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Interactions using various sensory cues produce sophisticated

behaviour in animal swarms, e.g. the foraging behaviour of

ants and the flocking of birds and fish. Here, we investigate the

behavioural mechanisms of frog choruses from the viewpoints

of mathematical modelling and its application. Empirical data

on male Japanese tree frogs demonstrate that (1) neighbouring

male frogs avoid call overlaps with each other over a short time

scale and (2) they collectively switch between the calling state

and the silent state over a long time scale. To reproduce these

features, we propose a mathematical model in which separate

dynamical models spontaneously switch due to a stochastic

process depending on the internal dynamics of respective

frogs and also the interactions among the frogs. Next, the

mathematical model is applied to the control of a wireless

sensor network in which multiple sensor nodes send a data

packet towards their neighbours so as to deliver the packet

to a gateway node by multi-hop communication. Numerical

simulation demonstrates that (1) neighbouring nodes can avoid

a packet collision over a short time scale by alternating

the timing of data transmission and (2) all the nodes

collectively switch their states over a long time scale,

establishing high network connectivity while reducing network

power consumption. Consequently, this study highlights the

unique dynamics of frog choruses over multiple time scales

and also provides a novel bio-inspired technology that is

applicable to the control of a wireless sensor network.
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1. Introduction

Animals exhibit various types of collective behaviour in the form of swarms. For instance, ants forage for

food resources by cooperating with other individuals [1]; birds and fish form a flexible flocking as a result

of the interactions among them [2,3]. In these systems, each animal dynamically controls its motion by

interacting with its neighbours using various sensory cues, which results in high performance of the

swarms. It is known that experimental and theoretical studies of animal swarms contribute to further

understanding of the interaction mechanisms among multiple animals [4]. On the other hand, the

sophisticated behaviour of animals has inspired the development of a novel technology called swarm
intelligence. Various theoretical studies show that swarm intelligence (e.g. ant-colony optimization and

particle-swarm optimization) can solve real-world problems, especially in the fields of information

and communication technologies (ICT) [5]. However, the studies of swarm intelligence are currently

based on the behaviour of just a few species of animals. Theoretical studies bridging various animal

behaviours and real-world problems would contribute to further development of swarm intelligence

in the field of ICT.

This study aims to examine the mechanisms inherent in the acoustic communication of frogs. It is well

known that various animals use sounds for the purpose of communication. For example, human

conversation is based on sounds; whales can interact with each other by using low-frequency sounds

even when they are far apart [6]; male birds, frogs and insects produce sounds to attract conspecific

females [7–9]. It is essential for these animals to alternate the timing of their acoustic signals because the

temporal overlap of the signals masks the information included in their own signals. In particular, frogs

are abundant but unique animals that exhibit sophisticated behaviour in their acoustic communication.

In general, a male frog produces successive calls in order to attract conspecific females and claim his

own territories to other male frogs [8,9]. The important point is that many male frogs call at the same

breeding site, making it very difficult for them to alternate call timings with each other. Experimental

studies have reported that various species of frogs can avoid call overlaps with neighbours over a

short time scale despite their complicated acoustic environment [8–14]. In addition, male frogs can

synchronize the start and stop of their calling behaviour over a longer time scale, resulting in the

formation of collective choruses [8,9,15,16]. Subsequently, male frogs can take a rest at each interval

between the choruses, allowing them to reduce both energy consumption and physical fatigue.

The essence of frog choruses described above is that neighbouring frogs alternate their calls in a local

population while forming collective choruses as a whole system. Such behaviour including both

alternating and collective features is applicable to the control of a wireless sensor network. A wireless

sensor network is a distributed communication system using many sensor nodes that transmit a data

packet with their neighbours so as to deliver the packet to a gateway node by multi-hop

communication [17,18]. This technique is quite promising for the future Internet of Things (IoT) and

cyber physical systems that are indispensable for the safety and security of human lives. In those

systems, the sensor nodes are deployed over a wide region, which allows users to collect various

types of geographically dispersed information such as the spatial distribution of climatic factors and

household power consumption [18]. For robust and continuous data collection, a wireless sensor

network is required to solve the following problems: (1) neighbouring nodes need to alternate the

timings of data transmission to avoid a packet collision and (2) the nodes need to establish high

connectivity for multi-hop communication while reducing their power consumption over a long time

scale. This study aims to solve these problems by using a mathematical model of frog choruses.

In this study, we first propose a mathematical model that describes the collective and alternating features

of frog choruses over multiple time scales (§2), and then demonstrate that the proposed model can solve the

problems inherent in the control of a wireless sensor network (§3). It should be noted that Mutazono et al.
carried out a seminal work on the application of frogs’ behaviour to the control of a wireless sensor network

[19]. In that study, they focused on the alternating chorus pattern of male Japanese tree frogs that Aihara

et al. had found and modelled by using a phase oscillator model [20,21], and also focused on the satellite

behaviour of male frogs. The satellite behaviour describes the strategy that male frogs stay silent in the

vicinity of a calling male for a long time so as to intercept a female that is attracted to the calling male

[8]. Thus, the satellite behaviour is based on an inhibitory interaction among male frogs that inhibits the

calling behaviour of neighbouring males and then allows them to reduce energy consumption.

