
Biochemical-inspired autonomous control of
virtualized network functions

Ryota Kurokawa
Graduate School of

Information Science and Technology
Osaka University

1-5 Yamadaoka, Suita,
Osaka 565-0871, Japan

Email: r-kurokw@ist.osaka-u.ac.jp

Go Hasegawa
Cybermedia Center
Osaka University

1-32, Machikaneyama-cho, Toyonaka,
Osaka 560-0043, Japan

Email: hasegawa@cmc.osaka-u.ac.jp

Masayuki Murata
Graduate School of

Information Science and Technology
Osaka University

1-5 Yamadaoka, Suita,
Osaka 565-0871, Japan

Email: murata@ist.osaka-u.ac.jp

Abstract—In Network Function Virtualization (NFV), various
Virtual Network Functions (VNFs) are placed on general-purpose
servers. To efficiently operate the NFV system, the placement of
VNFs to servers, resource allocation to each VNF, and flow routes
are determined carefully and adaptively to handle environmental
fluctuations. Our research group has proposed a construction
method of service space in virtualized network system, based
on biochemical-inspired tuple space model. In this paper, we
apply the method to an NFV system to adaptively configure
and control VNFs in a distributed manner. We also describe
the implementation design of the proposed method, based on the
standardization activities to achieve Service Function Chaining.
We finally present an application scenario of the proposed method
to confirm the effectiveness of the implementation design of the
proposed method.

Index Terms—Network Function Virtualization, Software De-
fined Network, Service Function Chaining, Network Service
Header, biochemical reactions

I. INTRODUCTION

Due to the wide and rapid spread of smartphones and
tablets, and the development of Internet of Things (IoT), the
number of devices connected to the network is increasing.
As a result, network services have become more diverse, and
network traffic has also increased rapidly. In general, to launch
a new network service, new dedicated hardware devices are
required. It requires space and power, causing a decrease in
revenue and an increase in energy consumption. It also results
in low flexibility to deal with system failures, and maintenance
and operation of hardware.

Network Function Virtualization (NFV) is considered as one
possible technique for resolving such problems [1]. Figure
1 shows a network system based on NFV. Various Virtual
Network Functions (VNFs) are placed on general-purpose
servers. Since network functions that have been achieved with
dedicated hardware are executed as software, it is possible
to suppress operational and capital expenditures, and flexibly
respond to environmental fluctuations. Multiple VNFs may
share the resource of one server or one VNF may be distributed
to multiple servers to provide services throughout the network
[2] [3].

A flow receiving NFV service may have a Service Function
Chaining (SFC) request that describes the order of VNFs to

Fig. 1. NFV system and SFC

be applied to the flow. As depicted in Figure 1, a flow arriving
at the NFV system receives NFV services in accordance
with the SFC request and exits the system. Therefore, to
efficiently operate the NFV system, placement of VNFs to
servers, resource allocation to each VNF, and flow routes are
determined carefully in accordance with SFC requests, traffic
amount of the flows, and server resources.

Our research group has proposed a construction method
of service space in virtualized network system, based on
biochemical-inspired tuple space model [4] [5]. In this method,
we consider a server as a tuple space, and express service
requests, service demands and service resources as chemical
substances in the tuple space. We then describe the behavior
of servers as biochemical reaction equations in the tuple
space. Furthermore, by connecting multiple tuple spaces and
configuring a network, we represent the movement and spread
of services and requests in a large scale network system
composed of multiple servers. Since biochemical reaction
equations are defined and executed independently in each tuple
space, it is suitable for achieving autonomous and decentral-
ized behavior. We consider that one of possible application
of the above method is an NFV system. However, to operate
an NFV system using the proposed method, it is extended to
handle flow routes in accordance with SFC requests, and server
resource limitation. In our previous work with the extended
method, the effectiveness of the method has been evaluated
only with computer simulation and a simple experimental
environment.

