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Traffic engineering and traffic monitoring in the case of incomplete
information

Kodai SATAKE†, Tatsuya OTOSHI†, Yuichi OHSITA†, and Masayuki MURATA†,

SUMMARY
Traffic engineering refers to techniques to accommodate traffic effi-

ciently by dynamically configuring traffic routes so as to adjust to changes in
traffic. If traffic changes frequently and drastically, the interval to reconfig-
ure routes should be short. However, with shorter intervals, obtaining traffic
information is problematic. To calculate a suitable route, traffic information
must be accurately measured for the whole network, and this is difficult in
short intervals, owing to the overhead incurred to monitor and collect traffic
information. In this paper, we propose a framework for traffic engineering
in cases where only partial traffic information can be obtained during each
time slot. The proposed framework was inspired by the human brain, and
uses conditional probability to make decisions. In this framework, a con-
troller is deployed to (1) obtain a limited amount of traffic information, (2)
estimate and predict the probability distribution of the traffic, (3) configure
routes considering the probability distribution of future predicted traffic,
and (4) select traffic that should be monitored during the next period con-
sidering the performance of the route reconfiguration. We evaluated our
framework with a simulation. The results demonstrate that our framework
improves the efficiency of traffic even when only partial traffic information
is monitored during each time slot.
key words: Traffic engineering, traffic monitoring, incomplete information,
Bayesian Brain

1. Introduction

Traffic engineering (TE) refers to techniques to configure
traffic networks to accommodate traffic efficiently, by adjust-
ing to changes in traffic [3]–[14]. In TE methods, a con-
troller periodically collects traffic information, and changes
the routes of the traffic flow within the network based on
this information. By dynamically reconfiguring the routes,
the controller avoids congestion even when traffic changes
occur.

Conventional TE methods consider daily traffic
changes, and their control intervals are set to one hour or
longer. However, if the traffic changes frequently and dras-
tically, the control interval should be shorter. Indeed, when
changes result in traffic congestion, this congestion cannot
be mitigated until the next time slot. Benson et al. demon-
strated that routes should be reconfigured every five seconds
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in a network where traffic changes frequently and drastically,
such as in a datacenter network [15].

TE methods require traffic information to calculate a
suitable route during each time slot. If we set a short control
interval, traffic information should also be obtained at short
intervals. However, in a large network, measuring traffic
information accurately for the whole network is difficult in
short intervals owing to the overhead incurred to monitor
and collect traffic information. As such, we consider a case
when only partial traffic information can be monitored and
collected during an interval.

Methods to estimate traffic in the whole network from
partial traffic information have been proposed [16], [17].
With such methods, the traffic information of the flow that is
not included in the collected traffic information is estimated
from the collected traffic information, considering the spatial
and temporal properties of the traffic. However, estimated
traffic includes estimation errors, and these errors affect the
performance of TE. To mitigate the impact of estimation er-
rors, TE methods be designed in consideration of estimation
errors. On the other hand, traffic monitoring and estima-
tion methods can avoid estimation errors affecting TE by
improving the accuracy of the estimation of traffic flow that
is important to TE. That is, the TE and traffic monitoring
should work together.

We propose a framework in which TE and traffic mon-
itoring cooperate to handle a situation where only partial
information is obtained at each time slot. This framework
was inspired by the process by which human brains make
decisions based on uncertain and incomplete information. A
human brain makes many good decisions even in a highly
uncertain environment. One promising theoretical model to
explain how a human brain makes decisions is the Bayesian
decision-making model [18]. According to this model, the
human brain has stochastic variables, and it updates these
variables with Bayesian estimations every time a new ob-
servation is obtained. Then, decisions are made based on
these stochastic variables. By doing so, a human brain can
make decisions even when only uncertain and incomplete
information can be obtained. We applied this process to TE.
Specifically, we applied the feature that a human brain in-
creases confidence by repeating Bayesian estimations. In our
framework, the controller has stochastic variables regarding
traffic, and it updates them every time new traffic information
is obtained. By repeating the above steps, the controller un-
derstands the probability distributions of traffic, even when
only a part of the information is obtained at each time slot.
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Fig. 1 Overview of our framework

The controller changes the routes based on the probability
distributions of the traffic. In addition, the controller decides
the points to be monitored in the next time slot based on the
probability distribution of the traffic.

The remaining paper is organized as follows. Section 2
provides an overview of our framework. Section 3 describes
the details of each step of our framework. Section 4 presents
an evaluation of our method. Section 5 describes an accel-
eration method for our method and presents an evaluation
of its calculation time. Section 6 presents our concluding
remarks.

2. Framework for Traffic Engineering under Uncertain
Traffic Information

Figure 1 shows an overview of our framework. In our frame-
work, a controller is deployed. The controller (1) obtains
a limited amount of traffic information, (2) estimates and
predicts the probability distribution of the traffic, (3) con-
figures the routes considering the probability distribution of
future predicted traffic, and (4) configures the traffic to be
monitored during the next period, in consideration of the
performance of the route reconfiguration. To perform the
above operations based on Bayes’decision-making theory,
the controller includes the following modules: an estimator,
predictor, route controller, and monitoring schedule con-
troller. We explain each of these modules in the following
section.

