
Effects of Service Function Relocation

on Application-level Delay

in Multi-access Edge Computing

Junichi Kaneda, Shin’ichi Arakawa, and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University,

1–5 Yamadaoka, Suita, Osaka, 565–0871 Japan

Email: {j-kaneda, arakawa, murata}@ist.osaka-u.ac.jp

Abstract—Multi-access edge computing (MEC) is expected to
mitigate delays and more flexibly provide services by virtualizing
service functions and deploying them closer to users. However,
live migration of virtual machine (VM) that enables relocation
of service functions for flexible service provision may cause
temporary delays or packet loss. For future deployment of MEC,
it is therefore important to investigate whether responsiveness
improves as expected, and to evaluate the effects of service
function relocation on application-level delay experienced by
users. In this paper, we investigate application-level delay in
a MEC environment for services such as video live streaming.
Experiments in the MEC environment constructed within our
laboratory reveal that application-level delays are reduced by 15–
30%, and that application-level delay is improved by relocating
remote service functions at an edge close to the user. We also
reveal that delays and packet loss due to VM live migration are
very temporary, confirming that service function relocation is
useful for maintaining application-level delay.

Index Terms—Internet of Things (IoT), Multi-access Edge
Computing (MEC), OpenStack, Live Migration, Video Live
Streaming, Application-level Delay

I. INTRODUCTION

IoT (Internet of Things) is expected to bring new service

applications, such as health monitoring [1] and smart building

monitoring [2], to our life. In the current IoT environments,

devices equipped with many sensors and cameras gather the

information on surroundings, and the information is first

transferred to the data center and processed there [3]. Then, the

results are returned to devices and/or users as necessary [4].

Processing at the data center may be acceptable as long as

the size of data and the number of interconnected devices are

sufficiently small. However, the growth of IoT-related markets

will lead to penalties in the form of application-level delay

(i.e., delay experienced by devices/users) due to geographical

factors and load concentration [5]. The penalty is even more

expensive when high-bandwidth service applications, e.g., but

not limited to, health/building monitoring through low latency

real-time video analytics are deployed in accordance with 5G

wireless systems.

The concept of multi-access edge computing (MEC), has

been introduced to mitigate delays [5]–[7]. MEC virtualizes

service functions and deploys them on edge servers. An

edge server is a secondary data center located at the net-

work edge, closer to the user. Incorporating network function

virtualization (NFV) to edge servers is expected to allow

flexible changes in resources and deployment locations for

virtual machines (VM) on which the function operates [6]–

[8]. Service applications use functions at edge servers rather

than at the data center. It is expected that response to the

service will be improved by eliminating geographical delays

and relaxing load concentrations. One application for MEC

is augmented reality (AR) content delivery services [6]. AR

adds information to real-world images and displays them to

users in real time. Low latency is thus required for content

distribution and processing for adding contents. Caching AR

content that is frequently used at edge servers for delivery to

mobile devices is expected to reduce round-trip times (RTT)

and ensure high bandwidth in 5G wireless systems.

However, since the processing capability in edge is lower

than that in the data center, there are concerns that processing

delays at edge servers may increase due to software operation

in a virtualized environment. Furthermore, VM live migration

that enables relocation of service functions for flexible service

provision may cause temporary delays or packet loss because

of a reestablishment of connections during the live migration.

For deployment of MEC for future IoT applications, it is there-

fore important to investigate whether responsiveness improves

as expected, and to evaluate the effects of service function

relocation on application-level quality, such as application-

level delay.

In this paper, we investigate application-level delay expe-

rienced by users occurring at nodes in a MEC environment.

To that end, we construct a MEC environment using server

machines and OpenStack [9]. We also build a service in which

users and remote robots cooperate via video live streaming,

assuming a robotic monitoring agent works with sensor de-

vices. By manually and dynamically changing service function

locations, we clarify the effect on application-level quality.

Finally, we investigate the penalty of VM live migration from

the aspect of packet loss, and reveal the extent to which the

impact of background traffic is relaxed by relocation of service

functions.