Fig. 2. Tuple space model using biochemical reactions [4]

In this paper, we apply the above-mentioned service space
construction method to configure and control an NFV system,
and explain how to incorporate the proposed method to NFV
framework. We show the detailed implementation environment
using Open Platform for NFV (OPNFV) [6]. In addition, we
describe the implementation design of SFC using Network
Service Header (NSH) [7] with OpenFlow networks. We
finally present an application scenario of the proposed method
to confirm the effectiveness of the described design.

II. VNF CONTROL BY TUPLE SPACE MODEL USING
BIOCHEMICAL REACTIONS

A tuple space model in [4] is a model that describes a
distributed system. Figure 2 depicts the tuple space model
used in this paper. Each component of a distributed system
is modeled as a tuple space. A tuple space is defined as
a cell where biochemical reactions take place. Tuples in
the tuple space correspond to chemical substances, and the
amount of tuples corresponds to the concentration of chemical
substances. By defining biochemical reactions in tuple spaces,
various behaviors such as increase and decrease of tuples
can be determined. In addition, it is possible to achieve the
interaction among multiple tuple spaces by defining biochem-
ical reactions that describe the diffusion and movement of
tuples among tuple spaces. Since biochemical reactions in each
tuple space occur independently, autonomous decentralized
behaviors can be described.

To apply the above model to NFV, we associate a tuple
space with a server that executes VNFs. VNFs, flow packets,
and server resources are associated with tuples in tuple spaces.
In what follows, we present biochemical reaction equations
that achieve various behaviors in the NFV system.

A. Service Function Chaining (SFC)

An SFC request of a flow, represented by a series of VNFs,
f1 , f2 , · · · , fend , is described as Equation (1).

c = {f1 , f2 , f3 , · · · , fend} (1)

When VNF f1 is executed to the flow with an SFC request c,
c changes as Equation (2).

c ←− c\{f1} = {f2 , f3 , · · · , fend} (2)

A VNF that is executed at first in c is represented by f 1 (c). In
Equation (2), f 1 (c) = f2 . In what follows, the subscript f of
chemical substances represents a VNF, subscript c represents
an SFC request, and subscript t represents a server.

B. Resource allocation and execution of VNFs

When a packet of a flow with an SFC request c arrives at
a server, VNF f 1 (c) is applied to the packet. Then, when c
is composed of one VNF, the packet disappears. On the other
hand, when c is composed of multiple VNFs, the applied VNF
is deleted from c as in Equation (2). It is also required that
VNFs in low demand have low priority in the server and those
in high demand have high priority to be executed. The above
behaviors are described by Reaction Equations (3) and (4).

VNF
f 1 (c)

|PKTc
rus−−−→

VNF
f 1 (c)

|VNF
f 1 (c)

|PKT
c\{f 1 (c)}

|toserve(VNF
f 1 (c)

, PKTc) (c\{f 1 (c)} ̸= ∅)
VNF

f 1 (c)
|VNF

f 1 (c)

|toserve(VNF
f 1 (c)

, PKTc) (c\{f 1 (c)} = ∅)

(3)

VNFf
rds−−−→ 0 (4)

In the above Equations, substance VNF f 1 (c) indicates the
VNF to be applied for a flow. A VNF with a large con-
centration value means that its execution is highly demanded.
Substance PKT c represents packets constituting a flow with
c. Substance toserve(VNFf 1 (c),PKTc) indicates results of
applying the VNF to packets of a flow with c. rus and
rds are the rate coefficients of Reaction Equations (3) and
(4), respectively, to determine the rate of reactions. Reaction
Equation (3) indicates that a VNF is executed to packets of
a flow on a server, and the concentration of VNF increases
to represent the demand increase for the corresponding VNF.
Reaction Equation (4) represents the decay of VNFs.

