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a b s t r a c t 

Software-defined infrastructure (SDI) provides virtualized infrastructures to customers by slicing comput- 

ing resources and network resources. One of the important problems for deploying an SDI framework is 

to control the assignment of physical resources to a virtual network against changes of traffic demand 

and service demand. For this problem, the virtual network embedding (VNE) problem, which maps a 

virtual network to physical resources, has been addressed, but a centralized calculation was assumed. It 

is difficult to adopt the centralized approach as the size of infrastructure increases and the number of 

VN requests increases because the identification of current demand becomes more complicated. In this 

paper, we present a VNE method that works with limited information for large, complicated, and un- 

certain SDI frameworks. To achieve this, our method applies the biological “Yuragi” principle. Yuragi is a 

Japanese word whose English translation is “a small perturbation to the system.” Yuragi is a mechanism 

that provides adaptability of organisms and is often expressed as an attractor selection model. This paper 

develops a Yuragi-based VNE method that deals with node attributes, has the generality to handle a per- 

formance objective, and runs in multi-slice environments. Simulation results show that the Yuragi-based 

method decreases VN migrations by about 29% relative to a heuristic method to adapt to fluctuations in 

resource requirements. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Information networks are faced with new emerging services,

such as mobile services, cloud computing services, and social ser-

vices. Software-defined infrastructure (SDI) enables rapid deploy-

ment of new services on information networks and/or informa-

tion systems by providing virtualized infrastructure to customers

by slicing computing resources and network resources. 

In an SDI framework, thanks to the advance of virtualization

technologies combined with software technology, customers order

resource by making requests to service providers and the sliced

virtualized resource is immediately assigned to the requesting cus-

tomer. 

A key to leveraging an SDI framework is network virtualization

technologies and their control. Network virtualization technolo-

gies are in the research and development phase. In recent years,

software-defined networking (SDN) and network-function virtual-
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zation (NFV) technologies have been expected to replace the con-

entional network management systems, and standardization of

DN/NFV technologies is being promoted. SDN/NFV technologies

nable programmable and automated network control, while con-

entional systems require the network operator to configure vari-

us kinds of network devices [1–5] . That is, SDI frameworks real-

zed by SDN/NFV technologies have the potential to support rapid

nd flexible deployment of services, such as on-demand resource

llocation, self-service provisioning, and secure cloud services [2] . 

Although SDN/NFV technologies and their standardization are

mportant for deploying SDI, another important problem is to con-

rol the assignment of physical resources to a virtual network un-

er changes in traffic demand and service demand. For this prob-

em, the virtual network embedding (VNE) problem has been ad-

ressed [6–12] . The VNE problem is a placement problem in which

irtual resources are to be allocated to the physical network with

ptimization of some performance objectives. In the VNE problem,

ervice demands from customers are translated to virtual network

VN) requests. A VN consists of virtual nodes and virtual links. Each

f the virtual nodes is hosted on a physical node as a form of vir-

ual machine. Then, the virtual nodes are connected through a path

f physical nodes, forming virtual links. 
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Fig. 1. Service model in software-defined infrastructure. 
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The VNE problem is divided into two sub-problems: virtual

ode mapping and virtual link mapping. Virtual node mapping de-

ides the location of the physical node for each virtual node. Note

hat each virtual node must be allocated to a physical node sup-

orting its “node attribute.” The node attribute allows classifica-

ion of nodes in ways defined by the supported operating system

OS), storage type, or node use (e.g., computing, storage, or packet

witching). Virtual link mapping decides the path on the physical

etwork for virtual links between virtual nodes. 

In [9–12] , a centralized calculation was assumed to solve vir-

ual node mapping and virtual link mapping. That is, a centralized

omponent gathers traffic information and resource utilization for

ach VN and identifies the current situation (i.e., the current traf-

c demand and/or the current service demand) of the networks.

hen, the component solves the optimization problem that opti-

izes some metric, such as maximizing revenue or minimizing re-

ource utilization. However, when the network size gets larger and

he number of multiplexed VNs increases, the identification of the

urrent situation becomes complicated by the enormous amount

f network information. As the network operators want to know

he current situation more accurately and precisely, more infor-

ation is necessary to collect. This will lead to increased used of

ink bandwidth, increased delay, and a bottleneck on network scal-

bility [5] . Note that the calculation time to obtain a solution of

he optimization problem also gets larger. However, the calculation

ime is not crucial because it may be relaxed by some heuristic

lgorithms with some sacrifice of the quality of the solution. Our

oncern in adopting the centralized approach is the overhead of

ollecting information, and this overhead gets larger as the size of

he infrastructure and number of VN requests increase. Moreover,

he environments surrounding the Internet today are continuously

hanging, thus, adaptive control of VNE is required to handle un-

ertain changes in the environments. Although precise modeling

f the end-to-end delay in SDI environment is difficult, it would

e required to suppress the maximum delay in order to guaran-

ee a specific quality of experience (QoE) for applications on VNs.

here are several models of network delay proposed, which are

onstructed generally and disregard the data contexts of packets

13] . However, the processing delay on servers depends on multi-

le factors, including server specification; CPU and memory utiliza-

ion (on virtual machines); and details of processing, which depend

n the context of the data. 