The remainder of this paper is organized as follows. We

review related work in Section II. Section III describes imple-

mentation of the MEC service and the MEC environment. In

Section IV, we measure and evaluate application-level delay

occurring at nodes in the MEC environment. In Section V,

we examine and evaluate application-level quality due to high

network load at edge servers and service function relocations.

In Section VI, we present our conclusions and future work.

II. RELATED WORK

Network measurement has intensively investigated the con-

tent of quality-of-service (QoS). Network measurement re-

searchers have intensively investigate the relationship between

QoS metrics and application-level quality on the Internet [10],

[11]. Even under low-level jitter and packet loss (8%), quality

opinion scores are halved and users’ perceived quality drops

as compared with perfect conditions [10]. A 20% packet loss

caused errors in about 90% of MPEG frames [11].

There are few studies of application-level delay measure-

ment in MEC environments. End-to-end latency of 5G MEC

has been investigated, but only performs network-level RTT

measurement [12]. A study that examines relation between

differences in live migration latency for three container storage

types; local storage, shared sync storage and shared async stor-

age, shows that the latency in shared async storage condition

is smallest and it takes about 10 s in a MEC environment [13].

There are several studies that investigate the application-

level downtime caused by live migrations (see Ref. [14] and

references therein). It is concluded that the application-level

downtime caused by live migration with 200 MB memories

in a metropolitan area network (MAN) or wide area net-

work (WAN) is 0.8–1.6 s [15]. A live migration approach

that minimizes the network-level downtime is presented [16].

However, it remains unclear how application-level downtime

affects application-level quality, such as video quality or delays

in MEC environment.

In this paper, we directly measure application-level quality

and delay in a MEC environment. We also examine the

improvement of user’s experienced delay by relocation of

service functions under heavy background traffic.

Recently, quality of experience (QoE) has been used to

evaluate users’ perceived quality of services [17]. Unlike QoS

metrics, which are measured on the network side, QoE is based

on user experience, perception, and expectations regarding

application and network performance. The work in our paper

does not focus on QoE, but the application-level quality

measured in our experiment will contribute to understanding

QoE in MEC environments, because QoE metrics include

application-level quality [17].

III. IMPLEMENTATION OF THE MEC SERVICE AND THE

MEC ENVIRONMENT

In this section, we explain the construction of a MEC envi-

ronment using OpenStack and a service application operating

on the environment.

A. MEC Service

As a potential new service, we consider realization of a

monitoring agent service using robots. In this service, robots

go to a physical place, and users can monitor from home

!"#$%&' ()*)+

,-#./+012

').+$)33#$%4)5#%%

4#+6)$2%4)5#

789:8%;&

<'%/#$=#$

>4).9=8$+?038@#5A

<0+09-30.#%4#+6)$2

B5C#%/#$=#$

>,-#./+012%

')D-?+#%.)5#A

E0.0C#D#.+%4#+6)$2

B5C#%/#$=#$

>,-#./+012%

')D-?+#%.)5#A

Fig. 1: Configuration of the MEC environment

as if they were actually there. Using AR technology, object

information is superimposed on video acquired by a camera

mounted on the robot and presented to the user. This process

is performed on an external server, and object information is

acquired from the cloud. Sensing technology can also used to

present tactile sensations of objects and to control the robot.

In this paper, we assume only live streaming of video from

the “Pepper” robot [18], which is equipped with a camera that

compresses video into MPEG2 format using FFmpeg [19],

which is part of its operating system. Video is then transferred

to an edge server and text information is added using FFmpeg

installed on a VM. Another VM relays the video stream to a

VM hosting FFserver, a streaming server application, to stream

it to a PC for real-time user viewing using FFplay. To simplify

the implementation, we do not insert the superimposition

of product information, but insert a simple text. The text

is manually inserted using drawtext filter of FFmpeg. Note

that FFserver uses the UDP and TCP transport protocols for

reception and transmission, because of its specification.