The execution rate of a biochemical reaction is determined
in proportion to the product of its reactant’s concentrations.
Therefore, in Reaction Equation (3), as the concentrations of
VNF and PKT increase, the reaction rate increases without
limitation. However, in general, servers have their performance
constraints determined by server resources such as CPU capac-
ity and memory size. To describe such constraints, Reaction
Equation (3) is extended into Reaction Equations (5) - (7) by
applying enzyme-catalyzed reactions mechanism [8].
VNF

f 1 (c)
|PKTc |RSRCt

rus1−−−−→ MEDIATEf ,t (5)

MEDIATEf ,t
rus2−−−−→ VNF

f 1 (c)
|PKTc |RSRCt (6)

MEDIATEf ,t
rus3−−−−→

VNF
f 1 (c)

|VNF
f 1 (c)

|PKT
c\{f 1 (c)}|RSRCt

|toserve(VNF
f 1 (c)

, PKTc) (c\{f 1 (c)} ≠ ∅)

VNF
f 1 (c)

|VNF
f 1 (c)

|RSRCt

|toserve(VNF
f 1 (c)

, PKTc) (c\{f 1 (c)} = ∅)

(7)

The concentration of substance RSRC t represents the amount
of available resources of a server t. The concentration of
substance MEDIATE f ,t represents the amount of resources
of a server t allocated to VNF f . rus1 , rus2 and rus3
are the rate coefficients for Reaction Equations (5), (6) and
(7), respectively. We exploit the enzyme-catalyzed reactions
mechanism to describe the server resource limitation, where
an enzyme corresponds to RSRC in the Reaction Equations.

Reaction Equations (5) and (6) indicate that server resources
are allocated in accordance with the demand of each VNF, and
that the allocation is controlled by the concentration of RSRC .
Reaction Equation (7) indicates that VNF f is executed on the
basis of the amount of allocated resources.

C. Diffusion of VNFs

To describe the diffusion of highly-demanded VNFs to other
servers, Reaction Equation (8) is introduced.

VNF f
rms−−→ VNF;

f (8)

rms is the rate coefficient for Reaction Equation (8). This
Reaction Equation indicates that a highly-demanded VNF in a
server diffuses to the surrounding connected servers at a rate
proportional to its concentration. The diffusion destination of
VNFs are stochastically determined in accordance with the
concentration of VNF at connected tuple spaces. As a result,
highly-demanded VNFs are distributed to multiple servers.

D. Packet forwarding

When packets remain unprocessed in the server due to a lack
of server resource for corresponding VNF, the packets should
move to another server. Furthermore, the forwarding direction
of packets from each tuple space should be determined in
a distributed manner so that the packets would approach a
server executing corresponding VNFs with enough resources.
To achieve these behaviors, we exploit a gradient field to
determine the moving directions of packets. A gradient field
for each VNF is constructed on the basis of the VNFs’
demand and the available resources on each server. We then
determine the moving direction of packets in accordance with
the gradient field. For that purpose, Reaction Equations (9) -
(12) are introduced.

VNF f |RSRC t
rrg−−→ VNF f |RSRC t |GRAD f (9)

GRAD f

rdg−−→ 0 (10)

GRAD f
rmg−−→ GRAD;

f (GRAD−
f) (11)

PKT c

rmf−−→ PKT;
c (GRAD+

f 1 (c)) (12)

Substance GRADf establishes a gradient field for VNF f . rrg ,
rdg , rmg and rmf are the rate coefficients for Reaction Equa-
tions (9), (10), (11), and (12), respectively. Reaction Equation
(9) indicates that GRAD is generated at a rate proportional
to the concentrations of VNF and RSRC . Reaction Equation
(10) indicates that GRAD decays at a rate proportional to its
concentration. Reaction Equation (11) indicates that GRAD
spreads to the surrounding servers with smaller concentration
of GRAD . Therefore, the gradient field is constructed so that
the server providing VNFs with enough resources becomes
a summit with the largest concentration of GRAD , and the
surrounding servers have smaller concentration of GRAD
in accordance with the distance from the summit. Reaction
Equation (12) describes the movement of PKT to the sur-
rounding servers with large concentration of GRAD . The
forwarding direction of packets are stochastically determined
in accordance with the concentration of GRAD at connected
tuple spaces. Figure 3 depicts the movement of packets with