In this work, we denote the traffic rates of all flows
during time slot t by Xt and the traffic rates of flow f at
time slot t by xt, f . First, the controller observes part of
the traffic. We denote the traffic observed at time slot t by
X ′t , and the element of X ′t corresponding to the flow f by
x ′t, f . We also denote the route at time slot t by Rt , and
the set of the observed flows at time slot t by Ot . Thus,
Xt:t+k is (Xt, Xt+1, . . . , Xt+k ). Similarly, we define X ′

t:t+k =
(X ′t , X

′
t+1, . . . , X

′
t+k

) and Ot:t+k = (Ot,Ot+1, . . . ,Ot+k )

2.1 Estimator

The estimator estimates the amount of traffic in the current
network from partially observed traffic information. In our
framework, it estimates the posterior distribution of traffic
volume Xt after obtaining the partially monitored traffic X ′t .

The posterior distribution of traffic volume Xt is calcu-
lated by

P(Xt |X ′t ; Ot ) =
1

P
(
X ′t |O(t)

) P(X ′t |Xt ; Ot )P(Xt ) (1)

where P(Xt ) is a prior distribution of Xt . The traffic volume
predicted by the predictor at time slot t − 1 can be used as
the prior distribution. That is, the posterior distribution of
the traffic volume Xt is calculated by

P(Xt |X ′0:t ; O0:t )=
1

P(X ′t )
P(X ′t |Xt ; Ot )P(Xt |X ′0:t−1; O0:t−1)

(2)

where P(Xt |X ′0:t−1; O0:t−1) is the probability distribution of
Xt predicted at time slot t − 1. By using the traffic predicted
during previous time slots, the traffic volume for the entire
network can be estimated even when only limited traffic is
monitored.

2.2 Predictor

The predictor predicts the probability distribution of future
traffic volume based on past traffic. That is, it predicts
P(Xt+k |X ′0:t ; O0:t ).

The predictor uses a prediction model with parameter
θ to predict traffic rates after time slot t + 1 from past traffic
rates by P(Xt+1:t+n |Xt−m:t ; θ), where m is the length of the
past traffic rates used by the predictor, and n is the length of
the time slot that can be predicted.

By using this prediction model, future traffic rates are
predicted from previously monitored traffic:

P(Xt+1:t+n |X ′0:t ;O0:t,θ)=∑
Xt−m:t

P(Xt+1:t+n |Xt−m:t ;θ)P(Xt−m:t |X ′0:t ; O0:t ) (3)

Then, P(Xt+k |X ′0:t ; O0:t, θ) can be obtained by

P(Xt+k |X ′0:t ; O0:t, θ) =
∑

Xt :t+k−1,Xt+k+1:t+n

P(Xt+1:t+n |X ′0:t ; O0:t, θ).

(4)

2.3 Route controller

The route controller calculates routes to achieve the required
performance considering the predicted probability distribu-
tion of traffic rates.
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Previously, we proposed a method called stochastic MP-
TE, which configures routes considering the predicted prob-
ability of future traffic [19]. With stochastic MP-TE, routes
are calculated so as to minimize the weighted sum of a cost
function indicating the network performance and the cost
of changing routes under the constraint that the probability
that traffic passing a link should not exceed a threshold. In
the framework proposed here, the route controller is based
on stochastic MP-TE, and it calculates routes by solving the
following optimization problem:

minimize : E

t+h∑
i=t+1
{(1 − w) f (Xi, Ri) + w | |Ri − Ri−1 | |2}


(5)

s.t . : P
(
y li (Xi, Ri) > cl

)
≤ p (6)

where f (Xi, Ri) is a cost function indicating the network
performance, | |Ri−Ri−1 | |2 is the cost of changing routes from
Ri−1 to Ri , and y li (Xi, Ri) is the amount of traffic passing
link l when the traffic rate is Xi and the routes are set to
Ri . Further, h is the length of the predictive time series
considered by the route controller, w is the weight assigned
the cost of changing routes, cl is the threshold for the amount
of traffic passing link i, and p is the acceptable probability
that the traffic will exceed the threshold.

Although the routes Rk+1, . . . , Rk+h are obtained by
solving the above optimization problem, the route controller
actually sets Rk+1 to the network. After collecting data dur-
ing subsequent time slots, future routes are recalculated with
the new prediction results. By doing so, the route controller
adaptively corrects the route, even if the predictive distribu-
tion is temporally wrong.

2.4 Monitoring schedule controller

In the proposed framework, the monitoring schedule con-
troller decides on what traffic will be monitored during the
next time slot, in order to minimize the expectation value of
the cost after the route changes based on the traffic monitored
during the next time slot.