Pepper is a humanoid robot. Its software development

kit (SDK) and application programming interface (API) are

publicly available, so internal and external applications using

its equipped cameras, sensors, and motion modules can be

developed easily.

B. Construction of an MEC Environment using OpenStack

To build a MEC environment, we use OpenStack (Ocata),

which is open-source software for creating virtualization envi-

ronments. The white paper of MEC framework [8] states that

MEC incorporates NFV for virtualization. Taking advantage of

virtualization allows relocating service functions based on load

at the edge server and on user movement. Since OpenStack

has already been adopted in many implementation projects of

NFV [20], [21], it is considered appropriate to use OpenStack

to build virtualization environment for MEC.

We built a MEC environment in the laboratory by con-

necting four similarly configured servers, the user PC and

the robot with switches, as shown in Fig. 1. Three of the

four machines are OpenStack nodes, one operating as the

OpenStack controller and network node and the other two

as OpenStack compute nodes operating as edge servers. In

the monitoring agent service, since the robot and the user are

geographically separated, the two edge servers are prepared as

processing bases close to each other. CentOS 7 and a kernel-

based virtual machine (KVM) are installed on the compute

nodes as the host OS and hypervisor, respectively. Applications

are executed in VMs with 4 GB of memory and 32 GB of

storage on the compute nodes. Storage files of all VMs are

shared by network file system (NFS) among three OpenStack

nodes. The fourth server is not virtualized for comparison. We

also assume that this non-virtualized server is a data center

at the center of the network. Hereafter, we refer to the non-

virtualized server as the DC server.

The robot, the user PC, and VMs on edge servers and the

DC server communicate using a data-plane network. The robot

is connected to the data-plane network via a Wi-Fi access

point. On the two OpenStack compute nodes, virtual routers

and virtual switches allow VMs to connect to the data-plane

network. We use Open vSwitch for the switching function. In

addition to basic Layer 2 and 3 functions, distributed virtual

router (DVR) is enabled for the data-plane network. The DVR

allows distributing virtual routers to all compute nodes, while

only a single virtual router is deployed on the network nodes

by default. OpenStack controller nodes and network nodes use

the out-of-band network to communicate with compute nodes;

they are not at all involved in data-plane communication.

Hereafter, we call this out-of-band network the management

network. Note that the MEC environment is constructed in

a LAN. Therefore, end devices (the user PC and the robot)

and the DC server are not geographically separated in our

configuration. When evaluating the experimental results, it

is thus necessary to consider delays caused by geographical

factors.

IV. APPLICATION-LEVEL DELAY MEASUREMENT

To evaluate the effect of service function relocation on

application-level quality in a MEC environment, we focus on

and measure application-level delay between end devices for

video live streaming. The processing time of a edge server and

a DC server are also measured.

A. Scenario

Four scenarios are used to investigate the application-

level delay due to differences in the locations where service

functions are deployed. For each scenario, we changed forms

of service provision, such as the applications to operate,

the existence of a virtualization environment, distance of

TCP communication, and the location of service functions.

In scenarios with names beginning with “edge,” the service

function is deployed on an edge server. The “Data-Center” and

“Direct” scenarios are used for comparison. Figure 2 shows

the locations of service functions and communication paths

in each scenario. Note that TCP path lengths represent the

number of links on the TCP path. Our preliminary experi-

ments, which are not shown in the current paper, to measure

the communication delay of UDP and TCP showed that the

delay of TCP is about twice the delay of UDP even in our

LAN network. Therefore, we focus on the difference of TCP

path length.

• Edge-User-Side: In this scenario, applications that per-

form text insertion, relay, and streaming are deployed on

a user-side edge server and executed on VMs. Placing

service functions on the server reduces TCP communica-

tion distances. The TCP path length is 2.

• Edge-Robot-Side: In this scenario, applications that per-

form text insertion, relay, and streaming are deployed on a

robot-side edge server and executed on VMs. Placing ser-

vice functions on the server increases TCP path lengths.

The TCP path length is 4.

