
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

マルチアクセスエッジコンピューティングにおける
リアルタイム処理を伴う映像の低遅延ライブストリーミングのための

サービス機能再配置手法

金田 純一† 荒川 伸一† 村田 正幸†

†大阪大学大学院情報科学研究科 〒565–0871大阪府吹田市山田丘 1–5
E-mail: †{j-kaneda,arakawa,murata}@ist.osaka-u.ac.jp

あらまし 近年、遠隔地でデータを処理する新しいサービスが数多く登場しており、ユーザが体感するエンドツーエ

ンドの遅延であるアプリケーションレベルの遅延を低減することがユーザの体感品質を向上させる上で重要となって

いる。そこで、マルチアクセスエッジコンピューティング (MEC)によって遅延を低減することが期待される。しか
し、一般にエッジサーバの処理能力はデータセンタよりも小さく、遅延低減効果の大きいサービス機能を選択して展

開する必要がある。そこで将来のMECの展開に向け、MEC環境で発生するアプリケーションレベルの遅延と発生要
因を解明し、機能再配置によってアプリケーションレベルの遅延がいかに低減されるのか調査が必要である。本稿で

は、OpenStackおよび Amazon Web Serviceを使用してMEC環境を構築し、リアルタイム処理を伴う映像のライブス
トリーミングサービスを動作させる。アプリケーションレベルの遅延を計測し詳細に分析した結果、映像の低遅延ラ

イブストリーミングのためには、伝搬遅延が小さいことに加えジッターの発生を抑えることが重要だと明らかになっ

た。さらに本稿では、この分析結果に基づいてサービス機能再配置手法を考案する。実機実験の結果、考案した手法

によって、アプリケーションレベルの遅延を 400 ms未満に維持し、ビデオの品質を良好に維持することができた。
キーワード マルチアクセスエッジコンピューティング、映像のライブストリーミング、リアルタイム処理、アプリ

ケーションレベルの遅延、仮想マシンのライブマイグレーション

Service Function Reallocation Method for Low-latency Video Live Streaming
with Real-time Processing in Multi-access Edge Computing

Junichi KANEDA†, Shin’ichi ARAKAWA†, and Masayuki MURATA†

† Graduate School of Information Science and Technology, Osaka University
Yamadaoka 1–5, Suita, Osaka, 565–0871 Japan

E-mail: †{j-kaneda,arakawa,murata}@ist.osaka-u.ac.jp

Abstract In recent years, many new services that process data at remote base have appeared. In such new services, it is
important to reduce application-level delays, i.e. end-to-end delays experienced by the users, in order to improve the users’
quality of experience. The concept of Multi-access Edge Computing (MEC) is expected that the delays are reduced. However,
the processing capability of edge servers is generally lower than that of data centers. Service functions capable of effectively
reducing application-level delays should be deployed on edge servers. For future deployment of MEC, it is therefore necessary
to clarify application-level delays and its occurrence factors in a MEC environment, and to investigate how to make the applica-
tion-level delay lower by reallocations of the functions. In this paper, we construct an MEC environment using OpenStack and
Amazon Web Service, then operate a video live streaming service with real-time processing. Results of our measurement and
analysis of the application-level delay shows that, for low-latency video live streaming, it is naturally important that the average
of propagation delays is small, but it is also important to suppress the jitter caused by the network side. Based on this findings,
we devise and implement a simple service reallocation method for low-latency video live streaming. Our experimental results
show the application-level delay is kept under 400 ms and video quality is comfortable by the method.
Key words Multi-access Edge Computing, Video Live Streaming, Real-time Processing, Application-level Delay, Live
Migration of Virtual Machine

— 1 —

1. Introduction

In recent years, with the progress of IoT (Internet of Things),
many new applications and services that process data at remote base
have appeared [1]. Telexistence is one of such new service, which
uses a remote robot, a VR headset and a haptic feedback device
as end devices. In such new services, it is important to reduce
application-level delays, i.e. end-to-end delays experienced by the
users, in order to improve the users’ quality of experience (QoE).
However, processing at a data center can lead to penalties in the form
of large application-level delay due to geographical factors and load
concentration.