The monitoring schedule controller decides on subse-
quent traffic monitoring by solving the following optimiza-
tion problem:

minimize : EP(Xt+1)P(X′t |Ot )
[

f
(
Xt+1, Rk+1(X ′t ,Ot )

)]
(7)

s.t .C(Ot ) ≤ W (8)

where EP(X)[ f (X )] is the expectation value of f (X ) under
the probability distribution P(X ), and Rt+1(X ′t ,Ot ) is the
route configuration for time slot t + 1 calculated by the route
controller when X ′t is observed at time slot t by monitoring
the flows included in Ot . Further, C(Ot ) is the overhead
required to monitor the traffic in Ot , W is the acceptable
overhead, and P(X ′t |Ot ) =

∑
Xt

P(X ′t |Xt ; Ot ), whereP(Xt )

is the probability of the observed traffic Xt when the traf-
fic in Ot is monitored. When solving the above opti-
mization problem, the probability distributions P(Xt ) and
P(Xt+1) are unknown. In this framework, we use the
predicted probability distributions P(Xt |X ′0:t−1; O0:t−1) and
P(Xt+1 |X ′0:t−1; O0:t−1) in place of these distributions.

3. Dynamic traffic engineering and traffic monitoring
based on the framework

In this section, we describe dynamic TE and traffic monitor-
ing based on our framework. We call this method the stochas-
tic control considering uncertainty (SCCU). Our framework
comprises the estimator, predictor, route controller and mon-
itoring schedule controller. In this section, we specify each
of these modules.

3.1 Estimator

The estimator estimates P(Xt |X ′0:t ; O0:t ). To estimate
P(Xt |X ′0:t ; O0:t ), we need to define P(X ′t |Xt ; Ot ), which in-
dicates the probability distribution of the observed traffic.

We assume that monitoring Ot does not provide any
information about the traffic rates of the flow xt, f in cases
where the flow f is not included in Ot . If the flow f is
included in Ot , it can be observed accurately as follows:
P(X ′t |Xt ; Ot ) is

P(x ′t, f |Xt ; Ot ) =
{
δ(x ′t, f − xt, f ) ( f ∈ Ot )
U (0,∞) (otherwise)

(9)

where δ(x) is the Dirac delta function, and U (a, b) is a
uniform distribution between a and b.

By using Eq. (9), P(xt |X ′0:t ; O0:t ) is estimated by

P(xt |X ′0:t ; O0:t ) =
{
δ(x ′t, f − xt, f ) ( f ∈ Ot )
P(Xt |X ′0:t−1; O0:t−1) (otherwise)

(10)

We approximate δ(x ′t, f − xt, f ) in Eq. (10) using a Gaus-
sian distribution with very little variance, such that the prob-
ability distribution can be handled easily.

3.2 Predictor

The predictor predicts P(Xt+k |X ′0:t ; O0:t ) by using the model
P(Xt+1:t+n |Xt−m:t ; θ). In this paper, we use the following
simple model:

xt+1, f = xt, f + ϵ t, f (11)

where ϵ t, f is Gaussian noise. Indeed, there may be more
sophisticated models than this. Nevertheless, by using this
model, P(Xt+1 |Xt ; θ) is obtained by

P(xt+1, f |xt, f ;σt, f ) = N (xt, f , σ2
t, f ) (12)

where N (µ, σ2) is a Gaussian distribution whose mean and
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variance are µ and σ2, σ2
t, f denotes variance in the traffic

rates for flow f at time slot t, and σ2
t, f is calculated using

the last s monitored traffic amounts for flow f .
By using P(xt+1, f |xt, f ;σt, f ),

P(xt+1, f |X ′0:t ; O0:t, σt, f ) =∑
xt, f

P(xt+1, f |xt, f ;σt, f )P(xt, f |X ′0:t ; O0:t ) (13)

where P(xt, f |X ′0:t ; O0:t ) is a probability distribution of the
current traffic rates estimated by the estimator. By continu-
ing the following calculation, we can obtain the probability
distribution of future traffic rates:

P(xt+k, f |X ′0:t ; O0:t, σt, f ) =∑
xt+k−1, f

P(xt+k, f |xt+k−1, f ;σt, f )P(xt+k−1, f |X ′0:t ; O0:t, σt, f )

(14)

Although this model is simple, it captures the following
features of traffic prediction:

• The variance in traffic flows with large fluctuations be-
comes considerable.

• The variance of the predicted traffic rates in the distant
future increases.

Therefore, this model can be used to identify flow in which
the traffic rate is uncertain, and it can be used by the route
controller in consideration of the uncertainty of traffic rates.

3.3 Route controller

The route controller calculates routes such that the required
performance is provided, considering the predicted proba-
bility distribution of traffic rates.