Mutazono et al. showed that the satellite behaviour is useful for reducing the power consumption in a

wireless sensor network while the alternating chorus pattern is useful for avoiding a packet collision

among neighbouring nodes. By contrast, this study focuses on an excitatory interaction among male frogs

that activate the calling behaviour of neighbouring males and then reproduces their collective choruses



A
m

p.
A

m
p.

1

0

–0.1

0.1

0

–0.1

0.1

frog 1

frog 2

0 2

10 2
time (s)

time (s)

time (s)

0

0

0

A
m

p.
A

m
p.

A
m

p.

0

0

0

1

1

1

2

2

2

frog 1

frog 2

frog 3

0.4

0.4

0.2

–0.2

–0.4

–0.4

0

0

0

A
m

p.
A

m
p.

A
m

p.

0

0

0

1

1

1

2

2

2

frog 1

frog 2

frog 3

0.3

0.2

0.2

–0.2

–0.2

–0.3

(a) (b)

(c)

(d )

Figure 1. Empirical data on the choruses of male Japanese tree frogs over a short time scale. (a) Photograph of a male Japanese
tree frog. (b) Anti-phase synchronization of two frogs. (c) Tri-phase synchronization of three frogs. (d) Clustered anti-phase
synchronization of three frogs. The male frogs tend to avoid call overlaps with each other over a short time scale. The data
shown here are obtained from our previous study [12].
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over a long time scale. This feature over a long time scale is a novel point of our study compared to the study

by Mutazono et al. [19].
2. Frog choruses
In this section, we first explain the dominant features of frog choruses on the basis of empirical data (§2.1).

Then, we propose a mathematical model of frog choruses (§2.2) and examine the validity of the proposed

model by comparing the results of numerical simulations with the empirical data (§§2.3 and 2.4).

2.1. Empirical data
Here, we explain the dominant features of frog choruses on the basis of empirical data on male Japanese

tree frogs (figure 1a) that were obtained from our previous study of [12]. Japanese tree frogs (Hyla
japonica) are widely distributed in Japan from Kagoshima prefecture in the southwest to Hokkaido in

the northeast. It is observed that many male frogs chorus at the same breeding site such as a paddy

field with shallow water [22]. To investigate their behaviour, we performed indoor experiments [12].

In each experiment, three male frogs were put into small mesh cages, respectively. The cages were

set along a straight line at intervals of 50 cm, and the calling behaviour of male frogs was recorded by

three microphones that were placed in the vicinity of each cage. We analysed the audio data of 4 h
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Figure 2. Empirical data on the choruses of male Japanese tree frogs over a long time scale. (a) Collective transitions between the
calling state and the silent state. Over a long time scale, the male frogs almost synchronize the transitions between the calling state
and the silent state with each other, resulting in the formation of the collective choruses. (b) Histogram of the inter-chorus interval.
(c) Histogram of the chorus duration. The inset of figure 2c shows the enlarged histogram of the chorus duration.
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according to the method of independent component analysis, and separated the call signals of respective

frogs. These experiments and analyses were carried out on four datasets with 12 male frogs in total [12].

In the previous study [12], we reported that male Japanese tree frogs exhibit various types of

alternating chorus patterns. Figure 1b shows the separated call signals of two frogs that were obtained

from the previous study. It is demonstrated that they call alternately with each other, which can be

understood as the anti-phase synchronization of two frogs [13,21,23]. In addition, figure 1c,d shows

the separated call signals of three frogs. It is demonstrated that three frogs call in turns (figure 1c) or

one frog synchronizes in anti-phase with the remaining two frogs that synchronize in in-phase (figure

1d ), which can be understood as the tri-phase synchronization of three frogs and the clustered anti-

phase synchronization of three frogs, respectively [12]. These alternating patterns allow male frogs to

avoid call overlaps as often as possible [12,13], and then they would effectively advertise themselves

to conspecific females [12,13,24].

In this study, we newly analyse the properties of frog choruses over a longer time scale. Prior to the

analysis, we carefully checked the quality of the sound-source separation and excluded just

three choruses in which the separation did not work well, from 143 choruses. Figure 2a shows the

separated call signals of three frogs over 15 min. It is demonstrated that they almost synchronize

the start and stop of their calling behaviour, resulting in the formation of collective and intermittent

choruses. In this study, we define a calling state as the period in which a male frog produces

successive calls continuously, and define a silent state as the period in which a male frog stays silent

without producing any call. In addition, we analyse the detailed properties of the transition between

the calling state and the silent state. The period of a calling state is first estimated for respective frogs

according to the method explained in our previous studies [25,26]; a chorus of male frogs is then

detected as a period that includes a partial overlap of calling states among the three frogs. Next, we

determine the inter-chorus interval and chorus duration as displayed in figure 2a, and calculate those
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values from the four datasets of 12 frogs. Figure 2b,c shows the histogram of the inter-chorus interval and

that of the chorus duration, respectively. This analysis indicates that the histogram of the inter-chorus

interval varies considerably from tens of seconds to hundreds of seconds, and also demonstrates that

the inter-chorus interval is relatively longer than the chorus duration.

