
1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017 1

Evolvable Virtual Network Function Placement
Method: Mechanism and Performance Evaluation

Mari Otokura Student Member, IEEE, Kenji Leibnitz, Yuki Koizumi Member, IEEE,
Daichi Kominami Member, IEEE, Tetsuya Shimokawa, Masayuki Murata, Member, IEEE

Abstract—In Network Functions Virtualization (NFV), net-
work functions are operated in software as Virtual Network
Functions (VNFs) instead of dedicated hardware. The most
important issues that need to be addressed in NFV are where the
VNFs should be placed in the network, as well as what amount
of resources should be assigned to each VNF. Evolvable VNF
Placement (EvoVNFP) is a meta-algorithm that we previously
proposed for controlling an underlying iterative VNF placement
method. EvoVNFP realizes better adaptability to regular demand
changes by mimicking biological evolution under time-varying
environments leading to faster generation of placements. We
provide detailed evaluation studies about the mechanism of
EvoVNFP and show that iterative placement methods combined
with EvoVNFP can generate placements that adapt better to
varying goals because of triggers. Numerical results verify that
EvoVNFP is able to reduce the required number of calculation
steps by up to 48%.

Index Terms—Network functions virtualization, software de-
fined networks, evolution, modularly varying goals.

I. INTRODUCTION

Communication services have continuously evolved to be-
come more diverse and dynamic. Considering the ongoing
realization of the Internet of Things (IoT), these trends are
expected to become even more distinct in the future. Previ-
ously, communication service providers have been utilizing
network functions, such as firewalls or intrusion detection
systems, implemented in hardware to provide their services.
However, it is becoming more and more difficult to deal
with the ongoing diversification of communication services
through hardware solutions because this requires large capital
expenditure (CAPEX) and operating expenditure (OPEX) to
add and maintain new communication services.

Network Functions Virtualization (NFV) [1], [2], [3] is a
promising technology for dealing with this situation. The basic
idea of NFV is to separate the network functions from their
physical computational resources, such as CPU, memory, or
storage. These network functions are implemented in software
running on virtual machines (VMs) as Virtual Network Func-
tions (VNFs). VMs are usually run on commodity-type phys-
ical computational resources. Unlike its hardware counterpart,

Manuscript received January XX, 2018; revised YY, 2018.
M. Otokura, Y. Koizumi, and M. Murata are with the Graduate School

of Information Science and Technology, Osaka University, 1-5 Yamadaoka,
Suita, Osaka 565-0871, Japan.

K. Leibnitz and T. Shimokawa are with the Center for Information and
Neural Networks (CiNet), National Institute of Information and Communica-
tions Technology (NICT) and Osaka University, 1-4 Yamadaoka, Suita, Osaka
565-0871, Japan.

D. Kominami is with the Graduate School of Economics, Osaka University,
1-7 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

NFV enables to change the performance of network functions
dynamically at runtime. Furthermore, NFV also provides the
pipelining of virtual network functions referred to as Service
Function Chaining (SFC) [4], [5].

Recently, many researchers have approached the problem
of placing VNFs on physical servers according to specific
objectives [6], [7], [8], [9], [10], [11]. Furthermore, the ETSI
NFV ISG specification [12] suggests that VNF chains can be
broken down into smaller parts than functions, which would
lead to an even higher complexity of the placement problem.

A challenging point is that the VNF placement problem
needs to be solved in a dynamic manner when considering
SFC to deal with dynamic request changes from users [13],
[14], [15], [16], [17]. While placements of NFV in a network
should be optimized according to requirements of the users,
they also need to be updated whenever VNFs arrive, depart,
or change in configuration. Furthermore, the time needed to
calculate new placements should be kept as short as possible
in order to provide continuous services. An intuitive way
of dealing with this problem is by solving this optimization
problem every time there is an arrival, departure, or change
of requests. However, this may become too computationally
intensive, since already the static VNF placement problem
itself is NP-hard [11].

In order to tackle this problem, we utilize knowledge
from biological evolution: when biological organisms evolve
towards two (or more) varying environments, they inherently
reach a system that is highly adaptable to both of these
environments. Kashtan et al. [18] proposed a meta-algorithm
called Modularly Varying Goals (MVG), which controls an
underlying genetic algorithm (GA) so that it adapts to varying
environments by utilizing the concept of biological evolution.
GAs are algorithms that evolve a population of individuals
(genomes) over several generations in order to fit a certain
(usually single) goal and they are commonly used as heuristics
for various optimization problems. Furthermore, the same
authors showed in [18] that MVG forms genome structures
that are highly adaptable to varying environments, which can
also help to speed up evolution [19].