In this paper, we present a VNE method that works with only a

ittle information for large, complicated, and uncertain SDI frame-

orks. To achieve this, the proposed method applies the biological

Yuragi” principle. Yuragi is a Japanese word whose English trans-

ation is a small perturbation, both externally and internally gen-

rated, to the system. Yuragi is a mechanism that provides adapt-

bility to organisms and is often expressed as an attractor selection

odel. Our research group has developed a virtual network con-

rol based on attractor selection for optical networks. Our results

howed that our control mechanism has high adaptability to envi-

onmental fluctuations with restricted information. Unlike a virtual

etwork on an optical network, a virtual network on an SDI frame-

ork has to consider various matters such as node attribute, com-

utational performance of servers, and VN multiplexing. Therefore,

his paper develops a Yuragi-based VNE method that deals with

ode attributes, has the generality to set a performance objective,

nd runs in multi-slice environments. One process of the method

s executed for each VN slice, and each process needs information

bout only its own VN requests. Each of the processes behaves so

s to improve its own performance function, considering other VNs

s a part of an external perturbation (i.e., Yuragi). We have pre-

ented a preliminary version of this work in [14] and have demon-

trated the basic behavior of the Yuragi-based VNE method with a

imple queueing model for delay behavior. However, delay behav-
or is more complicated and difficult to identify in SDI. Thus, the

ystem needs to operate under uncertain situations. In this paper,

e examine a more complicated model of end-to-end delay and

how that the proposed method can sustain its adaptability when

everal delay behaviors are present. 

The rest of this paper is organized as follows. In Section 2 , a

ervice model for SDI frameworks is introduced and related works

n VNE are referenced. The method based on the Yuragi principle

s proposed in Section 3 , and the results of performance evaluation

re shown in Section 4 . Finally, the conclusion of this paper and

uture work are presented in Section 5 . 

. Virtual network services in SDI frameworks 

In this section, we describe SDN frameworks and explain a ser-

ice model for SDI frameworks. First, a whole system of the vir-

ual network service is explained. Next, VNE, one of the important

roblems for SDI service, is described. 

.1. SDI 

Fig. 1 shows a service model of SDI frameworks. In the model,

ustomers request a VN from their service providers. The VN re-

uest includes topology information, which is a set of virtual nodes

nd virtual links. Then, the provider assigns computing resources

or the virtual nodes by preparing virtual machines. Then, the

rovider configures the packet forwarding rules on the network

witches via SDN controller to form virtual links. 

The customers can specify the performance and capacity re-

uirements, such as the CPU power of a virtual node and the band-

idth of a virtual link. They may also specify memory capacity

RAM), storage capacity (HDD), and in some cases, specify the de-

ail of restrictions: the operating system (OS) of the virtual ma-

hine, the RAID type of storage, and the RAM type of a switch-

ng device. We call these specifications of virtual nodes the “node
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Fig. 2. Comprehension of VNE problem with a simple example. 
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attributes”. Note that node attributes do not correspond one-to-

one to server resources but do correspond one-to-one to a com-

bination of server resources and some specific constraints. For ex-

ample, node attribute A might express a requirement for a high-

performance computing server (with a high number of CPUs and a

large amount of memory), attribute B might express the need for a

cloud file server (with big storage disks), and attribute C might ex-

press the need for several kind of servers with other specific con-

straints (e.g., required some geographical restriction). 

The service provider has a network manager to handle VN re-

quests. The network manager plays three roles. First, the network

manager receives VN requests from customers and pushes them

into a queue. Second, the network manager executes a certain

VNE algorithm for each VN request in the queue in first-in-first-

out (FIFO) order. The VNE algorithm decides a VN mapping (i.e.,

a virtual node mapping and virtual link mapping). Virtual node

mapping decides the location of the physical node for each vir-

tual node. Then, the virtual node is hosted on the physical node

as a virtual machine. Virtual link mapping decides the path on the

physical network for virtual links between virtual nodes. Then, the

virtual nodes are connected through the path. When the VNE al-

gorithm fails to find a VN mapping due to a shortage of physi-

cal resources, the VN request is rejected. Next, the network man-

ager offers the mapping request to the SDN controller. Note that

the SDN controller might be managed by other organizations, such

as infrastructure providers, rather than the service provider. Then,

the service provider installs virtual machines into physical servers

and allocates the requested computing resources. Then, the SDN

controller accesses the substrate nodes via some protocol (such as

OpenFlow) and reconfigures the forwarding rules to establish the

virtual links. 

2.2. The virtual network embedding problem 

VNE is one of the important problems in allocating physical re-

sources in response to a VN request. The physical resources, in-

cluding resources of the physical network and resources of physi-

cal servers, form a substrate network. OpenStack, which is one of

the most general infrastructure-as-a-service (IaaS) frameworks, de-

fines virtualized resource components [10] . The substrate node is

classified into three types: computing servers, network switches,

and storage. Each virtual node may have individual features, such

as supported OS, protocols, and storage types. It is necessary to

strictly check the consistency of the node features when embed-

ding a virtual node to a substrate node. That is, the requested fea-

tures of the virtual node must be supported by the substrate node.

To simplify the service model, this paper abstracts the classifica-

tions of features of OpenStack into “node attributes.”

