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Abstract: Virtualization of wireless sensor networks (WSN) is widely considered as a foundational
block of edge/fog computing, which is a key technology that can help realize next-generation Internet
of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually
deployed and interconnected over the Internet. Moreover, application services are expected to be
more sophisticated and complex, thereby increasing the number of modifications required for the
construction of network topologies. Therefore, it is imperative to establish a method for constructing
a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high
resilience against network failures, while keeping the topological construction cost low. In this study,
we draw inspiration from inter-modular connectivity in human brain networks, which achieves
high performance when dealing with large-scale networks composed of a large number of modules
(i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links
based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential
distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular
assortativity, which characterizes the topological connectivity of brain networks. We test our proposed
methods using simulation experiments. The results show that the proposed method based on the EDR
model can construct a VWSN topology with an optimal combination of communication efficiency,
robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular
links, the results also show that high assortativity enhances the robustness and communication
efficiency because of the existence of inter-modular links of two high-degree nodes.

Keywords: Internet of Things; brain networks; virtual networks; wireless sensor networks

1. Introduction

Wireless sensor network (WSN) [1] refers to an ad hoc type of network that comprises
spatially-distributed autonomous sensor devices. These sensor devices are connected to each other via
a network, and they monitor the environment of a target area. Recent advancements in information
and communication technology (ICT) has led to miniaturized and sophisticated sensor devices (e.g.,
low-power wide area (LPWA) networks [2,3]), and WSNs are the foundational blocks for further
advanced network systems, such as edge computing [4,5] or fog computing [6,7], which attract a great
deal of attention for realizing the Internet of things (IoT) and cyber-physical systems (CPS) [8–11].
In these scenarios, a number of ICT application services and other social infrastructure will be
integrated and implemented on the Internet.
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Virtualization techniques, such as network function virtualization (NFV) [12,13], software
defined networks (SDN) [14,15], and network slicing [16,17], have also been studied in combination
with WSNs [18–22], and are considered key technologies to construct network systems for edge
computing [23–26] and IoT [27–30]. A virtualized WSN (VWSN) is composed of two network layers:
the infrastructure layer and the service layer (Figure 1). Multiple providers deploy physical network
resources that can analyze the environment, collect and propagate data, and form IoT modules.
Therefore, an infrastructure layer that comprises an interconnected structure of multiple IoT modules
is realized. The service layer is virtually constructed by combining multiple IoT modules on this
infrastructure layer, wirelessly connecting the edge servers, which process/transmit data and behave
as gateways, based on millimeter-wave beam-forming techniques [31,32]. In this scenario, the nodes
in Figure 1 correspond to various types of IoT devices; some of them operate as endpoint nodes,
which have the ability to serve as a representative nodes to communicate with the edge servers.
The administrator of a virtualized service networks (VSN) operates edge servers and virtualized
wireless connections among the IoT modules.

This virtualization architecture has several advantages for future IoT scenarios [18–20,22].
For instance, even if the type of services to be implemented on the VWSN is not envisaged beforehand,
administrators can construct the service layer for any purpose while flexibly reusing physical
resources at relatively low costs. Second, virtualization in WSN can address the heterogeneity in the
infrastructure layer, wherein diverse types of physical network modules are individually deployed
by the infrastructure providers. In addition, separating infrastructure and service layers results in
simplified operation and accelerated development.
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Figure 1. Architecture for virtualized wireless sensor networks (VWSNs).

VWSN architecture provides features that are conducive to the realization of IoT technology;
however, no strategies have been proposed that efficiently generate virtualized topologies, wherein
numerous networks are mutually interconnected. Virtualization techniques for the WSNs enable the
administrators of the service providers to flexibly construct the VSN topologies [18,19,21,22]. At the
same time, the number of ICT services provided over the Internet has been skyrocketing, and their
contents become more and more sophisticated [8–11]. These situations demand frequent modification
of the VWSN topologies: the administrators require addition/removal of network elements (i.e., nodes
and links) on the existing VSNs, and the new VSNs will be constructed every time a new service is
launched. Furthermore, in the future, the Internet will be comprised of millions of interconnected
IoT devices, and a substantial computational cost will be incurred when calculating the optimal
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topologies for the VSNs. Therefore, although optimizing topology shapes is virtually impossible
due to the enormous number of devices and services, it is imperative to discover appropriate ways
for constructing VWSN topologies that achieve a high level of performance, quick communication
between any pair of nodes, high resilience against failures of network components, and low cost to
sustain the wireless connectivity, prior to the determination of the optimal shape of topologies.

In recent years, the application of human brain networks in the engineering field has attracted
significant research attention because brain networks possess excellent characteristics that have
been optimized through the process of evolution [33,34]. However, studies that have discussed the
application of brain networks to information networking systems, particularly for the aforementioned
modularly interconnected networks, are limited.

Remarkable advances of graph-theoretic analysis in neuroscience (e.g., functional Magnetic
Resonance Imaging (fMRI)) have revealed that the modular structure of brain networks enables them
to contain tens of billions of neurons, which can help a brain network adapt itself for a wide variety
of tasks [33]. The inter-modular connectivity also enables the highly reliable information processing
system of the brain, while optimizing the tradeoff between performance and metabolism [35].
Therefore, brain networks are considered to have fundamental characteristics that are necessary
for designing an interconnected network of VWSNs. In this study, we investigate the relationship
between the performance of information networks and the shape of the network topology based on
recent findings in the field of neuroscience. In particular, we attempt to answer the following questions:

“which pair of modules should be connected by inter-modular links?” and “which nodes within modules should
be selected as endpoints of these inter-modular links?”.

First, we focus on the exponential distance rule (EDR) [35], which is a network model based on the
modular connectivity in the cerebral cortex of a mammalian brain. The cerebral cortex is divided into
multiple regions based on the local functional roles of those regions. The EDR model can reproduce the
connectivity structure among those regions in the brain—the neural links among the areas are created
based on a probability function that exponentially decays with inter-areal distance. In [35], Ercsey et al.
showed that network topologies generated using the EDR model are similar to the topologies obtained
from the fMRI experiments in terms of graph-topological features. The EDR model also explains how
the human brain optimizes performance by considering the metabolic cost and inter-modular link
length. In our previous work [36], we proposed a method to construct a VWSN topology and evaluated
the performances regarding communication efficiency and wiring costs. In this study, we further reveal
the performance of robustness against network failure, in relation to the communication efficiency and
wiring costs.