Multiple routes between the source and destination node
pairs are calculated in advance, and the route controller cal-
culates the suitable ratio of the traffic of the flow passing the
routes calculated in advance. We define the element Rt such
that Ri, j

t is the ratio of the traffic of flow j passing route i. We
also define a matrix G, whose element Gi, j takes the value 1
if route j passes link i, and 0 otherwise. The traffic passing
link l at time slot t can be obtained by

∑
f , j Gl, jR j, f

t xt, f .
Insofar as the aim is to avoid congestion, we define

the optimization problem solved by the route controller as
follows:

minimize :
h∑

k=1
∥Rt+k − Rt+k−1∥ (15)

subject to :∀1≤ k ≤ h,∀l,P

∑
f , j

Gl, jR f , j
t+k

xt+k, f > cl

≤ pk

(16)

∀1 ≤ k ≤ h,∀i,∀ j, Ri, j
t+k
∈ [0, 1] (17)

∀1 ≤ k
∑

i∈℘( j)

Ri, j
t+k
= 1 (18)

where cl is the threshold for the traffic passing link l, and
pk is the acceptable probability that the traffic passing link l
exceeds this threshold. Further, P[

∑
i,l Gl, jR f , j

t+k
xt+k, f > cl]

is the probability that the rates of the traffic passing link l will
exceed cl . This probability is obtained from the probability
distribution of the predicted traffic, P(Xt+k |X ′0:t ; O0:t ).

However, optimal solutions are unnecessary, that is,
routes without congestion are sufficient. Thus, rather than
solving the above optimization problem, we obtain routes by
minimizing the following equation:

L(Rt+1:t+h) =
h∑

k=1
∥Rt+k − Rt+k−1∥+

h∑
k=1

∑
l

λl,h
*.,P


∑
j

Gl, jR f , j
t+k

xt+k, f > cl

 − pk
+/-
+

+

h∑
k=1

∑
l

Λl,h
*.,EXt+k


∑
j

Gl, jR f , j
t+k

xt+k, f

 − cl
+/-
+

(19)

Here, (x)+ is x, if x ≥ 0, and otherwise 0. The constraints
related to the third term in Eq. (19) are not included in Eqs.
(15) and (16), but the third term in Eq. (19) is added in order
to accelerate the search for a solution when the predicted link
utilization is higher than cl . Here, λl,h and Λl,h denote the
weights to the constraints.

The suitable routes Rt+1:t+h are calculated such that
L(Rt+1:t+h) is minimized. We use the steepest decent method
to minimize L(Rt+1:t+h), where the optimal Rt+1:t+h is ob-
tained by continuing the following update:

• Update Rt+1:t+h so as to make L(Rt+1:t+h) small.

Ri, j
t+k
← *,Ri, j

t+k
− α ∂L(Rt+1:t+h)

∂Ri, j
t+k

+-
+

• Scale Ri, j
t+k

to satisfy Eq. (18).

Ri, j
t+k
← 1∑

n Rn, j
t+k

Ri, j
t+k

Assuming that the control interval is sufficiently short, we
do not need to obtain the optimal solution at each control
interval, because the difference between the optimal solution
of Rt+k and the current routes Rt is small, unless significant
traffic changes occur. In addition, even if the current solution
is not optimal, a solution that is closer to the optimal solution
than the current solution is obtained during the next time slot.
Therefore, a small number of iterations suffices for the above
update.

3.4 Monitoring schedule controller

The monitoring schedule controller decides which traffic will
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be monitored. This traffic is determined by selecting nodes
to monitor the traffic. We denote the set of nodes by N . We
also denote by Fn the set of flows whose traffic rates can
be monitored by node n. If n is selected as the node that
monitors the traffic at time slot t, all flows in Fn are added to
Ot .

The traffic that will be monitored is determined based
on the following optimization problem:

minimize : Lopt(Ot+1) (20)
subject to : C(Ot+1) ≤ W (21)

where Lopt(Ot+1) is the optimal value of the Lagrange func-
tion L(Rt+1:t+h) defined in the previous section when Ot+1
is observed, and C(Ot+1) is the overhead required to observe
Ot+1.

In this study, we obtain the value of Lopt(Ot+1),
assuming that x ′

t+1, f for flow f included in Ot+1 is
EP(Xt+1 |X′0:t ;O0:t )[Xt+1, f ]. To obtain the optimal solutions,
a comparison of Lopt(Ot+1) in all cases of Ot+1 is required,
which incurs considerable calculation time. Therefore, we
apply a greedy algorithm.

In addition to selecting the traffic to be monitored based
on the above optimization problem, we should consider the
interval to monitor flow. If flow f has not been monitored
for some time, P(xt, f |X ′0:t,O0;t ) may differ from the actual
traffic. Therefore, we set the maximum interval I to monitor
the traffic. That is, if there are nodes that were not selected for
more than I time slots, we first select them as the nodes that
monitor the traffic. Then, we select the remaining monitoring
nodes as follows:

1. Set N − N selected as the candidate nodes that monitor
the traffic, where N selected is the set of nodes that were
already selected for monitoring traffic.