The mapping of the virtual network has an effect on many as-

pects, such as resource utilization, blocking rate, revenue, QoE, en-

ergy efficiency, and migration cost. That is why the VNE problem

deserves consideration. Fig. 2 shows an illustrative example of how

the experienced delay of VNs differs depending on the mapping of

the virtual network. Fig. 2 a shows a substrate network including

resource capacities. Fig. 2 b shows VN requests including resource

requirements. The numerical values c ( · ) and d ( · ) in the figure rep-

resent the number of CPUs on the node and the bandwidth of the

link, respectively. Fig. 2 c and d show two patterns of VN mapping,

denoted as mapping A and B , respectively. In general, the delay of

a server is longer when the CPU utilization is higher, and the delay

of a link is longer when the link utilization is higher. In the case

of mapping A , the CPU utilization on one of the substrate nodes

reaches 80% and the calculation delay gets longer. However, in the

case of mapping B , the CPU utilizations are at most 50%. As for

the delay on a link, the maximum link utilization of the substrate

link is 90% in the case of mapping A . In the case of mapping B ,
he link utilizations of the substrate links are low, and so no ad-

itional delay will be introduced. Therefore, the experienced delay

nder mapping B is expected to be shorter than that under map-

ing A . Thus, between the two mappings, mapping B is the pre-

erred solution of the VNE problem. Generally, the VNE problem is

ivided into two phases: virtual node mapping (VNoM) and virtual

ink mapping (VLiM). The goal of VNoM is to obtain a matching be-

ween virtual nodes and substrate nodes under the constraint that

he substrate node must support the node attribute of the matched

irtual node. The goal of VLiM is to obtain a set of links in the sub-

trate network that connects one virtual node to another virtual

ode. 

.3. Centralized approaches for VNE 

A number of approaches to coping with VNE problem have

een proposed. Most of them try to formulate and solve optimiza-

ion problems and maximize/minimize some performance objec-

ives. However, existing VNE formulations typically use integer lin-

ar programing (ILP), and the VNE problem is known to be an N P -

ard problem. Thus, some heuristic methods are also developed.

ote that both the ILP methods and heuristic methods assume in-

ormation of the network is collected in advance. 

Chowdhury et al. deal with VNE problem of embedding mul-

iple VN requests onto a substrate network [9] . They give a for-

ulation as mixed integer linear programing (MILP) to minimize
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Fig. 3. An illustration of the Yuragi mechanism. 
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mbedding cost while achieving a balance of resource utilization.

uerzoni et al. formulate a MILP that considers node attributes to

aximize the revenue while minimizing resource utilization [10] .

hen et al. present a virtual node mapping method to optimize

nergy efficiency, and also propose a heuristic algorithm for this

11] . Fajjari et al. minimize the running cost of the network infras-

ructure by releasing the unused bandwidth of a VN for other VNs

12] . 

To handle the VNE problem, it has been widely considered to

ake optimization approaches such as ILP and its heuristic meth-

ds. It is expected that those methods will give the solution with

he best objective function value. However, to compute the best

erformance, these optimization methods examine the detailed sit-

ation of the whole infrastructure, and in the worst cases, the net-

ork will be congested with an increasing volume of traffic related

o control messages for collecting the details of the situation [5] .

he overhead of gathering such global information becomes a fun-

amental limitation to adopting the optimization approach in SDI

ecause the orchestrater needs to manage a huge number of mul-

iplexed VNs and highly dynamic requests. To avoid this problem,

ontrol methods driven by a small amount of knowledge of the

ituation are required. 

. Yuragi-based virtual network embedding method 

This section proposes a Yuragi-based VNE method for SDI

rameworks. The Yuragi principle, which is often called an attractor

election model, explains the biological adaptability. The key con-

ept of attractor selection models is that systemic behavior is gov-

rned by a single value, called “activity,” and a small perturbation,

hich we call “Yuragi”. The activity is a kind of “comfortableness”

or the system, and via feedback of the activity and small pertur-

ations, the control state of the system falls into a comfortable

tate. When activity is high, the control state of the system is in a

ood condition and stays in that state. Such an equilibrium point is

alled an “attractor”. When activity becomes low or the condition

ecomes uncomfortable due to environmental changes, the system

ets out of the attractor, i.e., escapes the basin of attraction (here-

nafter, the attractor structure), and then looks for another attrac-

or via feedback of the activity and small perturbations. 

The proposed VNE method is expected to enjoy the adaptabil-

ty of Yuragi to environmental changes. That is, VN migrations

re driven according to experienced performance and the new VN

apping is obtained by means of attractor selection. A process of

he Yuragi-based method is executed for each VN request. Thus,

ultiple processes are executed in parallel to deal with multiple

N slices. Different from optimizing problems and related heuris-

ics, the Yuragi-based method can avoid the necessity of collect-

ng detailed information about the entire network. The process for

 VN request needs only enough information for comfortableness

nd does not need any information related to other VN requests. 