The concept of Multi-access Edge Computing (MEC) has been
introduced to mitigate delays [2], [3]. MEC virtualizes service func-
tions and deploys them on virtual machines on edge servers. An edge
server is a secondary data center located at the network edge, closer
to the user. Incorporating Network Function Virtualization (NFV) to
MEC is expected to allow flexible changes in resources and deploy-
ment locations of virtual machines [3], [4]. In a MEC environment,
service applications use functions at edge servers rather than at data
centers. As a result, it is expected that responsiveness to services
will be improved by relaxing load concentration and reducing the
delay due to geographical factors.

However, the processing capability of edge servers is generally
lower than that of data centers. Service functions capable of effec-
tively reducing application-level delays should be deployed on edge
servers, since it is impossible to deploy all service functions on an
edge server. For future deployment of MEC, it is therefore neces-
sary to clarify application-level delays and its occurrence factors in
a MEC environment, and to investigate how to make the application-
level delay lower by MEC configurations such as the locations and
reallocations of the functions. It is also needed to clarify the ef-
fects of service function reallocation on the application-level delay.
Moreover, it is important to obtain policies for service function re-
allocation for the purpose of low-latency service provision.

In this paper, we construct an MEC environment using Open-
Stack and Amazon Web Service (AWS), then operate a video live
streaming service with real-time processing supposing a shopping
agent service using robots. A real-time image processing function
is deployed on an edge server in the constructed MEC environment.
By manually changing the location of the function, we measure the
application-level delay of video live streaming and analyze the delay
in detail. As a result of the analysis, it is revealed that the increase of
buffering time for absorbing jitter, i.e. a variation in packet arriving
intervals, increases application-level delays significantly. Therefore,
in order to realize low-latency video live streaming, it is naturally
important that the average of propagation delays is small, but it is also
important to suppress the jitter caused by the network side. Based
on this finding, we devise a service function reallocation method
for low-latency video live streaming. In our method, we focus on

User PC Robot

Orchestrator
(OpenStack

Controller Node
Network Node)

Wi-Fi AP

NV
Server

Data-plane Network

Edge Server
(OpenStack

Compute node)

Management Network

Edge Server
(OpenStack

Compute node)

Data Center
(AWS)

≈
VPN
Gate

Figure 1 Configuration of the MEC environment

the increases of jitter and application-level delay caused by the in-
crease of the CPU load of the edge server the function is deployed.
And the timing of service function reallocation is determined based
on the CPU load of edge servers. We implement a simple service
reallocation method and confirm the effect of the service function
reallocation method on application-level delay.

The remainder of this paper is organized as follows. Section 2.
describes the implementation of a MEC environment and a video
live streaming service with real-time processing. In Section 3., we
measure application-level delays and analyze the factors of occurring
the delays. In Section 4., we devise a service function reallocation
method and confirm the effect of the method through our MEC en-
vironment. In Section 5., we present our conclusions and future
works.

2. Implementation

2. 1 Multi-access Edge Computing Environment
To build a MEC environment, we use OpenStack, which is open-

source software for creating virtualization environments. The Open-
Stack development community expects OpenStack to be applied to
the edge [5].

We built the MEC environment in our laboratory by connecting
four similarly configured server machines, a user’s PC and a robot
with switches. These devices are also connected to virtual machines
on Amazon Web Service (AWS). An overview of the MEC environ-
ment is shown in Figure 1. Three of the four similarly configured
machines are OpenStack nodes, one operating as an OpenStack con-
troller and network node, and the other two as OpenStack compute
nodes. The controller node operate as a control unit such as infras-
tructure manager and orchestrator in a virtualization environment.
We call this node the orchestrator. The compute nodes operate as
edge servers. In the shopping agent service, since the robot and the
user are geographically separated, the two edge servers are prepared
as processing bases close to each other. CentOS 7 and Kernel-based
Virtual Machine (KVM) are installed on the compute nodes as a
host OS and a hypervisor, respectively. Applications are executed

— 2 —

in virtual machines with 4 GB of memory and 32 GB of storage on
the compute nodes. Storage files of all virtual machines are shared
by Network File System (NFS) among three OpenStack nodes. The
fourth server machine is not virtualized for comparison. Hereafter,
we refer to this non-virtualized server as the NV server. We also use
virtual machines on AWS as data centers at the center of network.

The robot, the user PC, the virtual machines on the edge servers
and AWS, and the NV server communicate using a data-plane net-
work. The robot is wirelessly connected to the data-plane network
via a Wi-Fi access point. The devices and the virtual machines on
the edge servers are connected on local area network (LAN) scale.
The virtual machines on AWS are connected to the data-plane net-
work using Virtual Private Network (VPN) via the Internet. The
orchestrator uses an out-of-band network to communicate with the
edge servers so that they are not at all involved in the data-plane
communication. Hereafter, we call this out-of-band network the
management network.