• Data-Center: In this scenario, applications that perform

text insertion, relay, and streaming are deployed on the

server serving as the data center and executed directly on

that server. The TCP communication distance is larger

than in the Edge-User-Side scenario and smaller than in

the Edge-Robot-Side scenario. The TCP path length is 3.

• Direct: In this scenario, no applications that perform

text insertion, relay, or streaming are deployed. Video is

directly sent from FFmpeg on the robot to FFplay on the

user PC. We aim to measure the processing time at the

end device. All communications use UDP.

B. Result

To measure the application-level delay of video live stream-

ing, we display a millisecond-precision digital clock in front

of the robot as shown in Fig. 3. Video captured by the robot is

live-streamed and displayed on the user PC. The digital clock

shown to the robot is also displayed on the user PC for time

synchronization. Next, this digital clock and live-streaming

video from the robot are arranged on the user PC display, and

a screenshot is taken per second for 100 seconds. We calculate

the difference in capture times between each screenshot, and

calculate the average delay time to measure application-level

delay of video live streaming in the four scenarios. Table I

shows the application-level delays and their the factors for

video live streaming in the four scenarios. The delays are the

averages of two measurements.

We also measure server processing times in the Edge-

User-Side, Edge-Robot-Side, and Data-Center scenarios. Since

it is difficult to directly measure server processing times,

we regard differences between incoming and outgoing time

packets as the server processing time. We therefore repeat the

start and stop of live streaming while capturing packets at

the server’s network interface. Using those captured packets,

we can calculate differences in capture times between first

incoming and first outgoing packets. We also calculate differ-

ences in capture times between last incoming and last outgoing

packets. Table II shows average server processing times of 10

measurements.

C. Evaluation

The results show the following (Table III):

• The processing time at the end device is 425.19 ms.

• The time required for text insertion and streaming server

processing is 28.85 ms. During that time, the server

!"#$%&$'($' !"#$%&$'($'

)*%&$'($'

+,$'%-* ./0/1

+,$'%&2"$./0/1%&2"$

34 1$51

34 '$678

34 ,1'$792:#

;678$' <79$'7

(a) Edge-User-Side

!"#$%&$'($' !"#$%&$'($'

)*%&$'($'

+,$'%-* ./0/1

+,$'%&2"$./0/1%&2"$

3456$' 758$'5

9: 1$;1

9: '$456

9: ,1'$582<#

(b) Edge-Robot-Side

!"#$%&$'($' !"#$%&$'($'

)*%&$'($'

+,$'%-* ./0/1

+,$'%&2"$./0/1%&2"$

1$31
'$456

,1'$5728#

9456$' :57$'5

(c) Data-Center

!"#$%&$'($' !"#$%&$'($'

)*%&$'($'

+,$'%-* ./0/1

+,$'%&2"$./0/1%&2"$

3456$' 758$'5

(d) Direct

Fig. 2: Location of service functions and communication paths in each scenario

TABLE I: The application-level delays and their factors for video live streaming in the four scenarios

Scenario Factors Delay [ms]

Edge-User-Side End device, Text & Streaming, Virtualization, 2 TCP path length units 479.48
Edge-Robot-Side End device, Text & Streaming, Virtualization, 4 TCP path length units 491.88
Data-Center End device, Text & Streaming, 3 TCP path length units 472.64
Direct End device 425.19

Fig. 3: The way of the application-level delay measurement

TABLE II: Server processing time

Scenario Server name Time [ms]

Edge-User-Side User-side edge server 11.35
Edge-Robot-Side Robot-side edge server 11.90
Data-Center DC Server 7.60

processing time is 7.60 ms, and the remaining 21.25 ms

is protocol overhead.

• The delay increase due to virtualization is 13.04 ms.

During that time, the increase of server processing time is

4.00 ms, and the remaining 9.04 ms is increased protocol

overhead.

• The delay increase per TCP path length unit is 6.20 ms.