.1. Yuragi principle 

The Yuragi principle is the principle that biological organisms

se to adapt to environmental fluctuations. Attractor selection is

 model that represents the Yuragi principle. The model describes

he dynamics of state variables x i ( i = 1, 2, . . . , n ) through envi-

onmental fluctuations as 

dx 

dt 
= α × f (x ) + η, (1)

here x = (x 1 , . . . , x i , . . . , x n ) represents the system state, activity

is the comfortableness of the present system state, f ( x ) defines

eterministic behavior governed by the attractor structure, and η
epresents stochastic behavior. When the system is in a comfort-

ble state, and hence activity α is high, the deterministic term f ( x )
ontrols the dynamics while the noise η is almost negligible. When

he system condition gets worse and α gets close to zero, f ( x ) is

o longer influential and the stochastic term η becomes relatively

ominant. Therefore, the system changes its state at random and

earches for another attractor. Once the system reaches an attrac-

or with a comfortable activity level (though not necessarily the

est possible activity level), the system will stay in the new good

tate. When the system reaches a state with a high activity that

as not been defined by the attractor structure f ( x ), the system

lso stays in the state and f ( x ) is reconstructed to register the state

s a new attractor. 

A system driven by the Yuragi principle achieves adaptability

o environmental changes. The adaptability has two aspects. First,

he system is robust to small fluctuations in the surrounding en-

ironment. As long as activity remains higher than a certain level,

he system keeps staying at an equilibrium point even though the

oise term is still present (see the right-hand side of Fig. 3 ). Sec-

nd, the system has flexibility in responding to drastic changes

n the environment. When the system falls into an uncomfortable

tate, the activity decreases immediately and the dynamics of the

ystem behavior escapes from the attractor structure (see the left-

and side of Fig. 3 ). 

.2. Performance objectives 

We can select various definitions of the activity when the

uragi principle is applied to the VNE problem. The Yuragi-based

NE method tries to find a system state that maintains high activ-

ty. The high activity should be designed so that the performance

bjective does not violate a required threshold. 

Conventional works usually consider link utilization [15] and/or

nergy consumption [16] as performance objectives because these

an be described as a linear function of traffic load. Note that lin-

arity in a mathematical sense is one of the key factors to solv-

ng the optimization problem. In this paper, we focus on experi-

nced delay, which is the end-to-end delay on the VNs, consisting

f the communication delays between VMs and processing delays

n VMs. Experienced delay is thus not necessarily a linear func-

ion of the performance objective (comfortability) because expe-

ienced delay is one of the simplest and most fundamental per-

ormance objectives in networking. It is true that link utilization

s often used as the performance objective of VN control. How-

ver, experienced delay is a more important measure in network-

ng and is especially important for SDI frameworks. A longer de-

ay can cause considerable degradation in QoE of an application

unning on the VN. Thus, customers of SDI services want to re-

uire a low delay to the infrastructure provider. Nevertheless, con-

entional approaches usually have to minimize utilization or work-

oad instead of delay for the objective function because of the diffi-

ulty of modeling the experienced end-to-end delay, which is com-

osed of complicated factors. Moreover, under virtualization envi-

onments, the delay is caused by not only utilization of the net-

ork bandwidth but also workloads on the VMs, and the delay be-

omes extremely long under heavy workloads [17,18] . The end-to-

nd delay in SDI frameworks comprises delays in networks and de-
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lays on servers. The processing delays on servers depend on mul-

tiple factors. Thus, exact analyses and estimation of the software

processes are indispensable for calculating optimization problems,

but these are difficult in general [19] . Even when we have a good

model, the network manager may deal with non-linear optimiza-

tion problems that are tough to solve even by offline computation.

Therefore, it is difficult to deal with delay requirements in conven-

tional approaches. Instead of applying optimization with some sort

of delay model, an online control approach is needed. The online

approach measures the actual delay continuously. When the mea-

sured delay does not satisfy requirements, the network manager

reconstructs the VN mapping immediately. In this way, the online

approach avoids calculation of complicated optimization problems.

Of course, the network manager must obtain a VN mapping solu-

tion quickly enough to control the VN. In this paper, we consider

the end-to-end delay with applying the Yuragi principle, and con-

firm by simulation (with a topology of 50 nodes) that the calcula-

tion of the proposed Yuragi-based method terminates within a few

seconds. 

3.3. Yuragi-based VNE method 

This section explains our Yuragi-based VNE method. Our pro-

posed method consists of two phases: attribute-aware virtual node

mapping and shortest-path virtual link mapping. The relation be-

tween state variables in the Yuragi principle and the VNE problem

are explained first. 

Our method decides where to allocate a virtual node with at-

tribute k . In other words, the method finds a coupling between

attribute k and physical node n . Let the number of attributes be

K and the number of physical nodes be N . We prepare variables

x = (x 1 , . . . , x kn , . . . , x KN ). A variable x kn is a decision variable that

designates whether physical node n is a candidate for virtual node

with attribute k . Then, the dynamics of each x i ( i = 1, 2, . . . , KN )

is described as 

dx i 
dt 

= α

{
ς 

(∑ 

j 

W i j x j 

)
− x i 

}
+ η, (2)

where ς 

(∑ 

j W i j x j 

)
− x i represents a deterministic term and η is

a stochastic term. In the first term, the matrix W represents an

attractor structure (discussed later). The function ς ( z ) is a sigmoid

function defined as 

ς (z) = tanh ( 
μ

2 

z) , (3)

where μ represents the gradient in the vicinity of the threshold.