2. 2 Video Live Streaming Service with Real-time Processing
As a potential new service, we consider realization of a shopping

agent service using robots. In this service, robots go to a physical
store, and users can shop from home as if they were actually there.
Using AR/VR technology, product information is superimposed on
the video taken by a camera mounted on the robot and presented
to the user. This process is performed on an external server, and
product information is acquired from cloud. Sensing technology
can also used to present tactile sensations of products and to control
the robots.

In this paper, we assume only video live streaming from the “Pep-
per” robot [6] to the user. In the service, the video which is taken
by a camera on the robot is compressed into MPEG2 format using
FFmpeg, which runs on the operating system of the robot. The
video is then transferred to an edge server and text information is
added using FFmpeg running on a virtual machine. Another virtual
machine relays the video stream to a virtual machine hosting FF-
server, a streaming server application, to stream it to the user PC for
real-time user viewing using FFplay. To simplify the implementa-
tion, we do not insert the superimposition of product information,
but insert a simple text. The text is inserted using drawtext filter of
FFmpeg. Note that FFserver uses UDP and TCP transport protocols
for reception and transmission, because of its specification.

3. Measurement and Analysis of Application-
level Delay

3. 1 Measurement Setting
3. 1. 1 Measurement Method
To measure the application-level delay of video live streaming, we

use the time difference of the two clocks in the live-streamed video.
First, a millisecond-precision digital clock is displayed in front of the
robot. Then, the video captured by the robot is live-streamed to the
user PC via real-time processing on an edge server. The digital clock

Edge server Edge server

Data Center

VM
Function

Take video
User PC Robot

Current time

Delayed time

Display video

Figure 2 Method for Measuring Application-level Delay

shown to the robot is displayed on the monitor of the user PC for time
synchronization. The digital clock and the live-streamed video from
the robot are arranged on the monitor. Next, a screenshot is taken per
second for 100 seconds and the time differences of the two clocks
displayed on the monitor are calculated by each screenshot. At
this time, the two displayed times are converted mechanically from
an image to a numerical value. Specifically, a OCR engine called
Tesseract digitizes trimmed screenshots. Finally, we calculate the
mean of the time differences to measure the application-level delay
of video live streaming. Figure 2 shows the method for measuring
the application-level delay.

3. 1. 2 Deployment Scenarios for Real-time Processing
Seven scenarios are set to investigate the occurrence factors and

the volume of application-level delays due to the differences in the
locations where service functions are deployed. For each scenario,
we changed the forms of service provision, such as the existence of a
virtualization environment and the location of service functions. In
two edge scenarios, with names beginning with “edge,” the service
functions are deployed on an edge server. In three DC scenarios, they
are deployed on a virtual machine on AWS. The “Non-Virtualized”
and “Direct” scenarios are used for comparison.

• Edge-User-Side: In this scenario, applications that perform
text insertion, relay, and streaming are deployed on the user-
side edge server and executed on virtual machines.

• Edge-Robot-Side: In this scenario, applications that perform
text insertion, relay, and streaming are deployed on the robot-
side edge server and executed on virtual machines.

• DC-{Ohio, Singapore, Tokyo}: In the three DC scenarios, ap-
plications that perform text insertion, relay, and streaming are
deployed on AWS as a data center and executed on a virtual ma-
chine. For scenarios DC-Ohio, DC-Singapore and DC-Tokyo,
we use AWS regions of Ohio, Singapore and Tokyo respectively.
Ohio, Singapore and Tokyo are about 10800 km, 4900 km and
400 km away from Osaka respectively.

• Non-Virtualized: In this scenario, applications that perform
text insertion, relay, and streaming are deployed on the NV
server and executed directly on that server.

• Direct: In this scenario, no applications that perform text in-
sertion, relay, or streaming are deployed. The video is directly

— 3 —

Table 1 Application-level Delay of Video Live Streaming in Each Scenario

Scenario
Application-level Delay [ms]

1st 2nd Mean
Edge-User-Side 476.19 482.76 479.48
Edge-Robot-Side 482.76 500.99 491.88
DC-Ohio 745.18 761.13 753.15
DC-Singapore 617.68 641.64 629.66
DC-Tokyo 526.56 515.21 520.89
Non-Virtualized 467.35 477.93 472.64
Direct 419.54 430.84 425.19

sent from FFmpeg on the robot to FFplay on the user PC.

