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Abstract—Recently, over-the-top video service providers focus
on the quality of experience (QoE) as an important factor
when they provide video content. Today, most video streaming
service providers, such as Youtube and Netflix, provide video
content to users with adaptive bitrate (ABR) control techniques
for increasing the user QoE. To maximize the QoE under a
fluctuating network condition, in this paper, we propose an ABR
algorithm using the Bayesian attractor model, which models
cognition and decision making of the human brain, as the
name suggests, according to the Bayesian inference. Simulation
results show that our proposed method achieves a higher video
bitrate with less video quality switching to improve the user QoE
compared to the methods even in the situation where network
available bandwidth greatly fluctuates.

Index Terms—Adaptive bitrate, video streaming, human brain,
decision making

I. INTRODUCTION

Most people nowadays carry mobile devices to access

information on the Internet and use various services. Also,

the amount of video traffic is increasing at a drastic pace.

Cisco VNI [1] forecast that global mobile data traffic will

grow seven-fold over five years from 2016 to 2021, and video

traffic will account for 78% of the world’s mobile data traffic

by 2021. This increase in mobile traffic intensifies the degree

of fluctuation in mobile traffic, and the range of fluctuation in

the quality of service (QoS) level, which can be represented

by the throughput, delay time, and packet loss rate, is thus

increasing.

Although a QoS guarantee is an objective of network service

providers, it faces many challenges because there are various

factors destabilizing the QoS, such as the inherent variability

in signal strength, interference, noise, and user mobility [2] in

addition to the increase in mobile traffic. These factors make

it harder to guarantee the QoS of mobile devices.

From the viewpoint of over-the-top video service providers,

the quality of experience (QoE) is attracting attention as an

important factor when they provide video content. There are

several reasons for this. One reason is the diversification of

user context in the use of mobile devices; i.e., many types

of devices, services, and communications. The QoE is a

concept of subjectively perceived quality that was introduced

in [3], and techniques that maximize a mobile user’s QoE are

essential.

To maximize the user QoE, it is desirable for users to watch

the highest-quality version of a video, which means the highest

video bitrate, frame rate, encoding quality, and audio bitrate.

However, it is not always possible to provide such a high-

quality video because the bandwidth available on the network

connection between the user’s device and the video server

is not always enough to accommodate the highest-quality

video. If a user views a high-quality video on a poor network

connection, the video freezes for rebuffering [4]. In addition,

choosing a video with a bitrate that is too high may cause

unnecessary decoding delays. Depending on the screen display

resolution of the user’s device, high video quality would not

so much satisfy the user. These rebuffering and delays degrade

the user’s QoE [5].

Today, most video streaming service providers, such as

Youtube and Netflix, provide video content to users with

adaptive bitrate control techniques according to the user and

QoS context. MPEG-DASH (Dynamic Adaptive Streaming

over HTTP) [6] is one of the standards of HTTP Adaptive

Streaming (HAS). Using DASH, the video player can dy-

namically switch among quality levels/representations, which

means different bitrate levels, of the user’s watching video

while viewing in accordance with the QoS and the current

quality of video. In DASH systems, an original video content

is encoded into multiple encoded videos at different bitrates,

and each encoded video is then partitioned into videos of a

fixed length (generally a few seconds), which are called chunks
or segments (where we use the term segments). Every finishing

download of a segment, a client selects a next segment to

download according to an adaptive bitrate (ABR) algorithm978-1-7281-0554-3/19/$31.00 c©2019 IEEE



that is implemented generally in an application layer of the

client.

Recent research has proposed various ABR algorithms for

increasing the user QoE. Generally, ABR algorithms estimate

the instantaneous network quality and use it as a decision

criterion. However, as mentioned above, network conditions

can fluctuate over time and are unstable for mobile devices,

and the accurate estimation of network conditions is therefore

difficult. This results in degrading the user QoE because client

applications (1) cannot fully utilize network resources through

ABR algorithms, (2) frequently switch the bitrate in response

to fluctuating decisions made by an ABR algorithm, and (3)

request a higher bitrate than the network bandwidth, which

leads to video rebuffering.

To solve the above-mentioned problem of maximizing the

QoE under a fluctuating QoS, in this paper, we propose an

ABR algorithm using the Bayesian attractor model (BAM [7]),

which models cognition and decision making of the human

brain, as the name suggests, according to the Bayesian in-

ference. The BAM is divided into two models; one is a

cognitive process model where observed information is accu-

mulated and the posterior probability of classification of the

observation into predefined categories is obtained. The other

is the decision-making process model that determines one

classification according to its posterior probability. The BAM

allows the control of a trade-off between accurate and rapid

estimation for dynamically changing observed information.