Here, the threshold is 0, and the output value of ς ( z ) gets close to

1 or −1 . Note that the range of x i is [ −1 , 1] . The second term η in

Eq. (2) is a random value following a normal distribution. If x i > 0

and i ’s corresponding node (resp., attribute) is n (resp., k ), then

physical node n is a candidate for a virtual node with attribute k .

If x i (= x kn ) < 0 , the virtual node with attribute k is not embedded

to physical node n . Each of the virtual nodes with attribute k is

allocated onto one of the candidate nodes in descending order of

x k ∗ values. Note that, when physical node n is not compatible with

attribute k due to the attribute restriction, x kn is set to 0 without

calculating the differential equation (2) . 

Finally, our method assigns the shortest path for each virtual

link request. In this paper, we consider shortest-path routing to

minimize hop length on the physical topology. Other routing poli-

cies can be applied, but this is not examined in the evaluation in

Section 4 . 

3.3.1. Activity function with performance profile 

Activity α is feedback from the system and reflects the com-

fortableness of the VN. Let p be an objective metric, expected to
e small. Activity is described as, 

= 

γ

1 + exp (δ(p − θ )) 
, (4)

here γ represents the scale of the activity value and δ represents

he gradient around the threshold θ . Let γ be 1, to which the ac-

ivity value gets close if p < θ . Otherwise, the activity becomes 0.

ote that the activity is subject to be reduced to 0 regardless of

q. (4) . Letting V k be the number of virtual node requests with at-

ribute k , the activity α is reset to be 0 when the number of candi-

ates | x k ∗ | ( s.t . x k ∗ > 0) is less than V k . This is necessary because the

ystem state found by Yuragi does not have a sufficient number of

andidate nodes. Also, when the available capacity of a physical re-

ource is not enough to embed the found system state, α is forced

o 0. 

In our method, the objective metric p can be directly moni-

ored. However, when the monitoring incurs some overhead or it is

ifficult to monitor p directly, the activity should be calculated by

stimating p rather than finding p exactly. For the estimation, we

onsider making use of a performance profile. The profile database

onsists of the correspondences between delay and resource uti-

ization based on a history and is maintained in some form (typi-

ally, as a table). 

.3.2. Attractor structure 

The matrix W in Eq. (2) represents an attractor structure. It

tores some equilibrium points of a virtual node mapping, and the

quilibrium point is called an attractor. Each attractor is defined as

 = (y 1 , . . . , y i , . . . , y KN ), where y i ∈ {−1, 0, 1}. If physical node n is

ne of the candidates for a virtual node with attribute k , then y kn 

s set to 1. If node n cannot allocate attribute k due to the node

ttribute restriction, then y kn is set to 0. Otherwise, y kn is set to

1 . Letting M be the number of attractors stored in W , a set of

ttractors Y = (y 1 , y 2 , . . . , y M 

) can be stored by 

 = Y 

+ Y , (5)

here Y 

+ is the pseudo inverse matrix of Y . This way of storing

ttractors uses the knowledge of Hopfield neural network of as-

ociative memory [20] . When the present state is in one of the

ttractors, d x / dt in Eq. (2) becomes close to 0 and stays in the at-

ractor. 

.4. VN calculation 

When the activity gets extremely low, that is, when the ob-

erved end-to-end delay exceeds the performance objective value

, the network manager executes then Yuragi-based VNE method

n an offline calculation by using a performance profile. The per-

ormance profile enables estimating performance without running

he services on actual infrastructure. Thus, the service continues

o run with the extant VN while calculating a new VN. Once the

uragi system converges to a good VN mapping, the network man-

ger is ready to enter the VN migration phase. 

.5. VN migration 

The network manager migrates each VM that needs to be trans-

erred for a new VN mapping. The process is executed according to

he “make-before-break” principle to reduce service downtime: 

Step 1. Copy the VM image from the source node to the des-

tination node. Note that the service is still running on the

source node. 

Step 2. Boot a VM on the destination node. 

Step 3. Copy the state differences between VMs (typically im-

plemented as “dirty pages”) to the destination node recur-

rently. 
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Fig. 4. Environmental fluctuations over elapsed time. 
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Fig. 5. Delay models used for computer simulation. 
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Step 4. Suspend the VM at the source node and copy the re-

maining state differences from source to destination. 

Step 5. Switch the traffic flow to the destination node and re-

sume the VM on the destination node. Then, the service is

running on the destination node. 

Step 6. Delete the VM on the source node. 

The service may be suspended during the time to copy the state

ifferences in Step 4. Thus, the service downtime is shortened to

nly hundreds of milliseconds [21] . Note that, the system needs to

ake particular provision to guarantee the user experience of spe-

ific types of applications, such as more real-time oriented services

e.g., as voice or video). 

. Evaluation by computer simulation 

This section presents the results of evaluating the Yuragi-based

NE method by computer simulation. 