Thus, the empirical data on male Japanese tree frogs reveals the alternating chorus patterns over a

short time scale, and the collective transition between the calling state and the silent state over a long

time scale. It should be noted that these features are consistent with the observations on various

species of frogs [8–16].
 .org/journal/rsos
R.Soc.open

sci.6:181117
2.2. Mathematical modelling
Here, we propose a novel mathematical model that describes the dominant features of frog choruses (i.e.

the avoidance of call overlaps over a short time scale and the collective transition between the calling

state and the silent state over a long time scale). Our previous studies [12,13,23,27] have shown that

the avoidance of call overlaps over a short time scale can be reproduced as the stable equilibrium

states of a phase-oscillator model [28] that follows a deterministic process. By contrast, our empirical

data indicate that the inter-chorus interval varies considerably from tens of seconds to hundreds of

seconds over a long time scale (figure 2b). We consider that such a variation of the transition over a

long time scale can be modelled as a stochastic process and not as a deterministic process. Hence, we

model the mechanisms of frog choruses as a hybrid system in which separate deterministic models

including an extended version of a phase oscillator model are switched by a stochastic process

associated with the internal dynamics of respective frogs as well as the interactions among them.

In the mathematical model, we use four variables: a state sn, a phase un, physical fatigue Tn and

energy En. Here, we explain the definitions of these variables with reference to our empirical data and

related studies.
— State: Our empirical data show that male Japanese tree frogs collectively switch between the calling state

and the silent state (figure 2a). Here, we distinguish between the calling state and the silent state by using

an integer sn; it is assumed that sn ¼ 0 represents the silent state of the nth frog, and sn ¼ 1 represents the

calling state of the nth frog. We then model the collective transition by considering the excitatory acoustic

interaction among male frogs that activate the calling behaviour of neighbouring frogs (equation (2.12)),

which is necessary for the occurrence of the collective transition.

— Phase: Our empirical data show that a male frog produces successive calls continuously during the

calling state (figure 1b–d). To reproduce this periodic feature, we define a phase un [ [0, 2p) (mod

2p) for respective frogs; it is assumed that the nth frog produces a call at un ¼ 0 [12,13,27]. We use

this variable to propose a deterministic model in which un repeatedly increases from 0 to 2p

during the calling state (equation (2.1)) and does not change during the silent state (equation (2.4)).

— Physical fatigue: To produce successive calls, a male frog must inflate and deflate his large vocal sac at

a high repetition rate [8,9]. Such vigorous movement is likely to cause severe physical fatigue in male

frogs. To describe this feature, we define physical fatigue Tn [ [0, Tmax] for respective frogs; it is

assumed that the physical fatigue Tn increases during the calling state (equation (2.2)), and

decreases during the silent state (equation (2.5)). We then propose a stochastic model in which the

amount of physical fatigue affects the probability of the transition between the calling state and the

silent state (equations (2.8) and (2.10)).

— Energy: Various experimental studies have reported that a male frog loses a large amount of his

weight when joining choruses at night [8,29–31]. This indicates that the calling behaviour of a

male frog causes not only physical fatigue but also severe energy consumption. To model this

feature, we define energy En [ [0, Emax] for respective frogs; it is assumed that the energy En takes

the maximum value Emax at an initial condition, and then decreases during the calling state

(equation (2.3)) while remaining constant during the silent state (equation (2.6)). We use this

variable to propose a stochastic model in which the amount of energy affects the probability of the

transition between the calling state and the silent state (equation (2.11)).
On the basis of the above variables (i.e. the state sn, the phase un, the physical fatigue Tn and the energy

En), we describe the calling state and the silent state of respective frogs as separate deterministic models.
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First, the calling state of the nth frog (sn ¼ 1 for n ¼ 1, 2, . . ., N) is modelled as follows:

dun

dt
¼ vþ

XN

m for sm¼1 and rnm,r0

d(um)Gnm(un � um), (2:1)

dTn

dt
¼ d(un) (2:2)

and
dEn

dt
¼ �d(un): (2:3)

Equation (2.1) is based on a phase oscillator model [28]. Here, v is a positive parameter that represents the

intrinsic angular velocity of a male frog (in other words, 2p/v represents the intrinsic inter-call interval of a

male frog) [12,13,23,27]. The second term on the right-hand side of equation (2.1) describes the

instantaneous interaction among neighbouring frogs. In this term, rnm is the distance between the nth

and mth frogs; r0 is a threshold within which male frogs can interact with each other; Gnm(un 2 um) is a

2p-periodic function of the phase difference un 2 um [ [0, 2p) (mod 2p) that represents the interaction

between the nth and mth frogs [12,13,23,27]. In addition, d(um) is a delta function that describes the

instantaneous interaction. Here, we assume that d(um) ¼1 at um ¼ 0 and d(um) ¼ 0 otherwise. Then, we

also assume that d(um) satisfies the relationship
Ð tm,iþe

tm,i�e d(um(t)) dt ¼ 1 for each call timing tm,i at which the

phase hits 0. (Here, i represents the index of calls produced by the mth frog, and e is a positive

parameter that is much smaller than an inter-call interval.) It should be noted that, because of this

assumption
Ð tm,iþe

tm,i�e d(um(t)) dt ¼ 1, the delta function assumed here is different from the Dirac delta

function. Consequently, the second term on the right-hand side of equation (2.1) denotes that the nth

frog instantaneously interacts with the mth frog that is calling (sm ¼ 1) and is positioned within their

interaction range (rnm , r0). Equations (2.2) and (2.3) describe the dynamics of the physical fatigue Tn

and the energy En by the delta function d(un). These time differential equations mean that the physical

fatigue Tn is incremented by 1 and the energy En is decremented by 1 every time the phase un hits 0