However, the EDR model does not consider the endpoints of inter-modular links; therefore,
this study accounts for the assortativity, which is defined as the correlation of node degrees in networks.
Node degree is among the simplest and the most common centrality measures, and is used for
measuring nodal importance on a network topology. In a network with high assortativity, a pair
of nodes is likely to be interconnected if the two nodes have a similar node degree. By contrast,
in networks with low assortativity, any two nodes are connected if they have a dissimilar node
degree [37]. As for the brain network, which is composed of multiple modules, assortativity can
indicate different behaviors depending on whether the focus is on the connections between the
modules or within the modules as well as depending on whether the connections between the modules
are strong or weak. High reliability of brain networks can be attributed to the topological connectivity,
which is based on the assortativity between and within network modules [38,39].

The objective of this study is to design inter-modular network topologies for a VWSN that are
robust against environmental changes and provide high communication efficiency at relatively low
wiring costs. For the construction of the objective topology, we first assign links between modules
based on our proposed method [36]. Second, by taking assortativity into account, we propose a method
to assign inter-modular links on nodes within modules. The effects of the EDR model and assortativity
can be controlled by a single parameter for each. Evaluation results reveal that the configuration
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of these two parameters is of critical importance to the performance: small communication delay
between nodes, high robustness against network component failures, and low cost for constructing
a VWSN topology. Therefore, the results of this study will guide future studies on the construction
of inter-modular network topologies for VWSN that can realize high performance at relatively low
wiring costs.

This paper is organized as follows. In Section 2, we present some related work about brain
networks. Section 3 describes the method for constructing a VWSN topology that draws inspiration
from brain networks. Then, Section 4 provides the evaluation results of our proposed method. Finally,
Section 5 presents our conclusions.

2. Related Work

2.1. Modular Human Brain Networks

The human brain can be regarded as a complex network comprising neuronal cell bodies that
reside in the cortical gray matter regions joined by myelin-insulated axons. Recent advancements in
neuroimaging techniques have enabled the analysis of the human brain at higher spatial resolutions.
Previous studies have examined the structural network of the brain as represented by anatomical
connections among the regions of interest [40–42].

To the best of the authors’ knowledge, small-world and scale-free properties have been studied
as main characteristics of brain networks [40–43]. Therefore, existing studies have not focused on
other topological properties of brain networks such as the hierarchical modular structure. Hierarchical
modularity is considered to be associated with sparseness, robustness, transmission of signals,
maintenance of dynamic activity, and adaptive evolution [34,44,45]. In other words, the modular
structure is closely associated with the performance of the human brain, including robustness,
communication efficiency, scalability, and metabolic cost. In this study, we focus on the similarity
between the brain networks and information networks, and apply structural properties of brain
networks to construct VWSN topologies with high performance.

2.1.1. Cerebral Cortical Inter-Modular Connectivity Model

Brain networks have recently been investigated from a topological viewpoint of complex networks.
Moreover, previous studies have revealed the structure of brain networks in terms of small-world or
scale-free properties. Although network models based on these two properties can generate topologies
with characteristics found in brain networks (e.g., high modularity and low hop count), they do not
consider the geometrical constraints [46]. Regarding the connectivity in brain networks, geometrical
constraints should be considered because the metabolic cost of connecting two neurons increases
with increasing length of the axons (i.e., physical distance between the neurons). Connecting distant
neurons accelerates the information integration process in brain networks. However, long connections
can add to the metabolic costs. In other words, we can conjecture that the connectivity structure of
brain networks, i.e., the trade-off between metabolic cost and communication efficiency, has been
optimized through the evolutionary process [47]. Regarding information networks, reducing the costs
incurred owing to communication distances is necessary for both the wired and wireless networks.
Long communication distances require higher wiring costs for the laying of physical cables for wired
networks, and higher transmission power to overcome signal attenuation and interference in the
case of wireless networks. At the same time, long connections are necessary for quick information
transmission and robust connectivity.

Ercsey et al. proposed a novel network model [35] called the EDR model that is based on the neural
connectivity in the cerebral cortex of the macaque monkey. When analyzing the neural connectivity,
the entire macaque cortex was divided into 91 regions of interest, i.e., areas of neurons with similar
functions. The nodes in the resulting network topology represent each cortical area. In the process,
29 of the spatially distributed 91 cortical areas are selected such that the subgraph of the 29 areas can
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completely estimate the connectivity for the entire network. Retrograde tracer injections into those 29
areas revealed that 6,494,974 neural links and 1615 inter-areal links were present. The analysis revealed
that the existence probability p(d) of inter-areal connections exponentially decays with the inter-areal
distance, which can be represented as follows:

p(d) = c exp (−λd), (1)

where c denotes the normalization constant, d is the inter-areal distance, and λ is a parameter. For the
approximation of the cerebral connectivity, λ = 0.180 mm−1 is used in the EDR model [35]. It should
be noted that links in the resulting topology are assigned weights corresponding to multiple neural
connections between the areas. Given the trade-off between metabolic cost and performance, pairs
of neurons that are in close proximity tend to have a higher number of connections; in addition,
a few long-distance connections are present to accelerate information integration. Even though
the EDR model is a relatively simple model that is controlled by only a single parameter λ, it can
sufficiently reproduce various properties of topological connectivity in the cerebral network, such
as communication efficiency, distribution of cliques, eigenvector spectra, and presence of a core
structure [35].

2.1.2. Assortativity in Human Brain Networks

Assortativity, which indicates the correlation of node degrees, is a common characteristic that is
used for the evaluation of complex networks. High assortativity implies that nodes are preferentially
connected if their degrees are similar. By contrast, in the case of low assortativity, nodes of different
degree are likely to be connected. Newman [37] proposed the concept of global assortativity to measure
the assortativity of an entire network. In addition, universal assortativity was introduced to evaluate
the assortativity of any part of a network [48]. This universal assortativity was also used to define the
assortativity between networks in our previous work [39].