2. For all n ∈ N − N selected, calculate Ot+1 when n is
added to the nodes monitoring the traffic, and calculate
C(Ot+1) and Lopt (Ot+1).

3. Select n whose corresponding Lopt (Ot+1) is the small-
est among the nodes whose corresponding C(Ot+1) is
less than W .

4. If a node is selected in Step 3, add n selected in Step 3
to N selected, and return to Step 1. Otherwise, end.

After completing the above steps, Ot+1 is set by adding all
flows in Fn for all n ∈ N selected.

4. Evaluation

4.1 Simulation Environment

4.1.1 Network Topology and Network Traffic

We used the backbone network topology and traffic trace
data from Internet2 for our simulation. Internet2 has 9 PoP
(Point of Presence) routers, although our method should be
evaluated in a larger network that includes more candidate
monitoring nodes. Therefore, we connected three access

Fig. 2 Expanded Internet2

routers to each PoP router. That is, the topology used in our
evaluation had 27 access routers and 9 PoP routers, as shown
in Figure 2. Each flow was generated between each pair of
access routers. We assigned the flows included in the traffic
trace data to pairs of access routers by setting the range of IP
addresses connected to each access router. In our evaluation,
we considered the case where only the access routers can
monitor traffic sent from the access routers. We set cl to
2.5 Gbps for all links in order to evaluate the case where
congestion can occur without dynamically reconfiguring the
routes.

We used traffic trace data monitored from 0700 h on
November 13, 2011 to 1000 h on November 13, 2011. Traffic
data was collected by the Netflow protocol at each of the PoP
routers. The sampling rate was 1 out of every 100 packets,
and aggregated data was exported every 5 min. Although the
traffic data did not include information regarding traffic rates
whose granularity was less than 5 min, the traffic data did
include the start and end times of each flow and the traffic
amount of the flow. For our evaluation, we generated the
traffic rate of each flow, assuming that it was constant from
the start time to the end time.

4.1.2 Parameter Settings

For the evaluation, we ignored |Rt+1 − Rt | in Eq. (19), and
set λl,h and Λl,h to 1 in order to focus on the link utilization
achieved by our method. We set h to 1, to focus on the
performance during the next time slot.

Moreover, we set pk to 0.10, I to 220 s, and α = 0.1.
Further, we set the number of iterations to minimize L(Rt+1)
to 15, and we set the control interval to 10 s. For simplicity,
we set the overhead required to observe traffic at a monitoring
node to 1.

4.1.3 Metric

We evaluated the rate of links where congestion occurs, be-
cause the aim of TE in this paper is to avoid congestion. The
rate M of links where congestion occurs is defined by

M =
∑

t,l g(y lt )
T L

(22)
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g(y lt ) =
{

1 (y lt (Xt, Rt ) > cl)
0 (otherwise) (23)

where y li (Xi, Ri) is the amount of traffic passing link l when
the traffic rate is Xi and the routes are set to Ri , cl is the
threshold for the amount of traffic passing link i, L is the
number of links, and T is the number of time slots. When
calculating M , we ignored the first hour in order to omit
results that did not have a sufficient amount of monitored
traffic to calculate σ f and affect M .

4.1.4 Comparison

In our evaluation, we compared the proposed SCCU with the
following methods.

(1) Control Based on Expected Rate (CBER)

This method calculates routes without considering the prob-
ability distribution of traffic, by performing the following
steps at each time slot: 1) the controller collects the traffic
information from randomly selected monitoring nodes; 2) it
predicts the traffic rate in the same manner as SCCU; and 3)
calculates the routes by using the values for the traffic rate
expected during the next time slot. The routes are calculated
so as to minimize the amount of traffic on each link exceed-
ing a threshold cl − ∆c. That is, the controller solves the
following problems:

minimize :
∑
l

*.,EXt+k


∑
j

Gl, jR f , j
t+k

xt+k, f

 − (cl − ∆c)+/-
+

(24)

where (x)+ is x if x ≥ 0, and otherwise 0. With this method,
setting ∆c to a large value ensures that the amount of traffic
on each link is small. In our evaluation, we set∆c to multiple
values. By comparing our method with CBER, we intend
to demonstrate the impact of considering the probability
distribution of traffic volume.

(2) Stochastic Control with Random Select (SCRS)

This method involves the controller randomly selecting
nodes to monitor traffic during each time slot. Then, traffic
is predicted, and routes are calculated in the same manner
as SCCU. A comparison with this method is intended to
demonstrate the effect of selecting nodes to monitor traffic
at each time slot in consideration of performance.

(3) Long Term Control (LTC)

This method does not change routes until the traffic informa-
tion is obtained for all flows. With LTC, the controller simply
calculates the routes so as to minimize the amount of traf-
fic exceeding the target link capacity at each control interval
based on the expected traffic rates obtained by the prediction.
In comparing the LTC with our proposed method, we intend
to demonstrate that shortening the control interval reduces
congestion despite the uncertainty of observed traffic.