The RTT caused by distance from the end device to the

data center is about 100 ms or less to a domestic data center

in Japan, about 100 ms to a data center in the U.S., and

about 200 ms to a data center in Europe [22]. Therefore,

delay in the Data-Center scenario of 472.64 ms is actually

considered to be about 100–200 ms larger. Comparing delay

due to geographical factors, the increased delay, 6.84 ms,

due to virtualization is sufficiently small. That is, providing

services using edge servers will reduce application-level delays

between end devices by 15–30%. Application-level quality can

TABLE III: The delay of each factor

Factor Delay [ms] Server processing time [ms]

End device 425.19 –
Text & Streaming 28.85 7.60
Virtualization 13.04 4.00
TCP path length unit 6.20 –

thus be improved by relocating service functions from remote

data centers to an edge server near the user.

Note that processing at the end device takes a long time,

because the operational speed of the Intel E3845 Atom pro-

cessor used in the Pepper robot is about one-tenth that of an

Intel Core i7, which is now widely used. When Core i7 or its

equivalent CPUs are applied to robotic products in the future,

processing times are expected to be reduced to about 40 ms,

increasing the proportion of delay occurring in the network.

Assuming improvement of end-device performance, it will be

effective to provide services using edge servers.

V. EFFECT OF SERVICE FUNCTION RELOCATION ON

APPLICATION-LEVEL QUALITY

In this section, we evaluate the impact of live-migrating

VMs on application-level quality. We show the packet loss

penalties resulting from VM live migration, and show the

effectiveness of service function relocation by changing the

amount of background traffic.

In this section, we only considers a function on an edge

server that inserts text into video. Furthermore, live migration

of VMs is performed using the management network. Since

background and application traffic are transferred via the

data-plane network, it does not interfere with live migration.

Note that live migration is performed in a LAN environment

in our experiments, so the impact of live migration in a

MAN/WAN environment will be larger than what is shown

in this section [15].

!"#$%&'()*+,&"--.#

/000+1234

!"#$%&'()*+,&"--.#

/500+1234

!"#$%&'()*+,&"--.#

5600+1234

Fig. 4: Application-level quality for different levels of back-

ground traffic

A. Application-level Quality and Packet Loss

One virtual machine that inserts text into video from the

robot and ten other virtual machines that generate background

traffic are deployed on the user-side edge server. Background

and video live-streaming traffic, about 3.37 Mbps, use the

1 Gbps network interface of the edge server. When the total

amount of traffic exceeds 1 Gbps, packet loss occurs since it

exceeds the capacity of the interface. As a result, the receiving

rate of the user PC decreases. In our experiment, application-

level quality clearly worsened when the receiving rate fell

below 80% (Fig. 4). Network measurement researcher shows

a 20% packet loss caused errors in about 90% of MPEG

frames [11].

B. Penalty of VM Live Migration

In this paper, the OpenStack compute nodes as the edge

servers uses KVM as a hypervisor. OpenStack instructs KVM

to live-migrate a VM, initiating the pre-copy live migra-

tion [14]. In pre-copy live migration, the new VM is started

at the migration destination, and the 4 GB of memory of

the source VM is copied to the new VM. Memory pages

that changed at the source VM during copying are repeatedly

copied to the new VM. When the number of uncopied memory

pages becomes small enough to minimize their transmission

time, the hypervisor stops the source VM and instantly copies

the uncopied memory. External communication is paused

during reconnection. Repeated measurements show that this

downtime is about 0.5 s, causing frame errors in live-streaming

video. Storage of the VM has already shared by NFS.

C. Demonstration and Evaluation

Results of the experiment show that when live migration is

performed just before the receiving rate decreases to 80%, the

effect of service function relocation on application-level qual-

ity is maximized. However, it is actually difficult for controller

nodes to measure the receiving rate at the user PC, because it

is considered that the user PC is not under the control of the

network operator that provides MEC. Also, it is not currently

possible to know the packet loss rate for a specific service by

metering the network interface of the machine. We thus de-

veloped a program that meters edge server network interfaces

using SNMP (Simple Network Management Protocol), and

performed VM live migration before packet loss occurred due

to monotonically increased background traffic. This is a simple

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 30 60 90 120 150 180 210 240 270 300