In [37], Newman proposed a method to measure the assortativity of a network topology by using
the global assortativity coefficient. The global assortativity coefficient is calculated based on the remaining
degree distribution q(k), as follows:

q(k) =
(k + 1)p(k + 1)

∑j jp(j)
, (2)

where p(k) is called degree distribution, which denotes the probability that a randomly selected
node has node degree k; q(k) is referred to as the remaining degree distribution, which denotes the
probability that either endpoint nodes of a randomly selected link have the remaining degree k. Here,
the remaining degree of a node refers to the ordinary node degree minus the node itself. The global
assortativity coefficient r is defined as follows:

r =
1
σ2

q

(
E[(J −Uq)(K−Uq)]

)
, (3)

where J and K denote variables of the remaining degree; both have the same expected value

Uq = ∑j jq(j). The term σ2
q = ∑l j2q(j)−

(
∑k kq(k)

)2
denotes the variance of the remaining degree

distribution q(k). The positive and negative values of r imply that a network is assortative and
disassortative, respectively. When r tends to zero, the network becomes non-assortative; the shape of a
network becomes similar to that of a random network. Theoretically, the range of feasible values of r is
[−1, 1]; however, its range is rendered smaller due to the degree distribution.
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Then, the universal assortativity coefficient ρl on a link l can be introduced, given q(k). This coefficient
corresponds to the contribution of an individual link to the global assortativity coefficient r. Therefore,
ρl is defined as follows:

ρl =
(j−Uq)(k−Uq)

Mσ2
q

, (4)

where j and k denote the remaining degrees of the two endpoints of link l. Here, M denotes the total
number of links in the network. Then, the universal assortativity coefficient ρ can be defined as follows:

ρ = ∑
l∈S

ρl = ∑
l∈S

(J −Uq)(K−Uq)

Mσ2
q

, (5)

where S denotes a set of links between modules. The assortativity between networks is determined
using Equation (5). It can be said that the universal assortativity ρ is a part of global assortativity r.
Hence, ρ is equal to r when S corresponds to all the nodes between modules. When ρl > 0, the link is
called an assortative link; when ρl < 0, the link is called a disassortative link. A link with ρl = 0 has
no correlation.

With respect to human brain networks, it has been shown that the connectivity between modules
exhibits assortative mixing when both strong and weak connections are considered [39]. Therefore,
it can be inferred that the assortative connections facilitate communication between modules in the
human brain. In contrast, when only strong links were considered, inter-modular connectivity showed
disassortative mixing, which can accelerate concurrent and robust processing between two modules.

3. Method to Construct a VWSN Network Topology

Virtualization in WSN is expected to play an important role on the IoT scenario [18–22],
as explained in Section 2.1.2. It has enabled the construction of a VWSN topology over distributed
wireless network resources with high flexibility and efficiency. In this study, we assume that a VWSN
network is composed of two layers: physical layer and virtual layer (see Figure 2). On the physical
layer, the physical network resources are deployed and connect to each other, and form heterogeneous
network modules. Subsequently, the modules on the physical layer virtually connect to each other
via wireless connections of inter-modular links between gateways (edge servers) and form the virtual
layer. Regarding the assignment of endpoints of inter-modular links, all the nodes on the physical
layer cannot behave as endpoints in a practical sense because the performance or role of the devices
differ from each other. However, in this evaluation, we assume that all nodes have the ability to serve
as an endpoint node. Therefore, our objective is to reveal the type of nodes that should be represented
as an endpoint node from a topological viewpoint.

Physical Layer
!"#$%&"'("%#)

*%#)

+"'),-.%#/01,(2&"3

4%#/0)

5&,'/10(+"'),-.%#/0)(

Virtual Layer
61')718 9)#:) ;),<),=

Figure 2. Architecture for virtualized wireless sensor network.
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In the following subsections, the proposed method for constructing the topology of the virtual
layer for the VWSN network architecture is described. First, the EDR model is modified and utilized
to control the deployment of inter-modular links. Then, assortativity is applied to determine the
assignment of endpoints of inter-modular links on nodes in the modules.

3.1. Physical Layer Assumption

Let us assume a simple network as the physical layer, which consists of multiple WSN modules.
First, the given square area with a side length of E is divided into M smaller evenly sized squares.
Each area has the same number of N′ = N/M nodes, and, in total, N nodes are deployed on the entire
square region. Although there are many other possible ways to deploy modules, the aforementioned
deployment sufficiently achieves our objective, which aims to reveal the relation between the
performances and the geometrical distance.

The node degree distribution in each module is configured such that it follows a Gaussian or
power-law distribution, which are commonly observed in topologies of complex networks [49]. Lintra
links are deployed inside each module to form a connected topology. An intra-modular link does not
have a direction or weight. Here, we assume that a gateway node is located at the geometrical center
of each module.

3.2. Virtual Layer Construction

In this model, the distance between any two modules is calculated based on Euclidean distance
between the coordinates of the gateways. We assume that modules are wirelessly interconnected
through these gateway nodes according to the probability function in the EDR model, thus forming
inter-modular links. In this manner, the virtual layer is constructed. A certain number of Linter
inter-modular links are deployed on each network. Each inter-modular link does not have a direction
or weight, but a pair of modules can have more than one inter-modular link.

For creating inter-modular links, we redefine Equation (1) as Equation (6) such that the variable
and the parameter in the EDR model can be adapted to any scale of network topologies other than the
cortical inter-areal connectivity:

p(dn) = exp (−dn/α), (6)

where dn denotes the relative distance between two modules. That is, dn = d/dmax, where the actual
Euclidian distance d is divided by the largest distance of all the pairs of modules dmax. Regarding the
control parameter, λ is replaced in Equation (1) by a new parameter α = (λdmax)−1. The normalization
constant c used in Equation (1) is eliminated because a predetermined number of inter-modular links
are generated. Thus, p(dn) can be regarded as a probability function that generates inter-modular links
between any two given modules.

When generating the virtual layer, the following process is repeated until the predefined
number Linter of inter-modular links are generated: (i) randomly choose a pair of modules;
and (ii) probabilistically generate an inter-modular link according to p(dn). In our proposed method,
more than one inter-modular link can be assigned to a pair of modules because of the presence of
multiple nodes in each module. Thus, after the deployment of inter-modular links, the endpoints of
inter-modular links are assigned to nodes in the modules.

Figure 3 shows the topologies generated using the procedure mentioned above. The circles
represent modules, and the lines indicate the inter-modular links. The width of an inter-modular link
corresponds to the number of links that exist between pairs of modules. As shown in Figure 3, when α

is small, the inter-modular links are preferentially assigned to pairs of modules in close proximity.
As α increases, the limitation on generating shorter inter-modular links is softened, and randomness
on the connectivity increases.
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Inter-modular	link
Module

Figure 3. Relationship between parameter α and the topological shape.