(namely, every time the nth frog produces a call); this is because the delta function assumed here gives

the deviation of Tn and En at each call timing tn,j as DTn ¼
Ð tn,jþe

tn,j�e (dTn=dt) dt ¼
Ð tn,jþe

tn,j�e d(un(t)) dt ¼ 1 and

DEn ¼
Ð tn,jþe

tn,j�e (dEn=dt) dt ¼
Ð tn,jþe

tn,j�e (� d(un(t))) dt ¼ �1. (Here, j represents the index of calls produced by

the nth frog.)

The silent state of the nth frog (sn ¼ 0 for n ¼ 1, 2, . . ., N) is modelled as follows:

dun

dt
¼ 0, (2:4)

dTn

dt
¼ �a (2:5)

and
dEn

dt
¼ 0: (2:6)

In this study, we define the silent state as the period in which a male frog stays silent without producing

any call. In equation (2.4), the phase un does not change and remains constant, which is consistent with

our definition of the silent state. Equations (2.5) and (2.6) describe the dynamics of the physical fatigue

and the energy during the silent state, meaning that the physical fatigue Tn decreases at a constant rate of

a (equation (2.5)) and the energy En does not change during the silent state (equation (2.6)).

Next, we model the transition between the calling state and the silent state as a Markov process in which

male frogs determine the occurrence of the transition depending on their current conditions. The probability

of the transition from the calling state (sn ¼ 1) to the silent state (sn ¼ 0) is modelled as follows:

Pcall!silent
n ¼ G1(Tn), (2:7)

G1(Tn) ¼ 1

exp (� g(Tn � DT))þ 1
: (2:8)

Here, we use a logistic function with two positive parameters g and DT. While g represents the steepness of

this function, DT represents the inflection point of this function. Note that DT approximately gives the

number of calls produced in each section of the calling state. A representative shape of this function is

shown in figure 3, demonstrating that a male frog with a larger amount of physical fatigue transits from

the calling state to the silent state with higher probability.
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The probability of the transition from the silent state (sn ¼ 0) to the calling state (sn ¼ 1) is modelled as

follows:

Psilent!call
n ¼ G2(Tn)F(En)H(s

neighbour
n ), (2:9)

where

G2(Tn) ¼ 1

exp (g(Tn � (Tmax � DT)))þ 1
, (2:10)

F(En) ¼ � 2

exp (bEn)þ 1
þ 1 (2:11)

and

H(s
neighbour
n ) ¼ phigh (If a vector s

neighbour
n has one or more elements of 1),

plow (If a vector s
neighbour

n has no element of 1):

(
(2:12)

Given that the calling behaviour of male frogs causes severe physical fatigue and energy consumption

once it starts, this transition requires careful decision making by the male frogs. Hence, we consider

the effects of the energy En and the states of neighbouring frogs s
neighbour
n in addition to the physical

fatigue Tn. In equation (2.10), we use a logistic function with two positive parameters g and DT that

are the same as in equation (2.8); this is because both equations describe the effect of the physical

fatigue Tn on the transition between the calling state and the silent state. In equation (2.11), we also

use a logistic function with a different positive parameter b that represents the steepness of this

function F(En). Consequently, equations (2.10) and (2.11) imply that a male frog with less physical

fatigue and more energy transits from the silent state to the calling state with higher probability. As

for the excitatory acoustic interaction among male frogs, we assume equation (2.12) in which a male

frog determines the probability of the transition depending on the current states of neighbouring

frogs. In this equation, a vector s
neighbour
n consists of the states of neighbouring frogs that are

positioned within their interaction range (i.e. rnm , r0); the parameters phigh and plow are assumed to

be positive and satisfy the relationship plow , phigh � 1. Consequently, equation (2.12) denotes that the
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calls of male frogs activate the calling behaviour of neighbouring frogs. The representative shapes of the

functions G2(Tn), F(En) and H(s
neighbour
n ) are shown in figure 3.
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2.3. Parameter values
Here, we fix the parameters of the proposed model (i.e. the deterministic model of the calling state

(equations (2.1)–(2.3)), the deterministic model of the silent state (equations (2.4)–(2.6)), the stochastic

model of the transition from the calling state to the silent state (equations (2.7) and (2.8)) and the

stochastic model of the transition from the silent state to the calling state (equations (2.9)–(2.12))) on

the basis of empirical data and speculations on the behaviour of male Japanese tree frogs.