In our proposal, the BAM is implemented in the client

MPEG-DASH video streaming application. In the cognitive

process model, the BAM perceives information available in

the application layer and estimates the network and application

conditions. In the decision-making process model, the BAM

selects a video bitrate according to the results of the cognition

process model. Here, the selection algorithm of a video bitrate

that realizes a high user QoE is required. However, the factors

that improve the QoE differ person by person. Therefore,

in our proposal, we assume that this selection algorithm

differs person by person, and the user can choose a selection

algorithm that suits them.

The remainder of the paper is organized as follows. Sec-

tion II provides existing research on QoE metrics, HAS

techniques, and ABR algorithms. Section III gives a detailed

description of the BAM. Section IV explains how to apply

the BAM to an ABR and presents our proposed algorithm.

Section V evaluates the performance of the proposed algorithm

and compares it with that of two ABR algorithms, namely

TCP-Like AIMD Based ABR algorithm [8] and BOLA [4]

which is now part of an experimental algorithm integrated in

dash.js [9]. In Section VI, we offer concluding remarks and

refer to future challenges.

II. RELATED WORK

A. QoE metrics
The QoE is a measure of the degree of user satisfaction

with a service. Past studies on the QoE of a video streaming

service show that the QoE is strongly correlated with video

player events (e.g., rebuffering, a change in video quality, and

start-up delay). Some papers describe that the QoE relies on

the start-up delay (e.g., [10], [11]) while other papers show that

the QoE relies on rebuffering [10]–[12], the played bitrate [5],

[13], and the bitrate change ratio [5], [12].

There are also studies that estimate the user’s QoE using

important factors of the QoE. Reference [13], for example,

presents a user experience model that can quantitatively mea-

sure the QoE of the ABR video streaming service and designs

the model with three factors of the QoE, the initial (start-up)

delay, stalling (rebuffering), and variation of video quality. As

a wide survey of the QoE for video streaming in real society,

the authors of [12] developed a browser plug-in for YouTube,

named YouSlow, and collected and analyzed information on

video player events and the user’s video abandonment. The

results of YouSlow analysis show that the bitrate changes ratio

(average amplitude of bitrate changes over playback time) and

rebuffering ratio (average rebuffering time over playback time)

are correlated to the user’s video abandonment. Regarding the

bitrate change ratio, it is reported that even when the bitrate

was improved, a high bitrate change ratio led to the user

abandoning the video. Although the reasons are not clarified

in [12], this may be because users prefer the stability of the

bitrate to higher video quality.

B. MPEG-DASH
HAS is widely used for video streaming services. For

instance, it is implemented in Microsoft Silverlight Smooth

Streaming (MSS) by Microsoft, HTTP Live Streaming (HLS)

by Apple, and Adobe HTTP Dynamic Streaming (HDS) by

Adobe Systems. As a standard for HAS, DASH [6] was issued

by MPEG in 2012. DASH aims to provide a smooth video

streaming service to users corresponding to network conditions

and types of client device. In DASH systems, video content is

encoded into multiple versions at different bitrates, and each

encoded video is then partitioned into videos of fixed length

segments. Segments are stored on the DASH server. When a

DASH streaming session starts, the DASH server provides the

Media Presentation Description (MPD) to the DASH client.

The MPD is an index file that describes media metadata of

the different audio and video bitrates available to the client.

To play video content, the client first obtains the MPD and

then requests segments in the desired bitrate according to MPD

information, network conditions, and types of the client device.

The MPD and segments are delivered using HTTP. Because

the client sends HTTP requests for each segment, the video

player can switch to video with different bitrates for each

segment. In this way, ABR streaming is realized in DASH.

C. ABR algorithms
Various ABR algorithms have been proposed and they

can be broadly classified into three categories according

to the feedback information they use [14]: throughput-

based [8], [15], buffer-based [4], [16], and hybrid/control

theory- based [17], [18]. Because ABR algorithms work in

the application layer of the client device, they generally

decide the appropriate video bitrate for the next segment



to be downloaded, according to information available to the

application layer of the client (e.g., playback buffer occupancy,

and TCP throughput estimated by the application layer). Here,

it is difficult to estimate accurate network conditions because

network conditions can fluctuate over time and vary across

environments. Inaccurate estimation can lead to inappropriate

bitrate selections, resulting in lower video quality or frequent

bitrate switching or rebuffering.