3.3. Assigning Endpoints of Inter-Modular Links

As described in the previous subsection, inter-modular links are deployed among modules on the
virtual layer. This subsection discusses the procedure to assign endpoints of inter-modular links to
nodes from the viewpoint of node assortativity. That is, the endpoint nodes are chosen such that a
specified value of assortativity ρ in Equation (5) is achieved on inter-modular connectivity for each
pair of modules. By using this assignment scheme, the pairs of endpoints on which inter-modular links
already exist are excluded. To obtain a suitable inter-modular connectivity that achieves a specified
value of assortativity, the inter-modular links are repeatedly rewired. This process is performed
stochastically by using the following procedure:

1. Two modules are randomly connected via a predetermined number of inter-modular links when
constructing the virtual layer. Note that a pair of endpoint nodes does not have multiple edges.

2. The assortativity between the modules ρ is calculated. If ρ corresponds to the target value, then the
set of connections at this point is retained. Otherwise, the following steps are executed.

3. An existing link between the modules, whose assortativity is farthest away from the target value,
is deleted. If the current assortativity ρ is higher than the target value, the most assortative
inter-modular link is selected, and vice versa.

4. A new link is created on two nodes in two different modules. The pair of nodes are randomly
selected under the condition that the new link can move the assortativity ρ closer to the target
value. Then, go back to Step 2.

The typical patterns of inter-modular connectivity corresponding to different values of the
universal assortativity coefficient ρ are shown in Figure 4. When ρ > 0, the two nodes with similar
node degrees are chosen as endpoints of links; thus, a pair of high-degree nodes or low-degree nodes is
connected. It should be noted that, even if a pair of nodes has a similar node degree, the two nodes with
the average node degree are not preferred because they do not wield significant influence, as indicated
by Equation (5). On the other hand, when ρ < 0, a pair of two nodes with dissimilar degrees is
assigned an inter-modular link. As ρ approaches to zero, the endpoint nodes for inter-modular links
are more randomly chosen.
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Figure 4. Relationship between universal assortativity coefficient and inter-modular connectivity.

Figure 5 shows two example networks generated from the procedure above, where each link is
unweighted and undirected.

(a) Network of 4 modules

(b) Network of 100 modules

Figure 5. Examples of interconnected networks.

4. Simulation Results

Extant research has studied the architecture for VWSN [18–22], but concrete strategies have not
been investigated so far for constructing network topologies of the VWSN that satisfy various demands
requested by the service providers. Since an enormous number of IoT devices and countless types of
application services are deployed over the VWSN system, we consider that constructing the topologies
focusing on basic topological nature is more essential than assuming a certain application service or
traffic type. Therefore, our proposed method focuses on two points regarding topology construction
for VWSN: assigning inter-modular links among modules based on the EDR model, and assigning
endpoints of those inter-modular links on nodes based on network assortativity.

In this section, we present the results from computer simulations and discuss the performance of
the VWSN topologies constructed using the proposed method in comparison with other conceivable
network models. First, multiple networks are generated and connected with each other, thereby
generating a VWSN topology. Then, several types of simulations are performed on the VWSN
topologies, and their performance is measured in terms of communication efficiency, robustness,
and network construction cost. The performance of the proposed method is evaluated relative to the
performance of other comparative models.
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4.1. Simulation Environment

First, we describe the computer simulation environment. This subsection describes the network
models other than the EDR model that are used to assign links within and between modules.
In addition, we also define the metrics to evaluate communication efficiency, robustness, and network
construction cost. We also explain specific parameter settings for constructing the VWSN topologies
for the computer simulations.

4.1.1. Metrics

In this work, we study the influence of connectivity among modules on the performance of the
system in terms of communication efficiency, robustness, and wiring cost. The metrics used for the
evaluation of the performance in computer simulations are described as follows.

Communication Efficiency

To evaluate the communication efficiency of the VWSN topologies in terms of information
transmission, we perform a packet routing simulation. We measure the time required for a data packet
to pass from a source node to a destination node. In the realistic scenario for the IoT that is realized
by the edge computing techniques, data collected and analyzed by the physical resources are passed
to the edge servers. Then, the data are not uploaded to the cloud or the Internet side but the edge
servers process by themselves in the edge computing scenario. When the data are proceeded and
transmitted over the edge servers to the objective IoT module, they are delivered to the destination
node. In the simulation, the packet routing is initiated at an arbitrary node, and the destination is also
set on another arbitrary node. The packet is delivered according to the optimized path that minimizes
the delay explained in the next paragraph. When a node receives a packet, the packet is forwarded to
one of its neighbors that is included in the optimized path. The routing process is terminated when the
data packet arrives at the destination node.

We conduct two types of packet routing simulation to measure the service delay and the propagation
delay, respectively. At each instance that a packet arrives at a node, a service delay occurs according
to an exponential distribution with service rate µ = 1/D s−1. Furthermore, we assume that the
propagation delay is D s per 100 m over the inter-modular links. These two types of delay are defined
such that, on average, the service delay on a node is equal to the propagation delay over a 100 m
link. We assume D to be an arbitrary value because the value does not affect the simulation results
in this study. The packet routing simulation, which focuses on the service delay, indicates how the
hop count between two arbitrary nodes changes when the inter-modular connectivity is configured.
On the other hand, the propagation delay indicates the change in the average route length in a given
network topology.

Robustness

Robustness was evaluated by using algebraic connectivity [50]. Algebraic connectivity is a
numeric value determined for a network topology from a graph-theoretical viewpoint. Fiedler et
al. defined algebraic connectivity as the second smallest eigenvalue of the Laplacian matrix that is
obtained from a network topology. It is well known that algebraic connectivity corresponds to the lower
bound of both node connectivity and edge connectivity. The increase in algebraic connectivity leads
to high robustness against node and link failures in the network topology because of the existence of
multiple disjoint paths. In other words, a topology with high algebraic connectivity remains connected
even if many nodes or links are removed [51–54].

Although there exist some other possible methods for evaluating the robustness of a network
topology, in this study, we used algebraic connectivity because of the following advantages: (i) it
does not depend on any parameter; (ii) it can uniquely specify robustness from just the shape of
the network topology; and (iii) it can be calculated easily. Although the packet routing simulations
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for communication efficiency used in this study assume that bandwidth and network resources are
sufficiently allocated and we do not consider network congestion, the metrics for robustness based on
algebraic connectivity can indicate the degree of congestion in connection with the communication
efficiency. When a generated VWSN topology shows high algebraic connectivity, the traffic can be
distributed over many disjoint paths, and vice versa.

Wiring Cost

We define the wiring cost to assume the required cost for deploying the wireless inter-modular
links among the gateways on the virtual layer. Given that we focus on wireless networks and cost
arises from geometrical constraints in this study, the wiring cost is calculated as the sum of squares
of the lengths of all inter-modular links based on the Friis transmission equation [55]. This equation
predicts that the energy consumption for a wireless signal transmission increases with the square of
the distance between transmitter and receiver. We exclude links within modules in the simulations
because we do not change the intra-modular connectivity when evaluating the performance of the
VWSN topologies.