— Deterministic models: Our empirical data show that male Japanese tree frogs produce successive calls at

a specific interval while avoiding call overlaps with each other (figure 1b–d ). To reproduce this

feature, we use a phase oscillator model of equation (2.1) in which 2p/v represents the inter-call

interval of each frog. From our empirical data explained in §2.1, we estimate this interval for

respective frogs and confirm that the median value of the interval is 0.306 s. On the basis of this

result, we fix the parameter as 2p/v ¼ 0.306 s. In addition, our previous study on a phase

oscillator model shows that a sinusoidal interaction term with the first-order component and the

second-order component of a Fourier series can reproduce the alternating chorus patterns of male

frogs (e.g. anti-phase synchronization of two frogs, tri-phase synchronization of three frogs, and

clustered anti-phase synchronization of three frogs) as stable equilibrium states [12]. Therefore, we

assume the same interaction term as follows:

Gnm(un � um) ¼ Knm[ sin (un � um)� k sin (2(un � um))]: (2:13)

In our experiments, three male frogs were deployed at intervals of 50 cm [12]. In our experience, this is

a sufficiently short distance for each frog to hear the calls of other frogs. Therefore, we assume that the

condition rnm , r0 of equation (2.1) always holds for all the pairs of frogs. Moreover, the coupling

coefficients among neighbouring frogs are fixed as Knm ¼ 0.20 and k ¼ 0.18 based on our previous

study [12] so as to reproduce the tri-phase synchronization of three frogs and also the clustered

anti-phase synchronization of three frogs as bistable equilibrium states. As for the properties of

frog choruses over a long time scale, our empirical data demonstrates that the inter-chorus interval

is longer than the chorus duration (figure 2b,c), indicating that each frog stays silent for a sufficient

amount of time and then starts calling. On the basis of this feature, we fix the recovery rate of the

physical fatigue during the silent state as a ¼ 0.12 � v/2p that is much less than the increase rate

of the physical fatigue during the calling state that is approximately given by v/2p.

— Effect of physical fatigue in stochastic models. Our model assumes that the physical fatigue Tn affects the

probability of the transition between the calling state and the silent state. In particular, the transition

from the calling state to the silent state is modelled by the logistic function of equation (2.8) in which

the positive parameter DT approximately gives the number of calls produced in each section of the

calling state. To fix this parameter, we estimate the duration of each section of the calling state from our

empirical data and confirm that the median value of the duration is 25.53 s. Combined with the fact

that v/2p represents the number of calls produced per second, we fix the parameter as DT ¼ 25.53 �
v/2p. Accordingly, we fix the maximum physical fatigue as Tmax¼ 1.2 � DT because Tmax should be

slightly larger than DT as explained in figure 3. Moreover, we fix the steepness of the logistic functions

(equations (2.8) and (2.10)) as g ¼ 0.5 in order to gradually change these functions between 0 and Tmax.

— Effect of energy in stochastic models. From our experiments on male Japanese tree frogs, we obtained the

audio data of 4 h that was recorded at night (§2.1 and [12]). In our experience, these data almost cover

the period in which male Japanese tree frogs chorus at night. Hence, we regard the total number of

calls produced by respective frogs during this period as the maximum energy Emax. We analyse the

audio data of 4 h with 12 frogs, and confirm that the median value of the total number of calls is 3878.

Based on this result, we fix the maximum energy as Emax ¼ 3878. On the other hand, our model

assumes that the energy of each frog affects the probability of the transition from the silent state to

the calling state according to the logistic function (equation (2.11)). To gradually change this

function between 0 and Emax, we fix the steepness of the function as b ¼ 0.01.

— Effect of interactions in stochastic models. Our empirical data show that male Japanese tree frogs collectively

switch between the calling state and the silent state (figure 2a). In general, such a collective transition

requires the excitatory interaction among male frogs. In our model, the interaction is described by the
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function H(s
neighbour
n ) of equation (2.12) that includes two parameters phigh and plow. We fix these

parameters as phigh ¼ 0.80 and plow ¼ 0.01 so as to satisfy their constraint plow , phigh � 1.

To perform numerical simulation, we treat the transition between the silent state and the calling state as a

discrete-time Markov process. Namely, we discretely determine the occurrence of the transition according

to Pcall!silent
n or Psilent!call

n at a specific intervalDtupdate. Given that En and Tn change at the inter-call interval of

2p/v during the calling state, we fix this parameter as Dtupdate ¼ 3.5 s, which is much longer than 2p/v ¼

0.306 s. It should be noted that we cannot treat the transition as a continuous-time Markov process in this

study because the physical fatigue Tn, for instance, changes discretely in time during the calling state

(equation (2.2)) and therefore the probability Pcall!silent
n given by Tn (equations (2.7) and (2.8)) is also

discontinuous in time.

2.4. Numerical simulations
To confirm the validity of the proposed model, we perform numerical simulation under the assumption

of equations (2.1)–(2.12) with the parameter values that are fixed as explained in §2.3. With respect to the

initial conditions of the simulation, the state sn, the physical fatigue Tn and the phase un are randomized

while the energy En is fixed as the maximum value Emax. In addition, the phase un is randomized every

time the nth frog switches its state from the silent state to the calling state.

Figure 4a,b shows the results of the simulation on two frogs and three frogs, respectively. The top and

middle panels represent the time-series data of the energy En and the physical fatigue Tn, respectively.

The simulation shows that the drop in En is almost synchronized among the frogs (top panels), and

the increase and decrease in Tn are also synchronized among the frogs (middle panels). This result

demonstrates the occurrence of the collective transition between the calling state and the silent state.

