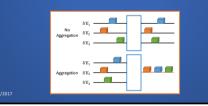
Background 1/2 Cellular networks have to accommodate massive M2M/IoT communications Accommodating massive M2M/IoT communication increases load on mobile core network nodes Design and performance evaluation Signaling procedure to establish per-UE bearers which are logical paths for data packets before UEs start data communication
 For bearer establishment, various signaling messages propagate between the nodes and are processed on the nodes of bearer aggregation method in mobile core network Cloud environment of mobile operator with C/U plane separation M2M/IoT UEs HSS eNodeB MME No. PCRF T OShuya Abe, Go Hasegawa, Masayuki Murata External IP network Osaka University . . ٩, SGW/PGW Transport network ELITRAN

2/2

- Various methods for accommodation of massive M2M/IoT terminals
 - server virtualization, C/U plane separation, SDN, etc.
 - Signaling procedure and network slices dedicated to M2M/IoT communication
 - Conveying data in C-plane signaling messages

These existing methods

Can utilize server and network resources more efficiently
 Can not reduce overhead required for bearer establishment

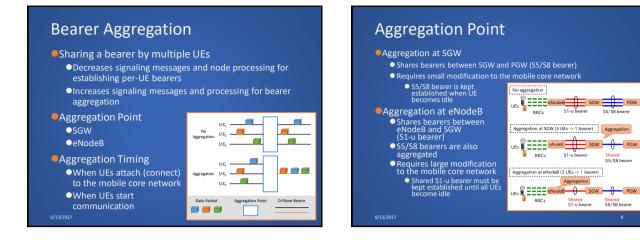

itself Existing researches on bearer establishment overhead are based on the number and size of the signaling messages

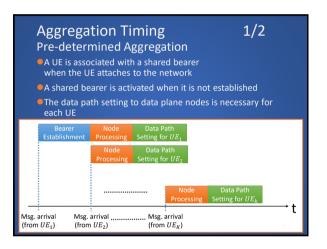
 Actually, the load of signaling messages are determined by many factors

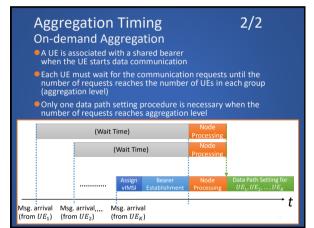
6/13/2017

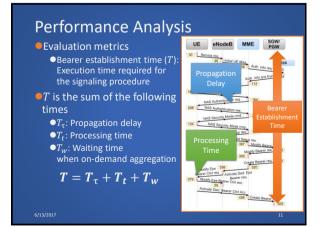
Purpose

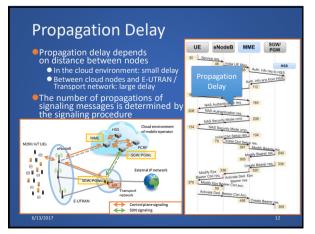
- Performance evaluation of the mobile core network considering signaling processing load
 - Exploits the number of statements for processing signaling messages
- Bearer aggregation method is proposed and evaluated
 Shares a bearer by multiple UEs
 - Decreases the load of bearer establishment

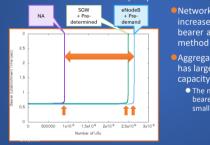

Network Model


UE eNodeB	: Terminal accommodated to th : Base station for LTE	e mobile core network
MME	: Pillar of signaling procedure fo Mobility management, Auther	
SGW/PGW	: Anchor point for intra-LTE mol Gateway to external IP networ	
M2M/IoT UEs	HSS Cloud environment of mobile operator PCRF External IP network SGW/PGW Transport network	 → Bearer (Data path) ↔ C-plane signaling (for bearer establishment)


C/U Plane Separation


- Separating SGW/PGW node into C-plane and U-plane nodes and moving C-plane node to the cloud
 - C/U plane separation decreases propagation delay of signaling messages between cloud nodes
 - Server resources can be shared among cloud nodes

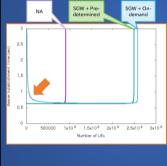



Processing Time				
M/G/1/PS queuing model is exploited				
Modify Bearer reg. Modify Bearer res. 640	Signaling Message λ			
• Average processing time at a node $E[R]$ $E[R] = \frac{\rho^r}{1-\rho} \frac{E[S^2]}{2E[S]} + \frac{1-\rho^r}{1-\rho} E[S]$				
Variable in queuing model	Related Parameter in evaluation			
λ: Arrival rate (of signaling messages)	# of UEs, # of processing, # of the nodes, UE's communication frequency			
E[S]: Mean workload (Ave. signaling processing time)	Ave. # of statements, Server resources			
ρ: System utilization	λ, E[S]			

Evaluation Results

- •Aggregation methods for evaluation combine aggregation point and aggregation timing
- Aggregation level (# of UEs for each shared bearer):
 64
- Server resources and propagation delay are determined assuming a nation-wide mobile core network

Effect of Aggregation Point


Bearer establishment time increases sharply with a certain number of accommodated UEs
Defined as ``network capacity''

Network capacity further increases by applying a bearer aggregation

- Aggregation at eNodeB has larger network capacity than that at SGW
 - The number of total bearers in the network is smaller

Effect of Aggregation Timing

On-demand aggregation (OA) has larger network capacity than Pre-determined

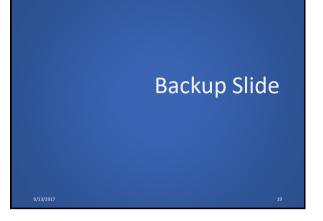
- With OA, only one data path setting procedure is necessary for each group of UEs
- OA has a large bearer establishment time when the number of UEs is small
- Caused by waiting time

Discussion

- Recommended combinations of aggregation point and timing is determined depending on the number of UEs and the mobility of UEs
- The amount of modification depends on the aggregation method

UEs' characteristics	Point	Timing	Required modification	Network capacity
high mobility	SGW	Pre-determined	small	low
massive, high mobility	SGW	On-demand	small	medium
low/no mobility	eNodeB	Pre-determined	large	high

Conclusion


Summary

- Evaluation of bearer aggregation methods to aggregate multiple M2M/IoT communication
- •Bearer aggregation methods improve the performance of the mobile core network
- Appropriate aggregation method is determined depending on the characteristics of accommodated UEs

Future work

- C/U plane separation at eNodeB
- •Evaluation of U-plane performance
- •Experimental evaluation to support the results

6/13/2017

Propagation Delay

Delay	
20 msec	
7.5 msec	
10 msec	
10 msec	
1 msec	
1 msec	
	20 msec 7.5 msec 10 msec 10 msec 1 msec

Server Resources

Node	Server Resources
UE	3,000 statements/sec
eNodeB	1,500 statements/sec
MME	3,000,000 statements/sec
SGW/PGWc	3,000,000 statements/sec
SGW/PGWd	3,000,000 statements/sec
GTP module	600,000 statements/sec

6/13/2017