3. 2 Measurement Results and Analysis
In the seven scenarios, we measure the application level delays of

video live streaming twice in the way described in Section 3. 1. 1.
The results of the two measurements are shown in Table11. The
results of the analysis is explained in the following subsections.

3. 2. 1 Delay due to Long Communication Distance
When using a data center, the increase of application-level de-

lay cannot be explained by a simple increase of propagation delay
in a large scale. For the scenarios DC-Ohio, DC-Singapore and
DC-Tokyo, the differences from the application-level delay in Edge-
User-Side are 273.67 ms, 150.18 ms and 41.41 ms respectively. On
the other hand, the RTTs of ICMP packets from the user PC to the
virtual machines on AWS are 174.94 ms, 68.32 ms and 12.83 ms
for Ohio, Singapore and Tokyo regions, respectively. The RTT from
the user PC to the edge server is about 0.5 ms, and the increase
of application-level delay are obviously larger than the increases of
RTTs. The cause of those unexpected increases of application-level
delay is jitter, i.e. a variation in packet arriving intervals. Since it is
difficult to make the intervals perfectly constant, the receiver buffers
the packets and absorbs the variation. As the variation gets bigger,
the receiver needs to buffer them for a longer time.

By newly measuring packet arriving intervals on the user PC and
application-level delays, it is revealed that application-level delay
increases almost in proportion to the coefficient of variation (C.V.)
of packet arriving intervals in our configuration.

To summarize the above, the factor of delay increase in the case
of long communication distance is divided into propagation delay
and buffering time for absorbing jitter. Noted that the time taken for
VPN processing is about 0.3 ms, measured by ICMP Ping, and there
is almost no influence on the application-level delays.

3. 2. 2 Time for Real-time Processing
Comparing the the result in the scenario Non-virtualized with that

of the scenario Direct, the difference in the application-level delays
is 28.85 ms. Therefore, the result show that the time required for text

（1）：The dates and times (UTC) of the measurements are 8:20 a.m. on May 31, 2018
and 5:10 a.m. on June 1, 2018 for Ohio region, 10:00 a.m. on May 31, 2018 for
both measurements on Singapore region, and 4:00 a.m. on June 15, 2018 for both
measurements on Tokyo region.

insertion and streaming server processing is 47.45 ms. In addition,
the delay of 194 ms for buffering occurs in the virtual machine on
edge servers or AWS.

3. 2. 3 Increase of Delay due to Virtualization
Comparing the mean of the results in the two edge scenarios with

the result of the scenario Non-Virtualized, the difference is 13.04 ms.
Therefore, the results show that software operation in the virtualized
environment increases application-level delay by 13.04 ms. We also
measure the increase of server processing time due to software oper-
ation in the virtualized environment. Since it is difficult to directly
measure server processing times, we use the difference in captured
times between incoming and outgoing time packets of a server. As
a result, the increase in server processing time due to virtualization
is 4.00 ms.

3. 2. 4 Processing Time at End Devices
Although the scenario Direct is set to measure the processing time

at the end devices, we also modified FFplay application on the user
PC to output timestamps in order to investigate the details of the
processing time. Analyzing the outputted timestamps, the delay oc-
curred in FFplay is about 80 ms. Also, since the refresh rate of the
display of the user PC is 60 Hz, a delay of up to 15 ms is likely to
be occurred [7]. The camera and FFmpeg on the robot will gener-
ate delay of about 136 ms, that is the difference between the total
processing time currently confirmed and the result of the scenario
direct. FFmpeg modified to output timestamps shows that its pro-
cessing time is 27.6 ms. The remaining 108 ms should be occurred
in the camera of the robot, and then a delay of up to 33 ms is likely to
be occurred just before capturing since the frame rate is 30 fps [7].
However, they cannot be confirmed because of the specification of
the robot. Note that the measurement of the processing time by the
timestamps can not completely clarify the processing time at the user
PC. This is because it does not include the time until presentation
timestamps (PTS), that is used for identifying data in FFplay, are ex-
tracted from arrived packets. In particular, it is difficult to measure
the buffering time below the application layer.

3. 3 Discussion for Low-latency Video Live Streaming
Based on the result in Section 3. 2, we can obtain policies for

service function reallocation aimed at reducing application-level de-
lay of video live streaming service with real-time processing. The
following three solutions are considered.