Fig. 3. Movement of a packet in accordance with the gradient fields

the SFC request c = {f0 , f1}. Gradient fields are respectively
generated for each VNF. First, packets move in the direction
of the summit of the gradient field for f0. Then, after applying
VNF f0 to the packets, they move in the direction of the
summit of the gradient field for f1.

E. Coexistence of multiple VNFs

When multiple VNFs coexist on one server, it is required to
share server resources by allocating them in accordance with
the demand of each VNF. Therefore, we define the above-
mentioned biochemical reaction equations for each VNF.

F. Update chemical substance concentration

In the NFV system, the concentrations of the above-
mentioned substances are determined as follows. The initial
concentration value of VNF is configured in accordance
with the initial location of the VNF in the system. The
concentration of PKT is determined in accordance with the
number of packets arriving at a server and that leaving the
server. The initial concentration value of RSRC is determined
on the basis of CPU resources in a server. The concentrations
of MEDIATE and GRAD change in accordance with the
reactions in each server. The concentration of MEDIATE
corresponds to the resource utilization ratio allocated to each
VNF. The concentration of GRAD determines the direction of
packet movement, as explained in Subsection II-D. As a result,
CPU resources are allocated to each VNF in accordance with
the concentration of MEDIATE . The packets also move to
servers where highly-demanded VNFs exist in accordance with
the concentration of GRAD . In addition, VNFs are placed in
the server with highly-demanded VNFs in accordance with the
concentration of VNF .

III. IMPLEMENTATION DESIGN OF THE PROPOSED METHOD
WITH THE NFV FRAMEWORK

We describe the implementation design of the method
proposed in Section II, based on the NFV framework [9]
and its integration with SDN [10] proposed by ETSI ISG.
In the NFV framework, there are three main components:
VNF, NFV Infrastructure (NFVI), and NFV Management
and Orchestration (NFV MANO). In [10], SDN Controller
is utilized to manage the physical resources in NFVI. SDN
Switches are included in network resources in NFVI.

Fig. 4. Proposed method in NFV/SDN framework

In what follows, we describe the placement of the functions
to apply the proposed method to the ETSI NFV framework and
show the detailed implementation environment.

A. Function Placement of the proposed method

Figure 4 depicts the placement of the functions to apply the
proposed method to the NFV framework. For the proposed
method, VIM is extended to include the management function
of biochemical reaction equations (“Biochemical Reactions”
in the figure).

By placing the functions of the proposed method in the
framework, the following communication interfaces between
functions are added. Nf-Vi is used to monitor the state of
NFVI and biochemical reaction equations by VIM. Nf-Or is
used to receive the state information of biochemical reaction
equations by NFVO. Or-Sc is used to receive flow routes by
SDN Controller.

We adopt OPNFV [6] to implement the NFV framework.
OPNFV aims at implementing the NFV framework by inte-
grating OSS such as OpenStack [11], OpenDaylight (ODL)
[12], Open vSwitch (OVS) [13] and Kernel-Based Virtual
Machine (KVM) [14]. In OPNFV, since OpenFlow is used
as a southbound protocol for SDN, we introduce the imple-
mentation design of the proposed method with OpenFlow.