 0
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Fig. 3 Effect of stochastic control

(4) Monitoring all traffic

This method collects traffic data from all monitoring nodes
at each time slot. Then, traffic is predicted, and routes are
calculated in the same way as SCCU.

4.2 Results

Figure 3 shows the relationship between the number of nodes
monitoring traffic at each time slot and the rate of congestion,
where ∆c is the same as in Eq. (24).

The results indicate that M depends on ∆c in CBER. If
∆c is small, the prediction error causes congestion because
the expected traffic passing link l may be close to cl . On the
other hand, if ∆c is large, we do not have sufficient resources
to allocate to flows with large traffic. As a result, congestion
may occur. In this evaluation, ∆c = 0.6 achieves the smallest
M . However, the optimal ∆c depends on the patterns of
traffic changes, and is difficult to be set in advance.

Figure 3 shows that SCRS achieves as value of M that
is as small as it is with CBER with the optimal ∆c when
the number of monitoring nodes is larger than 5. SCRS
considers probability distributions, and more resources are
allocated to flows whose rates are large or uncertain. As a
result, the probability that congestion will occur is reduced.
However, as the number of monitoring nodes decreases, M
increases because most of the flows that have a large impact
on the performance become uncertain, which results in a
lack of resources that can be allocated.

Our proposed SCCU achieved a low M value even when
the number of monitoring nodes was 1. This is because
SCCU selects monitoring nodes that can monitor the flows
whose uncertainties significantly impact TE. As a result,
SCCU accurately estimates the traffic rates of the flows.

SCCU can reconfigure the routes even when only partial
traffic information is observed at each time slot. This allows
for shorter control intervals. Thus, we evaluated the impact
of shortening the control interval by comparing our method
with LTC. For this evaluation, we obtained traffic information
from n of 27 monitoring nodes every 10 s. In this case, SCRS
and SCCU changed routes every 10 s, whereas LTC changed
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Fig. 4 Performance of conventionally proposed TE compared to our
method

routes every 240
n s.

Figure 4 shows the rate of congestion achieved by each
method. The figure indicates that SCRS and SCCU achieved
a smaller rate of congestion than the LTC. That is, shortening
the control interval reduced the rate of congestion. This
is because a method with short intervals detects the risk
of congestion and changes the routes so as to mitigate the
risk soon after the risk is high. However, a method with
large intervals cannot detect congestion and cannot mitigate
congestion before the next time slot.

5. Scalability

In this section, we discuss scalability. As the size of the
network increases, the calculation time may become pro-
hibitively long. Thus, we first discuss computational com-
plexity. Then, we propose approaches to accelerate the cal-
culation.

5.1 Computational complexity

In each time slot, our method performs the following steps:
estimation, prediction, route calculation, and monitoring
node selection. Herein, we discuss the computational com-
plexity of each step. We denote the number of nodes by n,
number of flows by f , number of links by l, and number of
candidate routes for each flow by k.

5.1.1 Estimation

Traffic is estimated by selecting previously estimated traffic
or by monitored traffic for each flow. That is, the computa-
tional complexity of the estimation is O( f ).

5.1.2 Prediction

Our method predicts traffic by summing the vectors whose
number of elements is the number of flows. That is, the
computational complexity of the estimation is O( f ).

5.1.3 Route Calculation

The routes are calculated by repeating the updates using Eq.
19. That is, the calculation time depends on the number of
updates.

Each update calculates the sum of the matrices whose
number of elements is f · k That is, the computational com-
plexity of each update is O( f · k).

5.1.4 Monitoring node selection

Our method selects monitoring nodes by repeating the selec-
tion of one monitoring node that minimizes Lopt(Ot ). Each
time we select a monitoring node, Lopt(Ot ) is updated for
all candidate monitoring nodes. That is, to select r moni-
toring noes from n candidates, the calculation of Lopt(Ot )
is performed

∑n
k=n−r+1 k times. Moreover, route calcula-

tion is required in order to calculate Lopt(Ot ). Thus, the
computational complexity is O( f · k) ∗ O(

∑n
k=n−r+1 k) =

O((
∑n

k=n−r+1 k) · f · k).

5.2 Acceleration

5.2.1 Acceleration of selecting monitoring node

According to the discussion in Section 5.1, with our method,
selecting monitoring nodes requires the most calculation
time. Therefore, we can accelerate the calculation time by
accelerating the selection of monitoring nodes.

To do so, we focus on the flows passing the links whose
probabilities of congestion are large, because a flow passing
only the links whose probabilities of congestion are small
has only a small impact on the performance. Even if the
traffic rate of such a flow is uncertain, a route that avoids
congestion can be calculated.

In addition, among the flows passing links with a high
probability of congestion, we focus on flows with consider-
able uncertainty. This is because the impact of monitoring
highly uncertain flows is larger than the impact of monitoring
flows with less uncertainty.