First, application-level delay can be reduced by deploying a ser-
vice function of real-time processing on edge servers, that is a key
idea of Multi-access Edge Computing. Processing at a data center
can lead to penalties in the form of a large propagation delay due
to geographical factors. In a new service with real-time processing,
that delay significantly damages the user’s QoE and is required to
be reduced. In our experiment, a RTT of 12 to 170 ms occurred
between the user PC and the data centers. Using a function on the
edge can almost eliminate that delay.

Second, it is necessary to deal with jitter at network side rather

— 4 —

than at end devices. Conventionally, applications have buffered
the packets and have absorbed jitter in order to ensured quality of
service (QoS) and user’s QoE. Contrary to that conventional circum-
stance, in new services which demand high real-time performance,
the time for buffering will lead to degradation of QoS and user’s
QoE. Therefore, it is required to deal with jitter at the network side.
In Section 3. 2. 1, the maximum increase of the application-level
delays due to the buffering time for absorbing jitter was 144 ms.
By reducing jitter, this delay is eliminated. In our experiment, the
impact of jitter was clarified by the result of providing service at
data center. If the cause of jitter is congestion of the route to the
date center, the effect can be reduced by MEC. However, even using
an edge server, there is a possibility of occurring jitter due to high
load of the edge server. In Section 4., we devise a service function
reallocation method based on the CPU load of edge server.

The third solution is to improve the performance of end devices.
Cameras capable of taking high frame rate video and high refresh
rate monitors can push the limits of application-level delay reduc-
tion. In addition, improving the processing performance of end
devices leads to reduction of compression time and decompression
time of MPEG videos. However, even if the performance of end
devices improves, the delay reduction is on the order of a few tens
of milliseconds, which is smaller than the reduction of propagation
delay or buffering time for absorbing jitter.

4. Service Function Reallocation Method

4. 1 Service Function Reallocation Method
In this section, we focus on the increase of jitter caused by the

increase of CPU load of the edge server. In our method, the orches-
trator monitors the CPU utilization of the edge server as an index of
CPU load and determine when start to service function reallocation
in order to avoid increase of application-level delay of video live
streaming. The reason why the orchestrator does not directly mea-
sure jitter is that it is difficult for the orchestrator to directly access
the network statistics of the user’s device in an actual MEC envi-
ronment. In our method, service function reallocation is realized by
live migration of virtual machine.

Our method only determines the timing that the orchestrator is-
sues an instruction to start live migration. There are two factors
to determine the beginning of live migration: CPU load at which
application-level delay start to increase and the total migration time
at that CPU load. We investigate the value of CPU utilization at
which jitter and application-level delay start to increase. The CPU
load of the edge server is given by using a stress tool called “stress-
ng”, and the packet arriving intervals and the application-level delays
are measured when the CPU load is 0, 50, 80, 95 and 100 percent.
The results show that jitter increases from when the CPU load ex-
ceeds 80% and the application-level delays start to increase from
when the CPU load exceeds 95%. In addition, the total migration
time is about 8 seconds when CPU load is 95%. From the results,

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
a

c
k
e

t
A

rr
iv

in
g

 I
n

te
rv

a
l
[m

s
]

C
P

U
 L

o
a

d
 [

%
]

Elapsed Time [s]

Migration
Packet Arriving Interval

CPU Load (Source)
CPU Load (Destination)

Figure 3 Packet Arriving Intervals with Live Migration

it is appropriate to start live migration at 8 seconds before the CPU
load of source host reaches 95%.

4. 2 The Effect of Service Function Reallocation
To confirm the effect of the service function reallocation method

on application-level delay, we develop a program running on the
orchestrator. The program monitors the CPU utilization of the edge
servers using Simple Network Management Protocol (SNMP). In
our environment, data acquired by SNMP is updated every 5 sec-
onds. The program also instructs KVM on the edge server to start
live migration. The virtual machine that to be migrated is executing
real-time text inserting processing using FFmpeg, and it is migrated
from the edge server of the user side to that of the robot side. To
simplify the situation, there is only that virtual machine. There are
no virtual machines for relay or FFserver. As findings in Section 4. 1,
the appropriate timing of start to live migration is about 8 seconds
before the CPU load of source host reaches 95%. However, our
method does not predict when the CPU load of edge servers reaches
95%. Therefore, it starts migration when the CPU load of the source
reaches 90% under a condition that the CPU load is increased mono-
tonically. The CPU load of the destination is fixed at 0%, since an
edge server with low CPU load should be selected as the destination
when reallocating a service function in an actual MEC environment.