B. Implementation environment of the proposed method

Figure 5 depicts the system configuration of OPNFV and
the placement of functions shown in Figure 4. In Figure 5,
the NFV framework is implemented on one physical machine,
and there are multiple VMs and virtual switches. It includes
three types of VMs: Jump Server, Controller, and Compute.
Jump Server is utilized for installing and maintaining Con-
troller, Compute, and networking environment in the system.
Controller is utilized for implementing NFV MANO and SDN
Controller on NFVI. Compute is utilized for implementing
VNFs and NFVI. VMs for executing VNFs can be deployed
on Compute. There are four types of networks in the system:
Admin, Tenant, Public and Storage. Admin network is used
for installing and maintaining the NFV system. Tenant network
is used for network traffic generated by tenants on the NFV

Fig. 5. The system configuration of OPNFV

system. Public network is used to connect to external networks.
Storage network is used for I/O processing of storage.

In our implementation design, NFVO, VNFM and VIM are
implemented on Controller using OpenStack. SDN Controller
and Switch are implemented on Controller with ODL and
Compute with OVS, respectively. VNFs are implemented on
VMs on Compute. NFVI is constructed with Compute, and
virtual resources are provided with KVM.

In Figure 5, BR is a program that implements the tuple
space of the proposed method, and runs as one process on each
VM hosting VNFs on Compute. BR creates a tuple space and
executes biochemical reaction equations. The concentration
of PKT can be updated in accordance with the flow rate
monitored at VNF. However, considering the software imple-
mentation of existing network functions and implementation
difficulties, one possible alternative is to monitor the flow
rate at the corresponding port of the SDN Switch. Resource
allocation to VNFs, and activation and deactivation of VNFs
can be performed by each VM on Compute executing VNFs in
a distributed manner, in accordance with the concentrations of
MEDIATE and VNF of the corresponding tuple space. For
ease of implementation, such VNF control can be conducted
at VIM on the Controller in a centralized manner.

In the proposed method, the moving direction of packets
is stochastically determined as explained in SubSection II-D.
However, such stochastic behavior may cause a routing loop
in the actual network environment. Therefore, in our imple-
mentation, flow routes are determined by SDN Controller in a
centralized manner. In detail, NFVO collects the information
of the concentration of GRAD at each tuple space, and
determines the active flow routes. The flow routes are then
installed in SDN Switches via the SDN Controller. In the next
section, we explain the implementation of SFC in our system,
which is an important issue in determining flow routes.

Fig. 6. Network Service Header (NSH) [7]

IV. SERVICE FUNCTION CHAINING

In this section, the mechanism of Network Service Header
(NSH) [7] proposed by IETF is briefly explained. The imple-
mentation design of SFC with NSH is then described.

A. Network Service Header (NSH)

NSH is a header added to flow packets to control the
flow with an SFC request in the NFV system. Figure 6
depicts the format of NSH, which is composed of three fields:
Base Header, Service Path Header, and Context Header. Base
Header contains the basic information of NSH such as version,
header length, and payload information. Service Path Header
contains the identifier of a flow route and the state of SFC
of the flow. Context Header contains the metadata. Service
Path Header is composed of Service Path Identifier (SPI) and
Service Index (SI). SPI has an ID of Service Function Path
(SFP), which is described below. SI has the remaining number
of functions to be executed to the flow. Therefore, with a pair
of SPI and SI, the next function to be executed to the flow
can be identified.

Figure 7 depicts the implementation design of SFC with
NSH, as described in RFC 8300 [15]. In the figure, Service
Function (SF) means the function to be executed to flow
packets. Service Function Forwarder (SFF) forwards flow
packets to the specified SF or another SFF. SFP represents a
flow route with detailed location of servers in which required
SFs exist, while an SFC request only includes the chain of
functions. SFP is used for forwarding packets to the designated
server in accordance with the SFC request. Service Classifier
(SC) is located at the entrance of the NFV system, which
determines an SFP for a flow, and inserts an NSH into the
packets.