The bottom panels represent the time series data of the phase difference un 2 um. The simulation

shows that the phase difference converges to p in the case of two frogs, and converges to a set of

(0, p) or a set of (2p/3, 4p/3) in the case of three frogs (see also electronic supplementary material,

figure S1A and S1B); these states correspond to anti-phase synchronization of two frogs, clustered

anti-phase synchronization of three frogs and tri-phase synchronization of three frogs, respectively.

As for the collective transition, our empirical data indicate that the inter-chorus interval is longer than

the chorus duration (figure 2b,c). To examine whether this feature is reproduced by our mathematical

model, we perform further simulation; we calculate the inter-chorus interval and the chorus duration

by repeating the same simulation with three frogs 100 times using different initial conditions. The

simulation demonstrates that the inter-chorus interval is longer than the chorus duration (figure 5),

which is consistent with our empirical data.
3. Application to a wireless sensor network
In the previous section, we proposed a mathematical model of frog choruses and confirmed its validity by

comparing the results of numerical simulation with empirical data. Here, we consider the application of the

model of frog choruses to an autonomous distributed control of a wireless sensor network (figure 6).

In general, a wireless sensor network consists of many sensor nodes that send a data packet towards

their neighbours so as to deliver the packet to a gateway node by multi-hop communication [17,18].

In such a communication system with many nodes, it is required that (1) the nodes should avoid a

packet collision with their neighbours over a short time scale and (2) the nodes should establish high

connectivity for multi-hop communication while reducing their power consumption over a long time

scale. We accomplish these requirements by applying the mathematical model of frog choruses that

produces alternating patterns over a short time scale and a collective transition over a long time scale.

In this section, we first introduce the mathematical model of a wireless sensor network (§3.1). Then,

we fix the parameters of the model by considering an actual situation of a wireless sensor network (§3.2)

and perform numerical simulation to confirm the efficacy of the proposed model (§3.3).

3.1. Mathematical modelling
Here, we explain how to apply the model of frog choruses to the control of a wireless sensor network.

— States: To prolong the lifetime of a wireless sensor network, each node needs to reduce its power

consumption as much as possible [17,18]. For this purpose, adaptive switching between a sleep state
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and an active state is promising. Here, we define the sleep state as the period in which a sensor node does

not send any data packet in order to reduce its power consumption, and define the active state as the

period in which a sensor node periodically sends a data packet towards its neighbours. To

distinguish between these two states, we use an integer sn; the sleep state of the nth node is described

as sn ¼ 0, and the active state is described as sn ¼ 1. Then, we assume that the nodes in the active

state can activate neighbouring sleep nodes in the same way as with frog choruses according to

equation (2.12).

— Transmission interval: During the active state, each node periodically sends a data packet towards its

neighbours. To reproduce this periodic feature, we use the phase un; it is assumed that the nth node

sends a data packet to neighbouring nodes at un ¼ 0. Because a sensor node instantaneously interacts

with other nodes when receiving a data packet, we assume the same equation (equation (2.1)) that

governs the instantaneous interaction among male frogs. Then, we assume that the phase stays

constant during the sleep state in the same way as with frog choruses (equation (2.4)).

— Duty cycle: To determine the ratio of the active state and the sleep state, we use the variable Tn. It

should be noted that this ratio is known as a duty cycle in the context of a wireless sensor network

[17,18]. In the model of frog choruses, the variable Tn affects the transition from the calling state to

the silent state (equation (2.8)) as well as the transition from the silent state to the calling state

(equation (2.10)). Thus, Tn is an important factor that determines the time scale of both transitions.

For application to a wireless sensor network, we assume that Tn affects the transition between the

active state and the sleep state in accordance with the same equations that govern frog choruses

(equations (2.8) and (2.10)) so as to introduce a specific time scale for the transition.

— Battery: In general, a sensor node is powered by a limited battery that cannot be recharged [17,18].

Here, we use a variable En to describe the battery of each node; it is assumed that the battery En

decreases during the active state (equation (2.3)) and stays constant during the sleep state

(equation (2.6)). For practical use, it can be a problem that some nodes consume batteries more

quickly than other nodes; this is because excessive power consumption of specific nodes can

drastically reduce network connectivity [32,33]. To avoid this problem by employing the model of

frog choruses, we assume that the battery En affects the probability of the transition from the sleep

state to the active state in accordance with equation (2.11).

3.2. Parameter values
To perform numerical simulation, we fix the parameters of our model (i.e. the deterministic model of the

active state (equations (2.1)–(2.3)), the deterministic model of the sleep state (equations (2.4)–(2.6)),

the stochastic model of the transition from the active state to the sleep state (equations (2.7) and (2.8)),

and the stochastic model of the transition from the sleep state to the active state (equations

(2.9)–(2.12)) on the basis of the following assumptions about a wireless sensor network.

— Network structure: In a wireless sensor network, the number of sensor nodes varies considerably from

tens to thousands depending on its purpose [17,18]. As a representative case of a medium-scale

network, we assume that 100 nodes are distributed on a two-dimensional square lattice at intervals

of 10 m and interact with a Moore neighbourhood positioned within the range of r0 ¼
ffiffiffi
2
p
� 10 m.

The network structure assumed here is shown in figure 7a.