4.1.2. Network Models for Connectivity within Modules

Here, we describe the network models used to configure the connectivity within modules and
between modules, respectively. First, we configure the connectivity patterns within modules. The effect
of physical distance is considered to be negligible because the evaluation area for each module is
considered to be sufficiently small. In this study, we focus on two types of common network models to
determine the connectivity inside a module: the Barabási–Albert (BA) model [56] and the Erdös–Rényi
(ER) model [57]. The BA model generates topologies whose degree distribution follows power-law,
and, likewise, the ER model for Gaussian distribution. Both of the degree distributions are commonly
observed in information networks.

Erdös–Rényi (ER) Model

The ER model belongs to a class of random network models [57]. The degree distribution of the
ER model follows a Gaussian distribution that is similar to the distribution observed in WSNs [58–60].
For the construction of networks based on the ER model, we randomly choose a pair of nodes and
connect them until the total number of intra-modular links is Lintra.

Barabáshi–Albert (BA) Model

The second type of networks corresponds to the BA model [56], which has been studied extensively
as a class of complex networks. The BA model follows a power-law degree distribution and is
characterized by the existence of extremely high-degree nodes (i.e., hub nodes) and a core cluster
comprising hub nodes (i.e., rich-club). These characteristics are often observed in the real-world
networks, such as airline networks, social networks, and the Internet. Thus, the BA model is commonly
used in the field of information networking to generate Internet-like topologies.

For the topology construction, we first select a small set of nodes to generate an initial full-mesh
topology, which is referred to as a seed. Then, we repeatedly add nodes to the seed. After the addition
of a new node, m nodes of the existing topology are probabilistically chosen and connected to the
new node via a link. The probability that the node i is chosen from the existing topology is given by
pi = ki/Σjk j, where ki denotes the degree of node i and Σjk j denotes the total degree of the existing
topology; m is chosen such that almost the same number of intra-modular links (Lintra) are generated.

4.1.3. Network Models for Connectivity between Modules

After generating the connections in modules, the network models for generating links between
modules are described. In addition to the proposed EDR model, the short-link model and the long-link
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model are described, which consider the physical distance between modules. We also prepare the ER
model as a null model. In contrast with the connectivity within modules, wherein the physical distance
is not considered, the short-link and long-link models are used to compare the performances from the
viewpoint of physical distance. Another point of difference from the intra-modular connectivity is
that any pair of modules can have more than one link, whereas a pair of nodes inside the modules can
have at most one link. This is because, even when a pair of modules has multiple links, each link can
be assigned to different nodes inside both of the modules.

It should be noted that the following models can determine the pair of modules having
inter-modular links; however, they do not consider the nodes in modules that behave as the endpoints
of these inter-modular links. Hence, we also use assortativity for determining the endpoints of the
inter-modular links, as described in Section 3.3.

Exponential Distance Rule (EDR) Model

Following the probability function p(dn) in Equation (6), a pair of modules is repeatedly chosen
and an inter-modular link is generated between this pair. The procedure is terminated when the total
number of inter-modular links reaches Linter.

Erdös–Rényi (ER) Model

We use the ER model to assign inter-modular links among modules to study the difference
between our proposed model and a random model; the approach used is similar to the generation of
links within modules. It should be noted that a pair of modules can have more than one link.

Short-Link (SL) Model

A network topology based on the SL model is composed of only links shorter than a threshold
Rshort (in meters). We define this model for comparison with the EDR model and observe the difference
in the performance if an inter-connected network does not contain long links. When constructing a
topology, we randomly choose a pair of modules, generate a link if the distance is shorter than Rshort,
and repeat this process until Linter links have been generated.

Long-Link (LL) model

We define the LL model similar to the SL model by creating a topology with links longer than a
threshold Rlong.

4.1.4. Parameter Settings

Table 1 shows the list of parameters configured during the construction of VWSN topologies.
Each row contains a variable, description, and values for each parameter.

In the computer simulations, we assume that VWSN topologies are constructed on an E× E m2

square area and N nodes are deployed as physical nodes. The area is divided into M smaller regions
in a grid pattern, and each area contains an equal number of N′ = N/M nodes. The physical nodes in
an area are inter connected via Lintra links, and form a module on the physical layer. The value for
Lintra is assumed such that a node corresponds to three intra-modular links. Then, the M modules are
connected by Linter inter-modular links to form the virtual layer. The details of the values of Linter are
provided in the following sections. Regarding the connectivity between modules, the parameter α

controls the inter-modular connectivity of a topology based on the EDR model, and the parameter ρ

controls the inter-modular assortativity of a pair of modules. Rshort and Rlong limit the length of links
when constructing VWSN topologies based on the SL model and the LL model, respectively.

The values for parameter settings differ for each type of simulation, from Sections 4.2 to 4.4. Thus,
the detailed values are described for each evaluation.
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Table 1. Parameter description.

Variable Description
Values
for Section 4.2

Values
for Section 4.3

Values
for Section 4.4

E Length of the side of evaluation area 100 m 500 m 500 m
N Number of nodes 200 5000 5000
M Number of modules 4 100 100
N′ Number of nodes in each module 50 50 50

Lintra Number of intra-modular links 150 150 150
Linter Number of inter-modular links 30 300 300

ρ Parameter of inter-modular assortativity (Eq. (5)) variable ρmin, ρzero, ρmax ρmin, ρzero, ρmax
α Parameter of the EDR model (Eq. (6)) - [0.025, 0.8] 0.025, 0.1, 0.8

Rshort Upper limit of link length for the SL model - - 10 m
Rlong Lower limit of link length for the LL model - - 20 m

4.2. Basic Property of Assortativity on 4-Module Networks

First, we conduct computer simulations using small-scale VWSN topologies. This subsection
focuses on the assortativity of intra-modular connectivity and evaluates its influence on communication
efficiency and robustness. In other words, before considering which pair of modules should have
inter-modular links, we determine the nodes within the modules that should be assigned as endpoints
of inter-modular links. Therefore, we do not consider the physical distance when evaluating the
performance, and neither do we apply network models for connectivity between modules, as described
in Section 4.1.3.