.1. Simulation environment 

The substrate network consists of physical servers and links.

he number of physical servers (physical nodes) is 50. Each node

as the capability to host virtual nodes with one of the node at-

ributes. In this environment, each node has three kinds of re-

ource capacities for required virtual machines: CPU, memory and

torage capacity. These are determined uniformly within [50, 100]

or each node. For each pair of physical nodes, a physical link is

andomly established between the nodes with probability 50%. As

 result, we obtained a physical topology with 50 nodes and 617

inks. The (integer) capacity of physical links is determined uni-

ormly randomly within [50, 100]. During the simulation, the sub-

trate network is fixed. 

Several requests of virtual network are generated and arrive.

uring the simulation, the number of VN requests is set to 20

nd the number of node attributes K is set to 4. Each VN request

s generated as follows. The number of virtual machines (virtual

odes) is determined uniformly randomly within [2, 5]. Each vir-

ual node belongs to an attribute, and each virtual node requires

apacities for CPU, memory, and storage. Each of the required ca-

acities is determined uniformly randomly within [1,10]. Virtual

inks are undirected, and each pair of virtual nodes is randomly

onnected through a virtual link with probability 50%. The num-

er of virtual links is within [1,10] because the number of virtual

odes is 2–5. Each virtual link has a required bandwidth, and the

equired capacity is determined uniformly randomly within [1, 25].

Every 100 time steps, all 20 VN requests are regenerated in

he same way as described above. In addition, at every 10 time

teps, each VN request fluctuates with relatively small changes: we

hange the requested capacities by a random integer, which is ob-

ained by rounding a value following the normal distribution with

= 0 and σ 2 = 1 (see Fig. 4 ). The service downtime caused by VN

igration is regarded as negligible in the following simulation. 
Table 1 summarizes the parameters in the simulation environ-

ent. 

.2. Delay profile 

We use end-to-end delay as the objective metric. In an actual

nvironment, the experienced delay may be available by monitor-

ng of packet arrivals. However, when the monitoring incurs some

verhead or it is difficult to monitor directly for some reason, the

ctivity should be calculated by an estimated p rather than ac-

ually measuring p . For the estimation, we consider the use of a

erformance profile. For the performance profile, we prepare sev-

ral delay models as a function of resource utilization, referring

o bandwidth on links and the tuple (memory, CPU, storage) on

ervers. Fig. 5 shows the delay models. The first model simulates

elay caused by bandwidth utilization in a link. A basic M/M/1-

ased model of delay in networks is used. The second delay model

imulates memory utilization on the server and imitates the re-

ponse time of an Apache web server. As shown in Fig. 5 , the sec-

nd model is characterized by the multi-stage elevations of delay.

n the case of web service, such elevations are caused by swap-

ing memory pages and storage disks. The last model simulates

PU utilization. The delay increases linearly as the resource uti-

ization becomes high, except at extremely high utilization, where

he delay increases rapidly. Such an increase in delay is caused by

onflicts among VMs demanding more calculation power than the

PUs can provide. In the following simulation, d ij , which represents

he delay from virtual node i to virtual node j , is calculated as, 

 i j = w c 

∑ 

n ∈ R i j 

d c n + w m 

∑ 

n ∈ R i j 

d m 

n + w s 

∑ 

n ∈ R i j 

d s n + w b 

∑ 

l∈ L i j 

d b l , (6)

here the set R ij consists of the physical nodes along the route

rom i to j , and the set L ij consists of the physical links. Then d c n ,

 

m 

n , and d s n are the computing delay in virtual machine n accord-

ng to CPU, memory and storage, respectively. In this, d b 
l 

is the de-

ay through physical link l , and w c , w m 

, w s , and w b are weight pa-

ameters. Each d ∗n and d b 
l 

follows the delay model and has a value

alculated by its own utilization of physical resources. 

Network managers maintain delay profiles in which correspon-

ences between resource utilization and actually measured delays

re recorded. Referring to a delay profile makes it possible for the

anager to estimate delays in the VN when consider a VN request

o be embedded. In the simulation environment, delays are calcu-

ated with the same delay models as the delay profile. Note that,

n actual usage, the delay can be easily obtained by referring to the

imestamps of packets. 

.3. Heuristic method for comparison 

As for the benchmark of our method, a heuristic VNE method

s also simulated in the same environments. The heuristic method
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Table 1 

List of variables and values in the simulation. 

Variable Value 

Substrate network: 

- Number of nodes N 50 

– Number of attribute K 4 

– CPU number [50, 100] 

– Memory capacity [50, 100] 

– Storage capacity [50, 100] 

- Number of links 617 

– Link capacity [50, 100] 

VN requests: 

- Number of VN 20 

Each VN request: 

- Number of nodes [2, 5] 

– CPU number [1, 10] 

– Memory capacity [1, 10] 

– Storage capacity [1, 10] 

- Number of links [1, 10] 

– Link capacity [1, 25] 

Delay weight: 

- ( w c , w m , w s , w b ) (0.25, 0.25, 0.25, 0.25) in Section 4.4.1 . 

{(0.6, 0.2, 0.0, 0.20), (0.2, 0.6, 0.0, 0.20), (0.2, 0.2, 0.0, 0.60)} in Section 4.4.2 . 