— Deterministic models: For practical use, each sensor node needs to quickly avoid a packet collision with

its neighbours [17,18]. A packet collision is defined as the state in which two nodes send a data

packet almost at the same time; such a state can be described as the in-phase synchronization of

two oscillators (i.e. un 2 um � 0 or 2p) in the framework of a phase oscillator model. To quickly

avoid the in-phase synchronization, we assume the following interaction term in equation (2.1):

Gnm(un � um) ¼ �Knm

p
(un � um � p): (3:1)

For the model of frog choruses, we used the sinusoidal interaction term of equation (2.13). From the

viewpoint of practical application to a wireless sensor network, there is a problem with the sinusoidal

term: namely, Gnm(un 2 um) approaches 0 near the in-phase synchronization (see electronic

supplementary material, figure S2A), indicating that it takes a long time for sensor nodes to avoid

a packet collision once it occurs. By contrast, we use the linear term of equation (3.1) for the

control of a wireless sensor network. The point is that this linear term takes a large positive value

of Knm at un 2 um ¼ 0 and a large negative value of 2 Knm at 2p (see electronic supplementary
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material, figure S2B). This discontinuity at un 2 um ¼ 0 and 2p makes the in-phase synchronization

very unstable, allowing the nodes to quickly avoid the in-phase synchronization with their

neighbours. Here, we fix the coupling coefficient as Knm ¼ 1 that is larger than the value assumed

in the case of frog choruses so as to achieve the quick avoidance of in-phase synchronization. We

then fix the intrinsic angular velocity of the phase oscillator model as v ¼ 2p; this assumes a

simple situation in which an active node sends a data packet at the interval of almost 2p/v ¼

1.0 s. The other parameter of the deterministic models is assumed to be governed by the same

relationship as in the case of frog choruses (i.e. a ¼ 0.12 � v/2p).

— Stochastic models: A wireless sensor network is required to collect data for a long time by reducing its

power consumption [17,18]. To achieve this requirement, we fix the parameters of our stochastic

models as Emax ¼ 50 000 and DT ¼ 60; these values imply that a sensor node has a high battery

level (Emax ¼ 50 000) at the initial condition and then cyclically switches into the sleep state after

sending a data packet approximately 60 times (DT ¼ 60). Along with this change, we increase the

steepness of the logistic functions G1(Tn) and G2(Tn) (equations (2.8) and (2.10)) as g ¼ 1.5 in order

to make the time scale of the transition more robust. The other parameters are fixed at the same

values or are governed by the same relationship as in the case of frog choruses (i.e. b ¼ 0.01,

phigh ¼ 0.80, plow ¼ 0.01 and Tmax ¼ 1.2 � DT).

To perform numerical simulation, we fix the interval between the updates of the node’s state as

Dtupdate ¼ 5.0 s that is much longer than the interval of data transmission (i.e. 2p/v ¼ 1.0 s).

3.3. Numerical simulation
To examine the efficacy of the proposed model as the control method of a wireless sensor network, we

perform numerical simulation by using equations (2.1)–(2.12) with the parameter values that are fixed as

explained in §3.2. In regard to the initial conditions, the state sn, the physical fatigue Tn and the phase un

are randomized while the energy En is fixed at the maximum value Emax. In addition, the phase un is

randomized every time the nth node switches its state from the sleep state to the active state, in the

same way as with frog choruses. Figure 7b shows the time-series data of Tn, which demonstrates that

the sensor nodes collectively and cyclically switch between the active state and the sleep state. Given

that each node can reduce its power consumption during the sleep state, this cyclic and collective

feature is useful for prolonging the network lifetime while temporally increasing network

connectivity. Figure 7c shows the time-series data of the phase difference. In this simulation, we

calculate the phase difference only for a Moore neighbourhood positioned within the interaction range

rnm � r0 so as to detect the occurrence of a packet collision among neighbouring nodes. It is

demonstrated that the phase difference is not distributed around the in-phase synchronization of un 2

um � 0 or 2p: namely, the nodes succeed in avoiding a packet collision with their neighbours.

To quantitatively examine the performance of the proposed model, we carry out further simulation.

As for the avoidance of a packet collision, we first calculate the histogram of the phase difference among

a Moore neighbourhood from the time-series data between t ¼ 0 and 100 000. The histogram
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demonstrates that the in-phase synchronization is robustly avoided by the proposed model (figure 8a). In

the actual situation of a wireless sensor network, it typically takes around tens of milliseconds for each

node to complete sending a data packet [34]. Based on this feature, we define the duration of a data

transmission as a positive parameter Dttrans, and then determine that a packet collision occurs every

time two neighbouring nodes send a data packet within Dttrans. Figure 8b shows the relationship

between Dttrans and the probability of a packet collision, demonstrating that the probability is less than

0.01% in the range of 0 , Dttrans , 100 ms.
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Next, we examine the feature of network power consumption over a long time scale. Figure 9a shows

the time-series data of En after 95 000 s have passed from the start of the simulation. It is demonstrated

that the variance of En is approximately 200 at t ¼ 100 000. Because the initial condition is constrained at

En ¼ 50 000, this variance corresponds to about 2% of the total power consumption of respective nodes.

