively. Moreover, we investigate the applicable range of
our proposed method and showed that the difference
between the analysis and numerical results increases as
the number of nodes decreases.

To show a policy to make a graph robust by con-
necting multiple existing networks, we investigate
robustness of a graph composed of modules with a
given internal structure. The results show that our pro-
posal can explain the order of the ranking of robustness

(measured by the removal probability at which the net-
work fragments into two modules) observed in the
numerical results. Then, the number of nodes selected
as boundary nodes and the degrees of boundary nodes
before the link addition should be large in terms of the
point of fragmentation of the network into modules
when we fix the degree of the boundary nodes after the
link addition.

However, because we do not consider the structural
properties of a graph within a module, a difference of
analytical and numerical results occurs when a graph
within a module has a special structure. It is our future
work how to resolve this problem.

For further investigation, we want to consider addition
of multiple types of inter-module links. When multiple
types of inter-module links are added, we cannot ignore
the order of addition of the inter-module links because the
conditional probability of the probability distribution of
links changes after each addition of an inter-module link.
This analysis will be realized when we use equation (14)
multiple times according to the sequence of the type of
new added link. Therefore, our method can also be applied
to the graph in which multiple modules exist.
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