In Figure 7, we consider the situation where flow packets
having an SFC request of {Firewall → NAT} arrive at the NFV
system. Since there are two SFs of firewall (“Firewall0” and
“Firewall1”) and one SF of NAT (“NAT0”) in the system, the
SFP for the flow could be {Firewall0 → NAT0} or {Firewall1
→ NAT0}. These candidates are managed by the SC. The SC
determines an SFP from the candidates for the flow and inserts
NSH into the flow packets arriving at the SC. Here, NSH
includes SPI of 0x000064 and SI of 0x10. When an SF is
executed to a flow packet, the SF decrements the value of SI
by one and forwards the packet to corresponding SFF. When
SI becomes zero, the SFF deletes the NSH from the packet.
Otherwise, the SFF forwards the packet to the next SF.

B. Implementation design of NSH

In this work, for ease of implementation, we only utilize
Service Path Header for NSH and other two fields (Base

Fig. 7. Implementation design of SFC with NSH in RFC 8300 [15]

Fig. 8. Implementation design of SFC with NSH in this paper

Header and Context Header) are not implemented. To handle
NSH in the NFV system, we exploit encapsulation and decap-
sulation functions of OpenFlow. Note that the latest version
of OVS can encapsulate and decapsulate packets with NSH.

Figure 8 depicts the implementation of SFC with NSH in
our implementation. SFs and SFFs are respectively provided
as VNFs on the servers and SDN Switches. SFP is managed
by NFVO on NFV MANO. SC is implemented in NFVO and
SDN Controller on NFV MANO.

C. Stochastic determination of flow routes

In NFV, a route of packets is generally determined in a flow-
by-flow manner. On the other hand, in the proposed method,
as described in Section II-D, it is stochastically determined in
a packet-by-packet manner. Therefore, the stochastic determi-
nation of flow routes is proposed to fill the gap.

Figure 9 depicts the stochastic determination of a flow route
with the proposed method. In the figure, we consider the sit-
uation where flow packets having an SFC request of {Firewall
→ NAT} arrive at the NFV system. BRs are running on servers
(“Server0” and “Server1”) to create tuple spaces. Since there
are two VNFs (SFs) for firewall (“Firewall0” and “Firewall1”)
and is one SF of NAT (“NAT0”), the SFP for a flow could
be {Firewall0 → NAT0} or {Firewall1 → NAT0}. When flow
packets arrive at the SDN Switch, the SFP for the flow is
stochastically determined on the basis of the concentrations of
GRAD at both VNFs. In the figure, since the concentraions of
GRAD at Firewall0 and Firewall1 are respectively 2,000 and
1,000, {Firewall0 → NAT0} or {Firewall1 → NAT0} is assigned
to the flow with the probability of 0.66 and 0.33, respectively.

V. APPLICATION SCENARIO

To exhibit the effectiveness of the proposed method, we
describe an application scenario to a video streaming. In this

Fig. 9. Stochastic determination of flow route with the proposed method

Fig. 10. Implementation design of the proposed method in video streaming
application

scenario, as depicted in Figure 10, a client sends an HTTP
request to the server to watch a video. Flow packets as an
HTTP response from the server are sent to the client. To
achieve secure and flexible video streaming service, firewall
and video transcoding functions are required. We then apply
the NFV system with the proposed method to the application.
By this scenario, we expect that resource allocation to each
VNF, adaptive load distribution of VNFs, and diffusion and
aggregation of VNFs can be confirmed to assess the capability
of the proposed method.

Figure 10 depicts the video streaming system with the
proposed method. In the figure, Streaming Server is a server
providing video streaming service. Firewall0 is a VNF pro-
viding the firewall function. Transcoding0 and Transcoding1
are VNFs providing the transcoding function of video. BR
is a program that implements the tuple space of the proposed
method. Server0 and Server1 are servers for hosting the VNFs
and executing BR. Client is a client watching the video. NFV
MANO is a server achieving NFV MANO shown in Figure
4. Flow packets sent from Streaming Server arrive at the
Client after receiving the NFV service. Since firewall and video
transcoding functions should be applied to flow packets, the
SFC request becomes {Firewall → Transcoding}. The SFP for
the flow could be {Firewall0 → Transcoding0} or {Firewall0 →
Transcoding1} because there are functions of one firewall and
two video transcoding in the NFV system.