The parameter settings are shown in Table 1. A VWSN topology is composed of M = 4 modules,
as shown in Figure 5. Each pair of modules is equally assigned five inter-modular links, and a VWSN
topology has Linter = 5× 6 = 30 inter-modular links given that there are 4C2 = 6 possible combinations
for connecting two out of four modules. The possible range of inter-modular assortativity for a VWSN
topology is determined by the network models used for connectivity within the modules. Assortativity
in the ER model varied from −0.05 to 0.05, whereas, in the BA model, it varied from −0.04 to 0.1.
This difference is indicative of the fact that the distribution of node degree was more strongly biased in
the BA model. In other words, the number of high-degree nodes was lower in the BA model, and, thus,
such nodes were rarely connected to other nodes of the same degree, thereby decreasing assortativity.

4.2.1. Robustness

Figure 6a shows the algebraic connectivity for the ER model and the BA model. The y-axis
represents algebraic connectivity, and the x-axis represents intra-modular assortativity. Regarding the
x-axis, we unite the different assortativity ranges of the ER and BA models to compare the performance
more clearly. Each figure is the compilation of the results from 100 computer simulations, thus enabling
the generation of a VWSN topology and measurement of the algebraic connectivity. As explained in
the section above, high algebraic connectivity indicates that the network topology is robust against
node and link failures.

Regarding the ER model, VWSN topologies with non-assortative or slightly assortative
inter-modular connectivity exhibit higher robustness. It can also be said that assortative connectivity is
a better indicator of high robustness than disassortative connectivity. These characteristics are closely
associated with the degree of endpoint nodes of inter-modular links. When a topology is assortative,
the nodes of similar degree are connected with each other. On the other hand, in a disassortative
topology, the nodes tend to be connected if the degree is dissimilar. Therefore, all inter-modular
links of a VWSN topology of disassortative connectivity have a high-degree node on one side, and
a low-degree node on the other side. A low-degree node is located on the periphery of its module,
and all the inter-modular links of a disassortative topology do not contribute to the creation of
disjoint paths among nodes. This characteristic can explain why a disassortative topology exhibits the
lowest robustness. Regarding an assortative topology, one half of the inter-modular links connect two
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high-degree nodes, and the other half connect two low-degree nodes. In contrast, in the non-assortative
topology, endpoints for inter-modular links are randomly chosen. From the result in Figure 6a, we can
conclude that inter-modular links of two low-degree nodes in an assortative topology offset the benefit
of links between high-degree nodes, and random connectivity between modules is preferred in terms
of generating much more disjoint paths in a VWSN topology. Therefore, non-assortative topologies
exhibit the highest robustness, followed by assortative topologies and disassortative topologies, in
that order.

On the other hand, for the BA model, high assortative inter-modular connectivity of a VWSN
topology is directly associated to a higher level of robustness. This interesting characteristic may be
attributed to the small fraction of nodes contributing to high-degree nodes in the BA model owing to
the power-law distribution. Assortativity is calculated based on the difference between the degree
of each node to the average node degree. To achieve high assortativity, in the BA model, connection
between two nodes with high degrees is preferred because node degree gap between high-degree
nodes and the average-degree nodes is much greater than the gap between low-degree nodes and the
average-degree nodes. Therefore, in an assortative VWSN topology of the BA model, almost all the
inter-modular links contain high-degree nodes at both the endpoints and create many disjoint paths
among nodes. On the other hand, for the ER model, only half of them are between two high-degree
nodes. This results in the high robustness of an assortative VWSN topology based on the BA model.

When comparing results from the ER model and the BA model, the latter shows more robust
features for any given value of assortativity. This can be attributed to the difference in node degree
distribution. In a topology based on the BA model, the dense central core of hub nodes, i.e., rich club,
tightly connects all the nodes and strengthens the connectivity. This decreases the diameter and shrinks
the topological shape of the network. Thus, a few failures do not split the topology of the BA model.
In contrast, a topology based on the ER model is more sparsely and uniformly connected, and can be
broken easily into smaller clusters. These characteristics contribute to the difference in the algebraic
connectivity between the ER and BA models.
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Figure 6. Simulation results for 4-module networks. (min, max) corresponds to (−0.05, 0.05) and
(−0.04, 0.10) for the ER and BA models, respectively.

4.2.2. Communication Efficiency

Figure 6b shows the results obtained from the packet routing simulations for the ER and BA
models. The y-axis represents the average time required for the data packet to arrive at a destination
node from another source node in the VWSN topology. Although in Section 4.1.1 we conducted
two types of packet routing simulations that consider propagation delay on links and service delay
on nodes, this section provides only the results of simulations that consider service delay. This is
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because physical distance is assumed negligible for the 4-module VWSN networks. We generated 100
topologies for each model and 1000 packets on each topology to measure the communication delay.

The two results from the ER model and the BA model indicate a similar tendency in terms of
information transmission speed. When inter-modular links of a VWSN topology are disassortatively
connected, the transmission speed, i.e., communication efficiency, is the lowest. As the assortativity for
inter-modular connectivity increases, the transmission speed also increases. This is because, for large
values of assortativity, connections will be composed of two high-degree nodes as endpoints. Therefore,
it is much easier for information to diffuse over the entire topology by passing through the connections
of the two influential nodes. However, when the assortativity is maximized, the transmission speed
decreases slightly. This reduction in transmission speed can be attributed to the fact that nodes with
the highest or lowest degrees have to be connected to multiple inter-modular links at the same time
so that assortativity is maximized; this results in inefficient spread of information over the network
topology.

Moreover, it was observed that VWSN topologies based on the BA model diffuse information at a
faster rate than those of the ER model. This can be explained by the fact that connecting the hub nodes
in different modules based on the BA model enables faster transmission of information.

4.3. Evaluation of the Proposed Model

In the previous evaluation, VWSN topologies composed of four modules were used in order
to focus on the assortativity between modules and its effect on the performance of communication
efficiency and robustness. In this subsection, we also take geometric constraints and the lengths
of inter-modular links into account. Therefore, we expand the scale of the topology into M = 100
modules and apply the network models explained in Section 4.1.3 for connectivity between modules.

As shown in Table 1, equal values are used for N′ and Lintra because the VWSN topology has been
shifted into a larger scale in the square region. The number of inter-modular links Linter is determined
to be Linter = 3×M = 300 such that three inter-modular links are added per module. Because the
detailed effect of assortativity ρ on the performance has been already investigated in the previous
section, hereafter, we focus on just three values of ρ. ρmin corresponds to the minimum ρ that leads
to the most disassortative connectivity on a given VWSN topology, and, similarly, ρmax corresponds
to the maximum ρ. ρzero indicates that ρ = 0 and that the topology has non-assortative connectivity
between modules. We vary the parameter α for the EDR model in the range of [0.025, 0.8] in order to
configure the pattern of inter-modular connectivity. We affix the lower limit to 0.025 because of the
difficulty in generation of a connected topology with smaller α; in addition, we affix the upper limit to
0.08 because we confirmed that the topology shape does not change significantly even if we use larger
α; the topology becomes similar to that of the ER model. Each result is obtained from 100 repetitions of
computer simulations for each pattern of a given VWSN topology.