B
a
c
k
g
ro

u
n
d
 t
ra

ff
ic

 [
M

b
p
s
]

Time [s]

Fig. 5: Background traffic

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

 0 30 60 90 120 150 180 210 240 270 300

R
a
te

 [
M

b
p
s
]

Time [s]

LM disabled
LM enabled

Fig. 6: Receiving rate at the user PC

 0

 400

 800

 1200

 1600

 2000

 0 30 60 90 120 150 180 210 240 270 300

D
e
la

y
 [
m

s
]

Time [s]

LM disabled
LM enabled

Fig. 7: Application-level delay

program for automated resource management that dynamically

relocates service functions based on the network load of edge

servers. The program, running on the controller node, instructs

the OpenStack controller to perform VM live migration when

the traffic rate exceeds 950 Mbps. The program issues SNMP

query to obtain the traffic volume on the network interface.

Then, the traffic rate is calculated based on the difference of

traffic volume between two successive queries. The interval

of queries is set to 3 seconds, and the VM live migration

starts only when the traffic rate exceeds 950 Mbps over three

intervals.

We set up scenarios where VM live migration is enabled and

disabled, and measured receiving rates and application-level

delay at the user PC under conditions of continually increasing

background traffic. We monotonically increase the background

traffic by 200 Mbps every 30 seconds so that VMs are not

repeatedly migrated (Fig. 5). In the live migration enabled

scenario, the VM is migrated from the user-side edge server

to the robot-side edge server, as instructed by the program we

developed. Application-level delay is measured as described

in Section IV. Figures 6 and 7 show the results.

The results for the live migration disabled scenario show

that the video receiving rate at the user PC decreases as

the background traffic increases. Intermittent, extremely large

application-level delays and quality degradation start when

the video receiving rate at the user PC decreases to about

2.7 Mbps, which is about 80% of the normal rate. Places where

the application-level delay is not plotted in Fig. 7 indicate that

the application-level delay could not be measured, because

video frames were damaged and camera capture times could

not be read.

The results for the live migration enabled scenario show

no degradation in application-level quality. Since the ser-

vice function was relocated to a robot-side edge server just

before the occurrence of packet loss, the receiving rate of

the video remained stable at normal levels, despite increased

background traffic at the user-side edge server. The results

of packet capture show that live migration ends at time 90.

The time required for live migration was about 13 s, and

the communication downtime was about 0.2 s. Live migration

and downtime ended simultaneously. Although the video was

momentarily distorted during the downtime, it could not be

grasped by the screenshots for application-level delay mea-

surement. This penalty is sufficiently small compared to the

degradation of application-level quality when the background

traffic is significantly large.

We confirmed that MPEG2 video began to be damaged

when packet loss was 20%, and that delay and packet loss

due to VM live migration are very temporary. We thus

empirically confirmed that service function relocation is useful

for maintaining application-level quality.

VI. CONCLUSION

Standardization of MEC is progressing, and the introduction

and deployment of MEC is becoming a reality. It is thus

important to understand the application-level delays and their

factors in the MEC environments, and to investigate the effects

of relocating service functions on application-level quality

from the viewpoint of future network and service design. In

this paper, we measured application-level delays and investi-

gated the effect of service function relocation on application-

level quality in a MEC environment. The results showed that

increased processing delays due to software operations are

small as compared to delays caused by geographical factors.

We showed that providing services using edge servers can

reduce application-level delays between end devices by 15–

30%. This demonstrates that application-level quality can be

improved by MEC. We also revealed that delays and packet

loss due to VM live migration are very temporary, and suffi-

ciently small as compared to the degradation of application-

level quality when background traffic is significantly large. We

thus empirically confirmed that service function relocation is

useful for maintaining application-level quality. In future work,

we will perform live migration in a MAN and WAN environ-

ments to evaluate the effects of service function relocation on

application-level quality at larger scales. In that case, we will

need to migrate VM storage as well as memory.