Each time the client sends an HTTP request, it has to select

an appropriate video bitrate according to information available

to it. This selection of bitrates is made by an ABR algorithm

implemented in the client device. The general goals of the

ABR algorithm are as follows [19].

1) Avoid playback interruptions due to buffer underruns

(rebuffering).

2) Maximize the video quality.

3) Minimize the number of video quality shifts.

4) Minimize the time between the request for a new video

by the user and starting to play the video.

However, there are trade-off relationships among these goals

as the authors of [19] mentioned. For instance, it is always

possible to minimize the number of interruptions by selecting

the lowest video bitrate to achieve goal 1, but goal 2 then

cannot be achieved. To achieve goal 2, the ABR algorithm

can switch video bitrate by reacting to the smallest changes

in the network bandwidth. This causes frequent video quality

shifts, and goal 3 cannot be achieved. Goal 4 is also a trade-

off with goal 2 because selecting the lowest video bitrate at

the start minimizes the start-up time but degrades the video

quality. It is therefore necessary for the ABR algorithm to

maximize a multi-objective function for these multiple goals.

However, factors for maximizing the user QoE differ among

people. It is significant to provide appropriate ABR algorithms

for person by person.

III. BAYESIAN ATTRACTOR MODEL

This section explains the Bayesian attractor model (BAM)

proposed in [7] and our extension of the BAM. The BAM mod-

els a human’s brain, which accumulates sensing information

of the external field and makes a decision using the Bayesian

inference framework.

The BAM has a decision state z as its internal state and

updates z according to an internal generative model that has

stable fixed points (attractors). Note that the authors of [7]

used winner-takes-all dynamics for the generative model of the

BAM. Internally, the BAM has several decision alternatives,

and each alternative i corresponds to each attractor φi. Since

z is a hidden variable, in the cognitive process model, the

BAM estimates the posterior density function of z by using

the Bayesian inference. In the decision-making process model,

the BAM checks whether a probability density when z = φi

exceeds a threshold value.

The cognitive process model discriminates attractors by

comparing the perceived information with past experience

and memory. Past experience and memory are linked to K
attractors. For more detail, the state vector of φi (i = 1 · · ·K),

is associated with past experience and memory by a feature

vector μi. As mentioned above, the generative model of

the BAM uses a nonlinear dynamics with these K attrac-

tors (φ1 · · ·φK). In the BAM, decision state z is updated by

the following equation.

zt = zt−Δ +Δg(zt−Δ) +
√
Δwt, (1)

where z is updated from one time step to the next and g(∗)
denotes the attractor dynamics [20], Δ means the update

interval of the dynamics, wt is a white noise following the

normal distribution N (0,Q), where Q = (q2/Δ) · I is the

variance–covariance matrix of the noise, and q is a parameter

representing dynamics uncertainty. If there is no noise in the

dynamics (namely, q = 0), z is drawn into one of the fixed

points φi by repeating the update. The dynamics uncertainty

represents the amount of noise with which the decision maker

expects the state variable to be changed, which is interpreted

as the tendency for state variables to switch between fixed

points.

In the BAM, it is assumed that an observation, denoted by a

vector xt, are generated corresponding to one of the attractors,

which is represented by Eq. (2).

xt = M · σ(zt) + vt, (2)

where M is a feature matrix of [μ1, μ2, ..., μK ], and a feature

vector μi links φi and memory. σ(∗) is a sigmoid function that

maps all values zj ∈ z to values between 0 and 1. Owing to the

winner-takes-all dynamics of z, the fixed point φi is mapped to

a vector σ(φi), where one element is approximately 1 and the

other elements are approximately zero. The linear combination

M · σ(φi) thus becomes almost μi. Note that μi is a feature

vector of the same dimension as an observation values x. vt
is a white noise following the normal distribution N (0,R),
where R = r2 · I is the variance–covariance matrix of the

noise and r is a parameter representing sensory uncertainty.

The sensory uncertainty represents the amount of noise in

observations that the decision maker expects.

The BAM estimates the posterior density function of z
from input sequences of xt. In the decision-making process

model, the estimation of the decision state z according to

the observation value x involves estimating zt that gives the

minimum variance of xt in the Eq. (2). In [7], the unscented

Kalman filter (UKF), one of a Bayesian filters, is used for this

estimation. Although the UKF is developed for estimating a

nonlinear generative model, due to the generative model of the

BAM with strong nonlinearity such that a sigmoid function

is included, it loses the accuracy of the estimation. Another

algorithm that can handle a nonlinear/non-Gaussian system

and can estimate the state with higher precision is therefore

desirable. In this paper, the particle filter (PF) is adopted as

an algorithm satisfying this condition.