In Server0 and Server1, BR respectively creates a tuple
space and executes biochemical reaction equations. The con-
centration of PKT can be updated in accordance with the
flow rate arriving at each server. Resource allocation to each

VNF is executed in accordance with the concentration of
MEDIATE of the corresponding tuple space. {Firewall0 →
Transcoding0} or {Firewall0 → Transcoding1} is assigned to
the flow in accordance with the concentration of GRAD .
Furthermore, activation and deactivation of VNFs can be
executed in accordance with the concentration of VNF .

VI. CONCLUSION AND FUTURE WORK

In this paper, we applied the construction method of service
space in virtualized network system, based on biochemical-
inspired tuple space model, to the NFV system, and examined
the implementation design of the proposed method with the
NFV framework. Specifically, we defined chemical substances
and biochemical reaction equations to describe various behav-
iors in the NFV system. We then described the placement
of the proposed method in the NFV framework and showed
the detailed implementation environment. Furthermore, we
described the implementation design of SFC with NSH and
presented an application scenario.

For future work, we plan to implement and evaluate the
proposed method on the basis of the described design in this
paper. In addition, it is also important to extend the proposed
method to describe the effect of the propagation delay and link
bandwidth between tuple spaces. Furthermore, it is necessary
to achieve discrete resource allocation to VNFs with the pro-
posed method to accommodate the CPU core-based resource
control in the current cloud computing environment.

REFERENCES

[1] ETSI, “Network Function Virtualisation - White Paper 1.” available at
https://portal.etsi.org/nfv/nfv white paper.pdf.

[2] X. Li and C. Qian, “A Survey of Network Function Placement,” in 2016
13th IEEE Annual Consumer Communications Networking Conference
(CCNC), pp. 948–953, Jan. 2016.

[3] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A
Comprehensive Survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, Sep. 2016.

[4] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli”, “Spatial
Coordination of Pervasive Services Through Chemical-Inspired Tuple
Spaces,” ACM Trans. Auton. Adapt. Syst., vol. 6, no. 2, pp. 1–24, June.
2011.

[5] G. Hasegawa and M. Murata”, “Biochemically-inspired Method for Con-
structing Service Space in Virtualized Network System,” in Proceedings
of ICIN 2016, Mar. 2016.

[6] “Home - OPNFV.” available at https://www.opnfv.org/.
[7] “Network Service Header (NSH).” available at https://www.rfc-editor.

org/rfc/pdfrfc/rfc8300.txt.pdf.
[8] R. Goldberg, Y. B Tewari, and T. Bhat, “Thermodynamics of enzyme-

catalyzed reactions,” Science Direct, vol. 20, no. 16, pp. 2874–2877,
Dec. 2004.

[9] ETSI GS NFV 002, “Network Functions Virtualisation (NFV); Architec-
tural Framework.” available at http://www.etsi.org/deliver/etsi gs/NFV/
001 099/002/01.02.01 60/gs NFV002v010201p.pdf.

[10] ETSI GS NFV 005, “Network functions virtualisation (nfv); ecosys-
tem; report on sdn usage in nfv architectural framework.” avail-
able at https://www.etsi.org/deliver/etsi gs/NFV-EVE/001 099/005/01.
01.01 60/gs NFV-EVE005v010101p.pdf.

[11] “Open source software for creating private and public clouds..” available
at https://www.openstack.org/.

[12] “Home - OpenDaylight.” available at https://www.opendaylight.org/.
[13] “Open vSwitch.” available at https://www.openvswitch.org/.
[14] “KVM.” available at https://www.linux-kvm.org/page/Main Page.
[15] “Network Service Header (NSH).” available at https://www.rfc-editor.

org/rfc/pdfrfc/rfc8300.txt.pdf.