4.3.1. Robustness

Figure 7 shows the relationship between algebraic connectivity, the parameter α from the EDR
model, and the inter-modular assortativity. The y-axis represents algebraic connectivity, while the
x-axis represents the parameter α. The two subfigures contain three curves, each corresponding to
assortative, disassortative, and non-assortative connectivity between modules, respectively.

For every curve in both the subfigures for the ER and BA models, it can be said that a VWSN
topology cannot achieve high robustness with a small parameter α. The smaller the parameter α is,
the shorter the links that the VWSN topology has; that is, no long links exist that connect distant
modules. Therefore, the modules are locally connected with each other and form several clusters.
The topology is fragile and can be easily broken into clusters when node or link failure occurs. Increase
in parameter α is characterized by the appearance of long links, and the connectivity between multiple
modules is rendered more complicated, as in the case of a random graph (the ER model). Hence,
the number of disjoint paths increases and the VWSN topology becomes redundant.
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Regarding the assortativity, it should be noted that an assortative topology exhibits the highest
algebraic connectivity, i.e., the most robust feature, in both the ER and BA models. In the ER model of
the 4-module networks, however, we confirmed that non-assortative or slightly assortative connectivity
achieves the highest robustness. This may be attributed to the difference in the number of modules;
in a 4-module network, each module was connected to all the other modules by one hop. However,
in this case, a VWSN topology is composed of 100 modules, and, therefore, most pairs of modules
are indirectly connected. From this result, it can be conjectured that, when a path between two
nodes passes through multiple modules, the inter-modular links composed of two high-degree nodes
contribute to the increase in the number of disjoint paths. This results in the increase of algebraic
connectivity, i.e., robustness. The effect of connections between high-degree nodes is larger in the BA
model, and an assortative topology achieves significantly higher robustness.
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Figure 7. Robustness.

4.3.2. Communication Efficiency

Although the physical distance and the propagation delay are not considered in the evaluation for
4-module networks, the packet routing simulations described in this section consider both the service
delay and propagation delay. Figure 8 corresponds to the simulation that measures the propagation
delay, and Figure 9 corresponds to the simulation that measures the service delay. The y-axis represents
the average time required for the data packet to pass from a source node to a destination node in the
VWSN topology, and the x-axis represents the parameter α from the EDR model.

Figure 8 shows that, as the parameter α decreases, the propagation delay is reduced. When α

is small, the EDR model tends to generate shorter inter-modular links. As a result, the connectivity
among modules approaches that of a grid topology. Therefore, any given pair of modules will be
roughly connected in a straight line. This enables a VWSN topology with small α to decrease the
propagation delay. On the other hand, when α is large, the number of long connections between
modules increases. Hence, the shortest paths among modules follow a zigzag pattern, as opposed to a
straight line. Such zigzag paths lead to an increase in the propagation delay. In contrast, the required
time for information transmission increases for small α when considering service delay, as shown in
Figure 9. Even if the shortest path for a pair of modules is along a straight line, the path is composed
of many short inter-modular links. Since the service delay occurs on every hop, the time required for
information transmission is large when α is small.

As for the inter-modular assortativity, in Section 4.2, we showed that assortative inter-modular
connectivity can minimize the service delay for a 4-module network. In that sense, we can confirm
a similar tendency in Figures 8 and 9, which indicates that assortative topology exhibits the best
performance. However, the performance of a non-assortative topology is different for the ER model
and the BA model. This may be attributed to the difference of node degree distribution. As mentioned
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earlier, half of the inter-modular links in an assortative topology are composed of low-degree nodes in
the ER model. They offset the benefit of the rest of the inter-modular links composed of high-degree
nodes. For the ER model, the results indicate that the performance of random connectivity in
a non-assortative topology is almost similar to that of a mixture of high-degree connections and
low-degree connections in an assortative topology. Meanwhile, the non-assortative topology exhibits
the slowest rate of information transmission for the BA model, even though a non-assortative topology
is slightly better than the disassortative topology for 4-module networks, as shown in Figure 6b. This is
because, when information passes through multiple modules, hub nodes, i.e., extremely high-degree
nodes, have greater influence for the BA model, and inter-modular links of a non-assortative topology
do not contain hub nodes.
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Figure 8. Communication efficiency (propagation delay).
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Figure 9. Communication efficiency (service delay).

4.3.3. Wiring Cost

In Figure 10, the y-axis represents the sum of squares of the lengths of all inter-modular links,
as wiring cost is based on the Friis transmission equation [55]. As explained in Section 4.1.1, we do not
consider the cost of links within modules. The x-axis corresponds to the parameter α of the EDR model.
In Figure 10, assortativity or network models for intra-modular connectivity are assumed to have no
effect on the evaluation, and hence are omitted.

The result shows a monotonous change in the wiring cost when the parameter α is varied.
For small values of α, the EDR model probabilistically tends to generate shorter links according to
Equation (6). As the parameter α increases, the restriction on generating long links is softened.
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Figure 10. Wiring cost.

4.4. Comparison with Other Network Models

We investigate the effect on the performances of the difference in network models for
inter-modular connectivity. We choose 0.025, 0.1, and 0.4 as representative values for the parameter α

of the EDR model to construct a VWSN topology. In addition, we prepare the ER model, SL model,
and LL model, which are explained in Section 4.1.3, and compare the performance of these models.
As shown in Table 1, only the parameters of α, Rshort, and Rlong are changed from those in Section 4.3.
Each result is obtained from 100 repetitions of computer simulations for each pattern of a given
VWSN topology.