Yuragi parameters: 

- ( μ, γ , δ, θ ) (20.0, 1.0, 2.0, 5.0) 

Fig. 6. Maximum delay and activity on a VN. 
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Fig. 7. Average of maximum delay for 20 VNs. 
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has two phases: virtual node mapping based on a greedy algo-

rithm [22] and virtual link mapping on shortest paths. Note that

we do not aim to obtain a better end-to-end delay than that pro-

vided by the greedy algorithm. We intend to obtain a reference

delay to confirm that our method can find a comfortable state by

using the noise-induced search, rather than simply by using low-

traffic settings. The VNE method executes the following algorithm

for VN requests, acting sequentially. 

1) Execute the following processes for each virtual node v . 

(1.1) Find the set S of physical nodes that accept the attribute of

v and have enough unreserved resource capacities to embed

v . When S is null, reject the VN request and finish. 
(1.2) Find the physical node that indicates the highest value of H

among S , where H is defined as Eq. (7) . Then reserve the

resources of that physical node. 

2) Embed the virtual nodes according to the reservation taken in

(1). 

3) For each virtual link between virtual nodes embedded in (2),

find a path that is the minimum hop in physical topology. Em-

bed the virtual links onto the paths. When a shortage of link

bandwidth occurs, reject the VN request. 

he greedy method aims to minimize the utilization of node and

ink resources. The heuristic method calculates an available re-

ource indicator H for each physical node n , defined as 

(n ) = C n × M n × S n ×
∑ 

l∈ L (n ) 

B l , (7)

nd avoids embedding a virtual node onto bottleneck resources.

he values C n , M n , and S n represent the available capacity of CPU,

emory, and storage, respectively, on physical node n . The set L ( n )

epresents a set of physical links attached to node n , and B l repre-

ents the available capacity of physical link l . The computational

omplexity is O(n log n ) for sorting H ( n ), assuming the shortest

ath between every node pairs is available in advance. 

.4. Simulation results 

In the simulation, the Yuragi-based method calculates the VN

apping at each time step and migrates the VN until the system

tate converges to an attractor. The threshold of activity θ in Eq.
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Fig. 8. Embedding ratio of VN requests. 

Fig. 9. The number of VN migrations. 
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Fig. 10. Maximum delay ( w c = 0 . 6 , w m = 0 . 2 , w s = 0 , w b = 0 . 2 ). 
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4) is set to 5.0, regarding the metric p as the maximum of d ij for

very pair of virtual nodes i and j . The greedy method executes VN

igration according to the demand changes at every 10 time steps.

.4.1. Performance of Yuragi-based VNE method 

We first show the performance of Yuragi-based VNE method

ith a simple M/M/1-based delay model. We explorer its adapt-

bility to fluctuations of VN requests by evaluating the end-to-

nd delay, the embedding ratio, and the number of VN migrations.

ere, the weight values in Eq. (6) are set as w c = w m 

= w s = w b =
 . 25 with an M/M/1-based delay model. We will examine other

eight values in Section 4.4.2 . 

Fig. 6 a shows the maximum delay on a VN request out of the

0 requests. The activity of each VN is also shown in Fig. 6 b. In the

gure, the region denoted as “Failure” represents a failure of em-

edding the VN caused by a shortage of physical resources or vio-

ation of other restrictions. Note that the demands of VN requests

uctuate with relatively small changes at every 10 time steps and

he demands fluctuate greatly at every 100 time steps. Thus, the

aximum delays for the Yuragi-based method exceed the thresh-

ld drastically at every 100 time steps owing to the topological

hanges in VN requests. The activities drop sharply, and then the

N migration starts. Within a few steps, the activities are recov-

red and converge to another system state. Against a small fluctu-

tion of required capacities, occurring at every 10 time steps, VN

igrations occurs only if the activities decrease sharply as seen, for

nstance, in time step 320 in Fig. 6 a. Fig. 7 shows the mean of the

aximum delay of 20 VN requests. Considering the mean of max-

mum delay of the 20 VN requests, the Yuragi-based method does

ot achieve a delay as short as that obtained by the greedy method

n general. This is because the Yuragi-based method does not aim

o minimize the delay or the resource utilization but, rather, to

eep them smaller than a certain threshold. Making the threshold

maller might achieve a smaller delay but will result in a longer

onvergence time for finding an attractor. Fig. 8 shows the embed-

ing ratio, indicating how many VN requests are accepted out of

he 20 requests. The topological changes occurring at every 100

ime steps cause a temporary decrease in the embedding ratio, but
oth of the methods keep almost 95%–100% acceptances outside

hose periods. 

Fig. 9 shows the number of VN migrations, defined as the

umber of VNs whose location has been changed from the pre-

ious operation. Note that the operations are performed at ev-

ry step by the Yuragi-based method and at every 10 steps by

he greedy method. When the VN requests are regenerated at

very 100 steps, almost all VNs are migrated for both methods.

he simulation result shows that the Yuragi-based method takes

ewer VN migrations in response to small fluctuations to maintain

he performance objective, and therefore our method costs less in

erms of VM migration. The greedy method migrates 2–11 VNs at

ach change to maintain the required capacity. This is because the

reedy method tries to achieve better objective values, even when

he improvement in delay is marginal. Note that we may develop

 greedy method that requires fewer VN migrations with some

dditional constraints or considerations. The key point is that the

reedy method makes drastic changes due to the nature of the op-

imization, whereas the Yuragi-based method does not. The total

umber of VN migrations required by the Yuragi-based method is

53 for the 250 time steps of simulation, and 215 by the greedy

ethod. This result indicates that the Yuragi-based method adapts

o demand fluctuations with about 29% fewer VN migrations than

he greedy method. For the small fluctuations occurring at every
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Fig. 11. Maximum delay ( w c = 0 . 2 , w m = 0 . 6 , w s = 0 , w b = 0 . 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Maximum delay ( w c = 0 . 2 , w m = 0 . 2 , w s = 0 , w b = 0 . 6 ). 
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10 time steps, the number of VN migrations with the Yuragi-based

method is 33, against 156 with the greedy method. 