Figure 3 and Figure 4 show the packet arriving intervals and the
application-level delay when live migration is enabled. The mi-
gration is started when the CPU load reaches 90%. The packet
arriving intervals are scattered before/during the migration, but they
are calm after it. The application-level delay is stable overall, though
it slightly increases after the CPU load reaches 80% and during the
migration. Figure 5 and Figure 6 show the packet arriving inter-
vals and the application-level delay when live migration is disabled.
The packet arriving intervals are greatly scattered after the CPU
load reaches 90%. The application-level delay also increases after
the CPU load is over 85%. After the CPU load reaches 100%, the
application-level delay increases significantly. As a result, it was
possible to prevent the occurrence of large jitter and the increase of
application-level delay in advance.

— 5 —

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
a

c
k
e

t
A

rr
iv

in
g

 I
n

te
rv

a
l
[m

s
]

C
P

U
 L

o
a

d
 [

%
]

Elapsed Time [s]

Migration
Application-level Delay

CPU Load (Source)
CPU Load (Destination)

Figure 4 Application-level Delay with Live Migration

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
a

c
k
e

t
A

rr
iv

in
g

 I
n

te
rv

a
l
[m

s
]

C
P

U
 L

o
a

d
 [

%
]

Elapsed Time [s]

Packet Arriving Interval
CPU Load

Figure 5 Packet Arriving Intervals without Live Migration

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
a

c
k
e

t
A

rr
iv

in
g

 I
n

te
rv

a
l
[m

s
]

C
P

U
 L

o
a

d
 [

%
]

Elapsed Time [s]

Application-level Delay CPU Load

Figure 6 Application-level Delay without Live Migration

5. Conclusion

In this paper, we measured the application-level delays of video
live streaming and analyze the delays in detail. As a result of the
analysis, it was revealed that, for low-latency video live streaming,
it is naturally important that the average of propagation delays is
small, but it is also important to suppress the jitter caused by the
network side. Based on this finding, we devised a service function
reallocation method for low-latency video live streaming. In our
method, we focused on the increases of jitter and application-level
delay caused by the increase of CPU load, and the timing of service
function reallocation was determined based on the CPU utilization
of edge server. Also, we confirmed that our method prevent the oc-
currence of large jitter and the increase of application-level delay in
advance. The work in our paper does not focus on QoE, but the mea-
surement and analysis of application-level delay will contribute to

understanding QoE in MEC environments, because QoE metrics in-
clude application-level delay [8]. As a future work, we will perform
live migration in larger scales such as metropolitan area network and
wide area network environments. As a further prospect, we evaluate
the effect of application-level delay on the user’s QoE in a two-way
communication application. Moreover, we would like to evaluate
the effect in a service providing non-visual information using tactile
sensors.

Acknowledgment
This work was partially supported by Grant No. 19104 from the

National Institute of Information and Communications Technology
(NICT) in Japan.

References
[1] Z. Huang, W. Li, P. Hui, and C. Peylo, “CloudRidAR: A Cloud-based

Architecture for Mobile Augmented Reality,” in Proceedings of ACM
Workshop for Mobile Augmented Reality and Robotic Technology-
based Systems, Jun. 2014, pp. 29–34.

[2] “Mobile Edge Computing - A Key Technology Towards 5G,” ETSI,
Sep. 2015.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On Multi-Access Edge Computing: A Survey of the Emerging 5G
Network Edge Architecture & Orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, May 2017.

[4] “Mobile-Edge Computing (MEC); Framework and Reference Archi-
tecture,” ETSI GS MEC 003 V1.1.1, Mar. 2016.

[5] Cloud Edge Computing: Beyond the Data Cen-
ter. [Online]. Available: https://www.openstack.org/assets/edge/
OpenStack-EdgeWhitepaper-v3-online.pdf

[6] SoftBank Robotics. [Online]. Available: https://www.ald.
softbankrobotics.com/en/robots/pepper

[7] “Latency in Live Network Video Surveillance,” AXIS Communica-
tions, 2015.

[8] S. Winkler and P. Mohandas, “The Evolution of Video Quality Mea-
surement: FromPSNR to Hybrid Metrics,” IEEE Transactions on
Broadcasting, vol. 54, no. 3, pp. 660–668, Jun. 2008.

— 6 —