4.4.1. Robustness

Figure 11 shows the algebraic connectivity for each network model. The order of the algebraic
connectivity of the network models on the x-axis is similar for the ER and BA models. The EDR0.025 and
the SL model equally mark the lowest values for the algebraic connectivity. The SL model generates
no long links, and the EDR0.025 also does not generate long links due to the limitation imposed by
Equation (6). The resultant grid-like topologies are easily broken into small clusters in the event of
failures, as mentioned in Section 4.3. On the other hand, the EDR0.4, ER, and LL models equally exhibit
the highest algebraic connectivity. This result is interesting because the LL model generates only long
links and no short links, unlike the other two models. From this viewpoint, it can be said that long
inter-modular links are more important for the creation of disjoint paths and to improve redundancy
of a VWSN topology. The assortative topology has the highest robustness, as explained in Section 4.3.
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4.4.2. Communication Efficiency

Figures 12 and 13 show the time required for packet routing, and focus on the propagation delay
and service delay, respectively. Regarding propagation delay, the EDR0.025 model exhibits the smallest
delay, followed by the EDR0.1 and SL models. For shorter inter-modular links, the VWSN topology
approaches a grid-like topology; the route between two nodes is along a straight line. On the other
hand, the LL model shows a considerably slow diffusion speed. In a topology based on the LL model,
there are no short links, and the data is required to undertake a detour when it passes around the
topology. Regarding service delay, the SL model exhibits the poorest performance, followed by the
EDR0.0.025 model. All the other models equally show the smallest delay.

Notable characteristics are observed on the EDR0.1, which achieves the best performance in terms
of propagation delay and service delay. The procedure for generating links in the EDR model is
probabilistic. Hence, the topologies of EDR0.1 can contain a small number of long inter-modular links,
though almost all the links are short. From Figures 12 and 13, it can be confirmed that many short links
in the EDR0.1 can help achieve a propagation similar to that of the SL model, and only a small number
of long links are required to achieve a small service delay as that of the LL model.
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Figure 12. Communication efficiency (propagation delay).
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Figure 13. Communication efficiency (service delay).

4.4.3. Wiring Cost

The performance for wiring cost shown in Figure 14 is similar to that of communication efficiency
of the propagation delay in Figure 12. It can be said that the ratio of short inter-modular links is closely
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linked to both results. The EDR0.025 and the SL model display the lowest cost, whereas the LL model
exhibits an extremely high cost. The results simply reflect the procedure of generating inter-modular
links: EDR0.025 and the SL models generate short links, and the LL model generates long links. We can
confirm that the cost of EDR0.1 is also much smaller than the other models except for EDR0.025 and SL
models. This implies that, although the performance of the EDR0.1 and ER models shown in Figures 11
and 13 is similar, EDR0.1 is still biased towards generating shorter links when compared with the
ER model, which generates links of the average length. If α is further increased, the inter-modular
connectivity approaches that of the ER model.

 0

 4x10
6

 8x10
6

 1.2x10
7

 1.6x10
7

 2x10
7

 2.4x10
7

 2.8x10
7

 3.2x10
7

EDR0.025 EDR0.1 EDR0.4 ER SL LL

W
ir
in

g
 C

o
s
t 

[m
2
]

Figure 14. Wiring cost.

5. Conclusions

In this study, we proposed and evaluated a method to construct a VWSN topology. Since there
are an enormous number of IoT devices and countless types of application services on the future
VWSN, in order to satisfy the required performances such as communication efficiency, robustness,
and construction cost, we focused on two basic topological properties: which pair of modules should be
assigned inter-modular links, and which nodes in the modules should be assigned endpoints of the inter-modular
links. For the former, we focused on an inter-modular connectivity model based on the cerebral cortex
of a mammalian brain, which is referred to as the EDR model. For the latter, we focused on assortativity,
which is an important property that characterizes the modular connectivity structure of human brain
networks.

The proposed brain-inspired method constructs the virtual layer based on the EDR model, i.e.,
inter-modular links are assigned among a set of modules. The proposed method exhibited a trade-off
between the metrics used in the computer simulations. When the parameter α shifted towards zero,
service delay increased and robustness decreased, while propagation delay and wiring cost decreased.
By contrast, if α is increased, the performance is good in terms of service delay and robustness, whereas
propagation delay and wiring costs tend to deteriorate.

In comparison with other network models, we also confirmed that the proposed model
can simultaneously achieve high performance in terms of robustness, communication efficiency,
and construction cost when the parameter α is set around 0.1 in the above-mentioned trade-off.
We revealed that robustness could be enhanced while suppressing service delay, when a small
number of long inter-modular links are generated in a VWSN topology. This leads to a reduction
in the construction cost, and propagation delay is also reduced by the existence of dozens of short
inter-modular links in the topology. When α is approximately 0.1, most inter-modular links generated
in the construction process are short, but a few long links are also probabilistically generated at the
same time. These long links enable our proposed model to achieve high robustness and low service
delay. Correspondingly, when an inter-modular topology of the cerebral cortex is reproduced, Markov
et al. used a similar parameter setting of: α = (λdmax)−1 = (0.180× 58.2)−1 ' 0.0954 [61]. This implies
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that brain networks also deal with this trade-off and realize high performance. In that sense, we also
showed that the characteristics of brain networks are applicable to the VWSN topology.

With respect to inter-modular assortativity, topologies with high asssortativity revealed high
performance with regard to both robustness and communication efficiency. We can also confirm that
there exists a difference when the ER and BA models are used for connectivity within modules.
When using the BA model, most inter-modular links consist of hub nodes, which have greater
topological importance. This characteristic of the BA model enables the links to contribute the
performance more than the ER model. We also confirmed that an assortative topology becomes
superior when the number of modules is increased. This is because inter-modular links of high-degree
nodes exert a greater influence when a pair of nodes is connected through many more indirect
routes. From these observations, we can establish that connecting two high-degree nodes to
generate inter-modular links contributes to performance enhancement in terms of robustness and
communication efficiency. This is particularly applicable to the case when each module has
scale-free-like connectivity and the number of modules is significantly large.

In real world IoT networks, various constraints in the environment or service demands from the
providers may affect the construction of a VWSN topology over edge computing systems and WSNs.
For instance, an enormous number of IoT devices are assumed to consist of a VWSN topology as a
physical layer in this study. In such a situation, it is essential to take into consideration the battery life
of the devices and communication distances. Meanwhile, if the application service that runs over the
VWSN topology is a life-critical system, high robustness against computer-virus infections or network
failures are of critical importance. Regarding the assignment of inter-modular links among modules,
the infrastructure providers can construct a VWSN topology that is suited to specific situations by
using our proposed model and setting the parameter α around 0.1. With respect to choosing endpoint
nodes for the inter-modular links, it can be summarized that assortatively inter-connecting high-degree
nodes enhances both robustness and communication efficiency. Through the discussion in this paper,
we conclude that our proposed methods can help design VWSN architectures that can deal with
various demands that may arise in actual IoT scenarios.
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