Our method of acceleration selects monitoring nodes as
follows, after predicting the traffic and calculating the routes:

1. Calculate the probability of congestion for each link
by using the traffic predicted by the predictor and the
routes calculated by the route controller.

2. Select as candidate flows those that pass links whose
probabilities of congestion are larger than a threshold
d.

3. Select one flow whose uncertainty, which is the defined
by the variance obtained by the results of the prediction,
is the highest among the candidate flows.

4. Select one monitoring node that can monitor the flows
selected during Step 3, unless when selecting mon-
itoring nodes, the cost C(Ot+1) does not exceed the
threshold W . Otherwise, go to Step 7.
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Fig. 5 Performance from selecting nodes based on predictive distribu-
tions

5. Eliminate from the candidate flows those that can be
monitored by the monitoring node selected at Step 4.

6. Go to Step-3.
7. End.

The above steps do not require the calculation of
Lopt(Ot ). Thus, the computational complexity is merely
O(
∑n

k=n−r+1 k).
Our method of acceleration reduces the calculation

time. However, it can also select different monitoring nodes
without acceleration. Therefore, we evaluated the impact of
the accelerated version.

As in Section 4, we used traffic trace data monitored by
Internet2, and the network topology based on Internet2.

We set the number of monitoring nodes at each time
period to 1. For simplicity, d, described in Section 5.2, was
set to 0. The other simulation environments were set in the
same manner as described in Section 4.1.

Figure 5 shows the rate of congested links achieved
by our method with and without acceleration in the case
of s = 3. The results indicate that acceleration does not
significantly impact the rate of congested links.

This is because flows whose traffic rates are uncertain
strongly impact the probabilities of congestion. As a result,
the same monitoring nodes were selected by both methods.

5.2.2 Acceleration of route calculation

In addition to selecting monitoring nodes, calculating routes
may require ample time. Indeed, the number of update iter-
ations considerably impacts the calculation time. Therefore,
we discuss the impact of the number of iterations on the rate
of congested links.

Fig. 6 shows the impact of the number of iterations
on the rate of congested links. The figure indicates that we
can achieve a similar rate of congested links even when the
number of iterations is set to 1. This is because we narrowed
the control interval to only 10 s. As a result, significant
route changes are not required during each time slot, and a
sufficient solution can be found with only slight updates to
the routes relative to the previous time slot.
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5.2.3 Calculation time with acceleration

Finally, we evaluated the calculation time at each time slot
for a large-scale network. To use larger network topologies,
we connected s access routers to each PoP router. That is,
the topology used in our evaluation had 9 ∗ s access routers
and 9 PoP routers.

As discussed in Section 5.1, the calculation time is a
function of the number of flows. Therefore, we plotted the
relation between the calculation time and the number of flows
whose routes are configured. Figure 7 shows the calculation
time of our method with acceleration, indicating that the
calculation time is directly proportional to the number of
flows. This is because the time needed to calculate route R
occupies most of the calculation time, and it is proportional
to the number of flows. The results thus indicate that our
method with acceleration can complete the calculation for
each time slot in 10 s for networks that include 15,000 flows.

If there are fewer flows that may cause congestion, we
can accelerate our method even further, because SCCU cal-
culates the uncertainty of each flow. By using this informa-
tion, we can obtain flows that may cause congestion. Then,
we update the routes such that only the routes of these flows
are changed. By doing so, routing matrices that need to be
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updated are small, and the calculation time is proportional
to the number of flows that may cause congestion.

6. Conclusion

In this paper, we proposed a framework for TE in cases where
only partial traffic information can be obtained at each time
slot. The framework was inspired by the decision-making
process of the human brain. In our proposed framework, the
controller (1) obtains a limited amount of traffic informa-
tion, (2) estimates and predicts the probability distribution
of traffic, (3) configures routes considering the probability
distribution of future predicted traffic, and (4) selects traffic
to monitor during the next period.

We discussed the details of the each step of our frame-
work and its evaluation. The results demonstrate that our
framework—in which TE and traffic monitoring cooperate—
improves the performance of TE even when only partial traf-
fic information is monitored during each time slot.

Our future work shall include the evaluation of our
method in a larger, actual network. We shall also discuss the
parameter settings for our method.

References

[1] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, K. Sh-
iomoto, and T. Hashimoto, “Framework for traffic engineering un-
der uncertain traffic information,” Information and Communication
Technology Convergence (ICTC), 2016 International Conference on,
pp.264–266, IEEE, 2016.

[2] K. Satake, T. Otoshi, Y. Ohsita, and M. Murata, “Traffic engineering
cooperating with traffic monitoring for the case with incomplete
information,” 2017 27th International Telecommunication Networks
and Applications Conference (ITNAC), pp.1–7, IEEE, 2017.

[3] E. Moreno, A. Beghelli, and F. Cugini, “Traffic engineering in seg-
ment routing networks,” Computer Networks, vol.114, pp.23–31,
2017.