Unlike the UKF, the PF supports a non-Gaussian state space

model, such that a more accurate estimation can be expected

in the BAM’s internal model. Using the PF, the probability

density function of zt at time t, P (zt|xt) is estimated and the



probability density P (zt = φi|xt) for each attractor φi is re-

ferred to as confidence. In the decision-making process model,

when the confidence for the attractor φi, P (zt = φi|xt),
exceeds the threshold λ, the attractor φi is finally adopted

as the result of estimation. Additionally, if such φi does not

exist, we will not do anything. If this threshold value is higher,

estimation is more accurate but its speed is lower, and vice

versa.

IV. RATE ADAPTATION WITH BAYESIAN ATTRACTOR

MODEL

A. Overview
The goal of the proposed method is to maximize the QoE

of individual users in consideration of network and application

conditions that change dynamically and the user’s preference

for video quality, by selecting appropriate bitrates of MPEG-

DASH segments. In our method, the BAM runs in the client

application and observes the network communication quality

and video quality in the application layer. According to the

observation, the BAM decides which feature vector is closest

to the current observation among feature vectors designed

in advance, and the video bitrate of the next segment to be

downloaded is chosen according to the estimation result.

In the following sections, we explain how we realize our

rate adaptive algorithm with the BAM, that is, we explain

about the observation information that is input to the BAM,

the design of attractors and feature-vectors in the BAM, and

the bitrate control that achieves the purpose of our research.

B. Observation information
At first, as network and application conditions to be con-

sidered, we focus on the available bandwidth and the buffer

occupancy. These are widely adopted metrics in ABR algo-

rithms for DASH. An observation is performed every time

the download of a segment is completed. dash.js [9] can

acquire the playback buffer occupancy at the present moment.

On the available bandwidth, as used in dash.js, we use the

passive measurement method where an available bandwidth is

calculated by dividing the segment size by the download time

for it.

In our ABR algorithm, we prepare K sets of the playback

buffer occupancy and the available bandwidth in advance, each

of which equals μi. The observation information xt input

to the BAM at t is also a set of the buffer occupancy and

the available bandwidth, and these pieces of information are

acquired on the client device. From xt, the BAM estimates the

current zt. When zt is identified as one of the pre-specified

conditions, which are represented by μi, our method selects an

appropriate video bitrate according to the estimated condition.

C. Attractor and feature vector design
In this section, we explain how to design the attractor and

feature vector of the BAM. The attractor design means to

decide how many attractors are prepared, namely to decide

the value of K. Since K is the number of network and

application conditions we want to discriminate, we determine

feature vectors. On the available bandwidth, we want to know

whether it can accommodate bitrates that a client application

can choose from a MPD file. Then, the number of the network

condition is set to that of available encoded videos. On the

buffer occupancy, we want to know if the current buffer is

abundant or depleted. Then, the buffer occupancy is classified

into three types, safe, transient, and risky, and the value of

the buffer occupancy is represented by Bsafe, Btransient,

and Brisky , respectively. Thus, the number of the application

conditions is three. Finally, K is calculated by multiplying

the number of the network conditions and the application

conditions.

D. Adaptive bitrate selection
When observation information xt is input and P (zt =

φi|xt) exceeds a threshold, the BAM refers μi as a current

condition. Then, we design which bitrate of a next segment is

to be selected and downloaded. This selection is independent

of the BAM’s cognition model and it is possible to realize

bitrate selection suited to the preference of different users.

Bitrate selection algorithms aiming at improving the user

QoE of video streaming services has to consider the average

bitrate, rebuffering time, and switching frequency of the bi-

trate. Reference [12] reported that the more rebuffering occurs

or the longer the rebuffering time is, the more users interrupt

viewing. And similarly, the more frequently the video bitrate

fluctuates, the more users interrupt viewing. In this paper, as an

example of selection algorithms, we propose a bitrate selection

algorithm with considering the preference of users who prefer

less rebuffering and fewer changes in the bitrate. The selection

algorithm is based on the following selection rules.

Rule 1: In case the buffer occupancy is low

If the current bitrate is lower than the estimated

available bandwidth, the current bitrate is kept. Oth-

erwise, a two-level lower bitrate than the current one

is selected (when there is no two-level lower bitrate

than the current one, the lowest bitrate is selected).