ACKNOWLEDGMENT

This work was partially supported by Grant No. 19104 from

the National Institute of Information and Communications

Technology (NICT) in Japan.

REFERENCES

[1] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos,
B. Kantarci, and S. Andreescu, “Health Monitoring and Management
Using Internet-of-Things (IoT) Sensing with Cloud-based Processing:
Opportunities and Challenges,” in Proceedings of IEEE SCC 2015, Jun.
2015, pp. 285–292.

[2] K. Surabhi and M. Saurabh, “Smart buildings: How IoT technology aims
to add value for real estate companies,” Deloitte University Press, Apr.
2016.

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: Review and
open research issues,” Information Systems, vol. 47, pp. 98–115, Jan.
2015.

[4] Z. Huang, W. Li, P. Hui, and C. Peylo, “CloudRidAR: A Cloud-based
Architecture for Mobile Augmented Reality,” in Proceedings of ACM

workshop on Mobile augmented reality and robotic technology-based

systems, Jun. 2014, pp. 29–34.
[5] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge Computing

Benefit from Software-Defined Networking: A Survey, Use Cases &
Future Directions,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2359–2391, Jun. 2017.

[6] “Mobile Edge Computing A key technology towards 5G,” ETSI, Sep.
2015.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Architecture & Orchestration,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 3, pp. 1657–1681, May 2017.
[8] “Mobile-Edge Computing (MEC); Framework and Reference Architec-

ture,” ETSI GS MEC 003 V1.1.1, Mar. 2016.
[9] OpenStack.org. [Online]. Available: https://www.openstack.org/

[10] M. Claypool and J. Tanner, “The Effects of Jitter on the Peceptual
Quality of Video,” in Proceedings of the seventh ACM international

conference on Multimedia (Part 2), Oct. 1999, pp. 115–118.
[11] J. M. Boyce and R. D. Gaglianello, “Packet Loss Effects on MPEG

Video Sent Over the Public Internet,” in Proceedings of the sixth ACM

international conference on Multimedia, Sep. 1998, pp. 181–190.
[12] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile Edge Computing and

Field Trial Results for 5G Low Latency Scenario,” China Communica-

tions, vol. 13, no. 2, pp. 174–182, Feb. 2016.
[13] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile Edge

Computing Potential in Making Cities Smarter,” IEEE Communications

Magazine, vol. 55, no. 3, pp. 38–43, Mar. 2017.
[14] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A Survey on Virtual

Machine Migration: Challenges, Techniques and Open Issues,” IEEE

Communications Surveys & Tutorials, Jan. 2018.
[15] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. De Laat, J. Mambretti,

I. Monga, B. Van Oudenaarde, S. Raghunath, and P. Y. Wang, “Seam-
less live migration of virtual machines over the MAN/WAN,” Future

Generation Computer Systems, vol. 22, no. 8, pp. 901–907, Oct. 2006.
[16] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the Risk of

Cloud Services Downtime Using Live Migration and High Availability-
Aware Placement,” in Proceedings of IEEE CloudCom 2016, Dec. 2016,
pp. 578–583.

[17] S. Winkler and P. Mohandas, “The Evolution of Video Quality Measure-
ment: FromPSNR to Hybrid Metrics,” IEEE Transactions on Broadcast-

ing, vol. 54, no. 3, pp. 660–668, Jun. 2008.
[18] SoftBank Robotics. [Online]. Available: https://www.ald.

softbankrobotics.com/en/robots/pepper
[19] FFmpeg. [Online]. Available: https://ffmpeg.org/
[20] “Network Functions Virtualisation - White Paper #3,” ETSI, Oct. 2014.
[21] R. Mijumbi, J. Serrat, J.-l. Gorricho, S. Latré, M. Charalambides,

and D. Lopez, “Management and Orchestration Challenges in Network
Functions Virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, Jan. 2016.

[22] Z. Wu and H. V. Madhyastha, “Understanding the Latency Benefits
of Multi-Cloud Webservice Deployments,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 2, pp. 13–20, Apr. 2013.