[4] S. Jeong, D. Lee, J. Hyun, J. Li, and J.W.K. Hong, “Application-
aware traffic engineering in software-defined network,” Network
Operations and Management Symposium (APNOMS), 2017 19th
Asia-Pacific, pp.315–318, IEEE, 2017.

[5] Y. Zhang and M. Moradi, “Sdn based interdomain and intradomain
traffic engineering,” July 4 2017. US Patent 9699116B2.

[6] M. Robinson, M. Milosavljevic, P. Kourtessis, S. Fisher, G.P.
Stafford, J. Treiber, M.J. Burrell, and J.M. Senior, “Qoe based
holistic traffic engineering in sdn enabled heterogeneous transport
networks,” Transparent Optical Networks (ICTON), 2017 19th In-
ternational Conference on, pp.1–4, IEEE, 2017.

[7] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering
with equal-cost-multipath: An algorithmic perspective,” IEEE/ACM
Transactions on Networking, vol.25, no.2, pp.779–792, 2017.

[8] D. Sanvito, I. Filippini, A. Capone, S. Paris, and J. Leguay, “Adap-
tive robust traffic engineering in software defined networks,” arXiv
preprint arXiv:1712.05651, 2017.

[9] M. Katoh, I. Sato, and N. Watanabe, “Traffic engineering for iot,”
Information Networking (ICOIN), 2016 International Conference on,
pp.195–200, IEEE, 2016.

[10] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, and R. Soulé,
“Kulfi: Robust traffic engineering using semi-oblivious routing,”
arXiv preprint arXiv:1603.01203, 2016.

[11] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering
with equal-cost-multipath: An algorithmic perspective,” IEEE/ACM
Transactions on Networking, 2016.

[12] P. Sun, L. Vanbever, and J. Rexford, “Scalable programmable in-
bound traffic engineering,” Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, p.12, ACM,
2015.

[13] H.H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelern-
ter, “Traffic engineering with forward fault correction,” ACM SIG-
COMM Computer Communication Review, vol.44, no.4, pp.527–
538, 2015.

[14] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in SDN-OpenFlow networks,” Computer Net-
works, vol.71, pp.1–30, 2014.

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” Proceedings of the Sev-
enth COnference on emerging Networking EXperiments and Tech-
nologies, p.8, ACM, 2011.

[16] D. Jiang, L. Nie, Z. Lv, and H. Song, “Spatio-Temporal Kronecker
Compressive Sensing for Traffic Matrix Recovery,” IEEE Access,
vol.4, pp.3046–3053, 2016.

[17] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices,” ACM SIGCOMM
Computer Communication Review, pp.267–278, ACM, 2009.

[18] S. Bitzer, J. Bruineberg, and S.J. Kiebel, “A Bayesian Attractor
Model for Perceptual Decision Making,” PLoS Comput Biol, vol.11,
no.8, p.e1004442, 2015.

[19] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, K. Sh-
iomoto, and T. Hashimoto, “Traffic engineering based on stochastic
model predictive control for uncertain traffic change,” Integrated Net-
work Management (IM), 2015 IFIP/IEEE International Symposium
on, pp.1165–1170, IEEE, 2015.

Kodai Satake received an B.E. degree in engineering science in 2016
from Osaka University, where he is currently a postgraduate studying for a
M.E. degree. His research interests include traffic engineering and traffic
prediction. He is a student member of the IEEE.

Tatsuya Otoshi received an M.E. and Ph.D. degrees in information
science and technology in 2017 and 2014 from Osaka University, where
he is currently an specially appointed assistant professor in the Graduate
School of Information Science and Technology. His research interests
include traffic engineering and traffic prediction. He is a member of the
IEEE.

Yuichi Ohsita received M.E. and Ph.D. degrees in information science
and technology in 2005 and 2008 from Osaka University, where he is cur-
rently an assistant professor in the Graduate School of Information Science
and Technology. His research interests include traffic matrix estimation and
countermeasures against DDoS attacks. He is a member of IEICE, IEEE,
and the Association for Computing Machinery (ACM).

Masayuki Murata received M.E. and Ph.D. degrees in information
science and technology from Osaka University in 1984 and 1988. In April
1984, he joined the Tokyo Research Laboratory at IBM Japan as a researcher.
From September 1987 to January 1989, he was an assistant professor with
the Computation Center, Osaka University. In February 1989, he moved to
the Department of Information and Computer Sciences, Faculty of Engi-
neering Science, Osaka University. From 1992 to 1999, he was an associate



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

professor with the Graduate School of Engineering Science, Osaka Uni-
versity, and since April 1999, he has been a professor. He moved to the
Graduate School of Information Science and Technology, Osaka University,
in April 2004. He has published more than 300 papers in international and
domestic journals and conferences. His research interests include computer
communication networks, performance modeling, and evaluation. He is a
fellow of IEICE and a member of IEEE, the Association for Computing
Machinery (ACM), The Internet Society, and IPSJ.