Rule 2: In case the buffer occupancy is abundant

If the current bitrate is lower than the estimated avail-

able bandwidth, a one-level higher bitrate than the

current one is selected (when the current bitrate is the

highest one, the current bitrate is kept). Otherwise,

the current bitrate is kept.

Rule 3: In case it is neither buffered abundant nor exhausted

If the current bitrate is equal or lower than the

estimated available bandwidth, the current bitrate is

kept. Otherwise, a one-level lower bitrate than the

current one is selected (when the current bitrate is

the lowest one, the current bitrate is kept).

An example of the feature vectors and bitrate selection rules

when the number of encoded videos equals three is shown in

Table I. In the table, T1, T2, and T3 represent the available

bandwidth (assuming T1 < T2 < T3) corresponding to the

bitrate of three encoded videos, respectively. For achieving

less rebuffering and fewer changes in the bitrate, the buffer

occupancy is put stress on.



TABLE I
EXAMPLE OF BAM ATTRACTORS, FEATURE VECTORS, AND BITRATE

SELECTION RULES

Attractor Available bandwidth Buffer occupancy Bitrate selection

φ1 T3 Bsafe Rule 2)
φ2 T2 Bsafe Rule 2)
φ3 T1 Bsafe Rule 2)
φ4 T3 Btransient Rule 3)
φ5 T2 Btransient Rule 3)
φ6 T1 Btransient Rule 3)
φ7 T3 Brisky Rule 1)
φ8 T2 Brisky Rule 1)
φ9 T1 Brisky Rule 1)

V. SIMULATION RESULTS

A. Simulation setup
We simulate our proposed method assuming a 5-minute

movie in a situation where the available bandwidth changes

dynamically. The 5-minute movie was encoded at five bitrates

(0.5, 1.0, 1.5, 3.0, and 5.0 Mbps) and partitioned into 1-second

segments.

For the available bandwidth to be observed in the sim-

ulation, referring to the benchmark provided by the DASH

Industry Forum, the average value of available bandwidth is

changed every 30 s from the start time and the average value

thereof is switched to 9.0, 4.0, 2.0, 1.0, 2.0, 4.0, and 9.0 Mbps

in order from the start time. Additionally, we add a different

noise to each average value of available bandwidths. Each

noise follows a normal distribution having an average of zero

and standard deviation of lnoise(%) of each average value

of the available bandwidth, where lnoise is defined as noise
level hereafter. We change the value of the noise every second

according to the distribution.

For example, we use the normal distribution where the

standard deviation is 2.0 · lnoise/100 for a 2.0 Mbps segment.

The set of the buffer occupancy embedded in each attractor,

Brisky , Btransient, and Bsafe, is 10, 30, and 50 s, respectively,

and a set of the available bandwidth embedded in each attractor

T corresponds to the set of bitrates available to the client;

i.e., T1 = 0.5, T2 = 1.0, T3 = 1.5, T4 = 3.0, and

T5 = 5.0 (Mbps). Therefore, the number of the BAM’s

attractor K is equal to 15.

For parameters of the BAM, we set sensory uncertainty

r to 0.5, dynamics uncertainty q to 0.5, and a threshold of

confidence λ to 0.01.

B. Bitrate selection of proposal
We first verify the estimation of our proposed method

described in Section IV by simulation. Figs. 1–3 show the

result of the BAM’s estimation of available bandwidth and

buffer occupancy, and the transition of confidence for φ. In

Fig. 3, the BAM adopts the most confident attractor among

the attractors whose own confidence exceeds the threshold. the

estimation of observation (Figs. 1 and 2) corresponds to the

adopted attractor (Fig. 3). For example, when the confidence

of φ13 exceeds the threshold at about time 60 (t), a set of avail-

able bandwidth and buffer occupancy is estimated to be that
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corresponding to φ13 (in this situation, available bandwidth is

estimated to 3.0 Mbps, buffer occupancy is estimated to 50 s)

by the BAM. These figures confirm that the estimated values

are not unstable or affected by a fluctuation in observations.

Meanwhile, the BAM tracks a large change in observation. It

is confirmed that the state estimation appropriately performs.

We next simulate the bitrate selection of our proposed

method. Fig. 4 presents that the BAM’s bitrate choice is based

on the estimated network and application conditions shown

in Figs. 1 and 2. We can see that selected bitrates are not

fluctuated and roughly follow the changes in the conditions.