To show the performance of power saving over a long time scale, we then examine how the pace of

network power consumption is affected by the parameters of the proposed model. Especially, the

parameter a affects the duty ratio of each node (i.e. the ratio of the durations of the sleep state and

the active state) because this parameter represents the recovery rate of Tn during the sleep state

(see equation (2.5)). We then define the pace of network power consumption tpow as the time in which

the remaining energy of all the nodes becomes less than 90% of Emax, and examine the relationship

between tpow and a. Figure 9b demonstrates that tpow takes a larger value when a takes a smaller

value, indicating that we can control the network lifetime by the parameter a. The dependence of tpow

on the other parameters is partially shown in electronic supplementary material, figure S4 although

those parameters do not strongly affect the value of tpow compared to the parameter a.
4. Conclusion and discussion
In this study, we investigate the behavioural mechanisms of frog choruses from the viewpoints of

mathematical modelling and its application. Our empirical data demonstrate that male Japanese tree

frogs avoid call overlaps with their neighbours while collectively switching between the calling state

and the silent state, which is consistent with the observations on various species of frogs [8–16]. We

reproduce these features by using a hybrid dynamical model in which male frogs stochastically switch

their states depending on the internal conditions of respective frogs as well as the interactions among

them. Next, the mathematical model is applied to the control of a wireless sensor network. Numerical

simulation shows that the proposed model allows sensor nodes to avoid a packet collision over a

short time scale while cyclically and collectively switching their states over a long time scale. We

consider that these features are useful for the autonomous distributed control of a wireless sensor

network (see the last three paragraphs of this section for details).

From the viewpoint of mathematical modelling on frog choruses, it remains as an important future

problem to extend the proposed model to a system of many frogs that can be observed in natural

environment [8,9,27]. In this study, we focus on the chorus of just two frogs or three frogs; the reason

of this restriction is the difference in the data size between our indoor experiments and field

observations. Namely, the data of our indoor experiments consist of the audio recordings of 16 h

(4 h � 4 datasets as described in [12]) while the data of our field observations consist of the video

recordings of just 1.25 h (15 min � 5 datasets as described in [27]). Therefore, the datasets of our field

observations are currently much smaller than those of the indoor experiments; we then focus on the

system of two frogs or three frogs in this study to use the larger datasets of the indoor experiments.
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On the other hand, we previously observed a specific temporal structure (i.e. two-cluster

synchronization) in natural choruses of male Japanese tree frogs, and reproduce the structure by using

a phase oscillator model in which the interaction decays depending on the distance among male frogs

[27]. Given that network topology of the frog choruses (i.e. the spatial distributions of male frogs) can

change every night, it would be important to theoretically analyse the relationship between the

temporal structure and the network topology over multiple time scales by extending the proposed

model to a system of many frogs.

In this study, we have proposed a novel model for the control of a wireless sensor network in which

each sensor node autonomously controls the timing of data transmission by using only local network

information (§§3.1 and 3.2). The main features of this model are summarized as follows: (1)

neighbouring nodes can avoid a packet collision over a short time scale by alternating the timing of

data transmission (figures 7c and 8) and (2) all the nodes collectively switch their states over a long

time scale, establishing high network connectivity while reducing network power consumption

(figures 7b and 9). Here, we discuss the efficacy and novelty of these features from the viewpoint of

the application to a wireless sensor network.

As for the first feature over a short time scale, our simulation demonstrates that the probability of a

packet collision is less than 0.01% in the range of 0 , ttrans , 100 ms. This performance needs to be

compared with the performance of alternative methods such as CSMA/CA [35], DESYNC [36] and

another method inspired by frog choruses [19], although those methods do not realize the collective

transition between the active state and the sleep state over a long time scale. In addition, further

analysis is required to examine the detailed temporal structure of the phase difference among

neighbouring nodes. In particular, we have confirmed that a packet collision can be avoided among

neighbouring nodes (figure 8), but could not find a specific temporal structure of the phase difference

(see electronic supplementary material, figure S3, which represents the enlargement of figure 7c). Our

previous study using a mathematical model showed that anti-phase synchronization of two oscillators

produces a complicated temporal structure of the phase difference in a system with many oscillators

(i.e. two-cluster synchronization and also wavy anti-phase synchronization with various

wavenumbers) even when we assume a very simple spatial structure of a ring [27]. Given that we

assume a more complicated spatial structure in this study (i.e. a two-dimensional square lattice in

which each node interacts with a Moore neighbourhood), other types of temporal structures are likely

to emerge. It is also an important future problem to change the topology of a wireless sensor network

and then examine the relationship with the temporal structure of the phase difference because the

network topology can vary a lot depending on a practical application of a wireless sensor network in

general. In regard to this point, Belykh et al. showed that network topology affects the coupling

strength necessary to achieve complete in-phase synchronization of a network in a system of coupled

oscillators that attempt to synchronize at in-phase with other oscillators [37]; such a viewpoint on the

relationship between the temporal structure and the network topology is important for examining the

performance of the proposed model on the avoidance of a packet collision in details.

As for the second feature over a long time scale, we consider that the proposed model provides a

novel approach on the control of a wireless sensor network. The point is that the proposed model

realizes the cyclic and collective transition among the nodes on the basis of their excitatory interaction

(equation (2.12)). To our knowledge, similar methods have not been proposed yet, although some

studies have achieved the reduction in energy consumption through an inhibitory interaction among

nodes [19]. Future problems include the detailed analysis of the performance of energy saving over a

long time scale by varying the network topology.
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