4.4.2. Adaptability to different delay behaviors 

In the previous section, we used the simple M/M/1 delay model

where the delays on CPU, memory, and storage are all estimated by

their resource utilization. However, in actual SDI environments, the

end-to-end delay behaves in a more complicated way, depending

on multiple factors such as the processing delay (which also de-

pends on the server specification) and memory utilization on vir-

tual machines. Here, we demonstrate that the Yuragi-based VNE

method has adaptability under various types of delay behaviors.

We run computer simulations with distinct sets of weight param-

eters ( w c , w m 

, w s , w b ). The simulation results show that our pro-

posed VNE method can achieve its performance objective even in

a situation where the heuristic method fails to obtain acceptable

performance. 

Figs. 10–12 correspond to the simulation results for parameter

sets (w c , w m 

, w s , w b ) = (0 . 6 , 0 . 2 , 0 . 0 , 0 . 2) , (0.2, 0.6, 0.0, 0.2), and

(0.2, 0.2, 0.0, 0.6), respectively. Each figure shows the maximum

delays on 3 VN requests out of the 20 requests because similar

tendencies are observed on the other VN requests. In Figs. 10–12 ,

the Yuragi-based method mostly keeps the maximum end-to-end

delay lower than the threshold of 5.0. Note that sharp increases
f the end-to-end delay are observed at time steps 20 0, 30 0, and

00, but these delays are not crucial because they are caused by

he change of VN request. The Yuragi-based VNE method gradually

dapts to the VN requests and soon finds a good VN mapping. 

The greedy method sometimes violates the performance thresh-

ld in response to some VN request fluctuations (see, for example,

t time step 320 on VN request 1 in Fig. 12 ). The greedy method,

 heuristic for optimization, does not always achieve the lowest

nd-to-end delay. More importantly, the violation cannot be solved

nd may continue for a while because the greedy method has al-

eady optimized its objective and has no way to improve the per-

ormance. Those violations of the threshold occur due to a gap be-

ween estimated delays and actual delays (i.e., due to the lack of

 precise delay model). Note that optimization approaches (includ-

ng heuristic approaches) will always have such gaps unless they

se a precise delay model. Especially in an SDI framework, defin-

ng a delay model to decrease the gap gets more difficult because

he model depends on complicated factors. 

As for the Yuragi-based method, it shows its adaptability un-

er uncertain delay behaviors. An advantage of the method is that

t finds a VNE solution with direct measurements of end-to-end

elay, where the models of delay behaviors are not used in our

ethod and thus no longer necessary. The delay models used in

he simulations may not completely imitate actual delay profiles,
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ut we believe that the Yuragi-based method is feasible even when

he actual end-to-end delay behaves in more complicated or non-

eterministic manner. 

. Conclusion 

This paper presented a VNE method based on the Yuragi prin-

iple as applied to SDI frameworks. A system driven by the Yuragi

rinciple achieves adaptability to environmental changes, and the

ynamics is described as an attractor selection model. In attractor

election models, the system behavior is governed by an activity

easure and small perturbations. When activity is high, the con-

rol state of the system is in a good condition and stays in that

tate. When activity becomes low or the condition becomes un-

omfortable due to environmental changes, the system looks for

nother stable state. The Yuragi-based VNE method decides the

apping of virtual nodes by means of attractor selection, where

he network mapping is regarded as the system state and the ac-

ivity is defined as a certain performance objective. The end-to-

nd delay in SDI frameworks depends on application processes

nd other factors. That makes it difficult to pre-estimate experi-

nced delay accurately and causes degradation of VNE control per-

ormance. Nevertheless, our Yuragi-based method shows its adapt-

bility under such uncertain delay conditions. In the evaluation, we

onsidered the end-to-end delay as the activity. Simulation results

how that the method provides shorter delays and adapts to the

equest fluctuations by rearranging the VN mapping in response

o drastic changes in environments. The Yuragi-based method de-

reases VN migrations by about 29% relative to a heuristic method

o adapt to fluctuations in required resource capacities. 

In future work, we will investigate a method of constructing the

ttractor structure to improve the convergence time or some other

erformance measure. We suppose that our proposed method is

erformed in a centralized SDN controller. Recently, distributed

ontrollers for a single infrastructure are being studied toward

ide-area SDN and large-scale SDN. It is worth studying how our

oise-induced method can be extended to account for mutually

nterfering situations. We should also demonstrate the behavior

f our proposed method in real implementation. Our method will

ause a delay in the SDN controller, which is not included in the

omputer simulations. It is worth analyzing the impact of execut-

ng our method. 
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