C. Comparison
We now compare our proposed method with two ABR

algorithms, namely, the TCP-Like AIMD based method (called

as AIMD hereafter) [8] and BOLA [4]. The former method

compares the segment transfer (fetch) time with the media
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playback time contained in the segment. This method pre-

defines two types of threshold time for switch-up and switch-

down. When the fetch time exceeds the threshold for switch-

up, the bitrate is step-wise switched up. When the fetch

time falls below the threshold for switch-down, the bitrate is

switched down aggressively to prevent rebuffering. With this

method, we can compare the performance of our proposed

method based on the BAM with that of bitrate control de-

pending on only previous observations. Meanwhile, BOLA is

an algorithm used in dash.js [9] that is a client-side reference

implementation of MPEG-DASH, and a method expected to

be widely used. We compare the performance of our proposed

method with that of BOLA as BOLA is one of state-of-the-art

ABR algorithms.

The simulation environment is the same as that in Sec-

tion V-B. However, to evaluate the influence of noise added to

the input value in terms of the robustness against noise, noise
level is set to 10% and 30%. The average bitrate change and

the average bitrate are evaluated. The average change of the

bitrate is defined as the sum of the bitrate differences with

the previous segment divided by the video playback time, and

the evaluation results are shown in Figs. 5(a) and 5(b). First,

the average bitrate change of the BOLA was larger than that

of the other metods (Fig. 5(a)). Note that bitrate oscillations

were a problem even in the paper that proposed BOLA

[4], and the present paper proposes an improved algorithm

BOLA-O that overcomes this problem. (Hereafter, the BOLA

which does not mitigate the oscillations, is called BOLA-U

and it is distinguished from BOLA-O) Our simulation result,

however, despite mimicking the evaluation environment of

the Ref. [4], BOLA-O is not taken advantage of, and the

performance is almost the same as that of BOLA-U in our

preliminary simulation. In both AIMD and the BAM, the

average bitrate change is low, but the difference between AIMD
and BAM becomes remarkable at noise level= 30, and it can

be confirmed that the BAM achieves better performance.

Next, for the average bitrate (Fig. 5(b)), the BAM had

the highest results at both noise level of 10, 30. As a result,

the BAM is superior to the compared methods in terms of

average bitrate change and average bitrate, even though the

minimization of average bitrate change and the maximization

of average bitrate can not be realized simultaneously. The
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Fig. 5. Performance comparison

reason why the average bitrate change of the BAM is low is

that our proposed method takes policy to positively keep the

current bitrate according to the set of buffer occupancy and

estimated available bandwidth, which is described in Rules in

SectionIV-D. The reason why the average bitrate of the BAM

is high is that our proposed method takes policy not to lower

video bitrate if the buffer occupancy is abundant even in the

situation where the network bandwidth getting lower (Rule 2

in Table I). This policy was set for the purpose of suppressing

the fluctuation of the bitrate, but in the simulation environment

this contributed also to improving the perfomance of average

bitrate.

In addition to the attractor design policy, by the BAM’s

properly processing the observation and by the BAM’s appro-

priately selecting which attractor the current situation is close

to, that is, which policy should be selected, each policy works

properly, and then high performance of our proposed method

is realized.

Thus, from our computer simulation, we can conclude that

the attractor design policy of suppression of the switching

frequency of the bitrate can be realized with high accuracy

under the condition where observation information greatly

fluctuates.



VI. CONCLUSION

   In this paper, for the estimation of network and application 
conditions, where QoS greatly fluctuates, we focused on the 
cognitive model of a human’s brain, the Bayesian attractor 
model. We proposed an ABR algorithm using the BAM to 
realize the QoE maximization for individual users of MPEG- 
DASH application.

Our computer simulation showed that our proposed method

can perform appropriate bitrate control, that is, it can control 
bitrate with less bitrate switching without greatly lowering the 
average bitrate compared to the two existing methods even

in the situation where network available bandwidth greatly 
fluctuates. Our proposed method outperforms BOLA, with im- 
provements in average bitrate of 11%−12% and improvements

in average bitrate change of 91% in our computer simulation.

   In the future, it is necessary to implement our proposed 
method in an actual video streaming application and evaluate 
its performance in more detail. In addition, although we

evaluated the performance of our proposed method comparing

with AIMD and BOLA, latest work propose other state- 
of-the-art algorithms. For example, paper [21] proposes an 
ABR algorithm using reinforcement learning and showed the

algorithm outperforms BOLA. As a future task, we need to 
compare our proposed algorithms with such algorithms.
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