In previous work [20], [21], we introduced the concept
of MVG to the VNF placement problem by proposing a
meta-algorithm called Evolvable VNF Placement (EvoVNFP)
operating above any iterative VNF placement methods. The
underlying placement method combined with EvoVNFP does
not reinitialize its current solution whenever the situation
changes due to a new arrival, departure, or change of requests.
Furthermore, our method enforces periodical changes of its

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

goals every fixed number of generations in order to optimize
its structure. These features of EvoVNFP help the placement
method to find fast solutions that are robust to environmental
changes. Similar to [22], we refer to this as the evolvability
of the network and therefore name our proposal EvoVNFP.

In [20], [21], we evaluated the performance of EvoVNFP
operating in combination with a GA. Important issues remain,
though, which we address in this current paper. First, we have
only evaluated EvoVNFP with GA and not with other iterative
placement heuristics. Second, we have considered only a
rather small and unrealistic network environment consisting
of five routers and ten physical machines. Third, we have
not discussed in detail why the placements generated by
EvoVNFP are robust. In this paper, we discuss the reasons
of the higher adaptability of EvoVNFP from the structure
of its solutions with information-theoretic metrics [23] on
larger networks than in our previous studies [20], [21]. We
also compare the results of state-of-the-art VNF placement
methods [16], [17] operating with and without EvoVNFP. We
found that methods combined with EvoVNFP can configure
placements that have a small number of important elements
in individuals needed for adapting the dynamics, referred to
as triggers in [23]. We showed the existence of the triggers
by evaluating conditional entropy and mutual information.
We also compare the performance of conventional iterative
optimization methods with those enhanced by EvoVNFP and
show that the number of calculation steps to converge is
reduced.

This paper is organized as follows. We first discuss previous
work related to this study in Sec. II. Section III provides the
system model as well as the explanation of the VNF placement
problem and its solutions. We then introduce the control
algorithm EvoVNFP in Sec. IV and analyze the structure of the
solutions that are generated by a placement method combined
with EvoVNFP in Sec. V. In Sec. VI, we show the results
of a comparative evaluation of EvoVNFP with two state-of-
the-art VNF placement methods from [16], [17]. Section VII
concludes this paper.

II. RELATED WORK

Virtual Network Embedding (VNE) [24], [25], [26] consid-
ers a similar problem to that of VNF placement by embedding
Virtual Networks (VNs) consisting of virtual nodes and virtual
links into substrate networks. Similarly to VNFs, VNs are
also operated in software and can therefore utilize network
resources in a more flexible and efficient way than hardware
solutions. However, there is one major difference between
VNE and the VNF placement problem: While in VNE users
request VNs that consist of multipoint-to-multipoint network
connection requests, they request Service Chains (SCs) with
point-to-point flow routing demands when dealing with the
VNF placement problem [9].

Several papers have addressed the VNF placement prob-
lem from the viewpoint of system modeling. For example,
Moens et al. [6] proposed and evaluated an Integer Linear
Programming (ILP) model of the VNF placement problem to
minimize resource consumption in a hybrid VNF scenario,

where network functions are provided in either hardware or
software. Similarly, to minimize resource consumption, Gupta
et al. [7] proposed four kinds of models which differ in the
degree of flexibility in the deployment of service chains. Cho
et al. [8] proposed a model based on real measurements to
capture network latency among VNFs. Additionally, several
papers [9], [10] considered multi-objective optimization by
minimizing the maximum link utilization, number of utilized
resources, or consumed bandwidth.

Cohen et al. [11] argued that the VNF placement problem
is NP-hard because it includes two well-known NP-hard
optimization problems: the facility location problem and the
generalized assignment problem. Furthermore, the demands
can change dynamically in the real world. Therefore, it is
required to calculate and configure placements rapidly. While
a few of these papers directly approach the ILP with solvers,
e.g., CPLEX, most of the approaches addressing the dynamic
VNF placement problem use approximation algorithms or
heuristic methods to perform fast calculations of the solution.
Zhang et al. [13] provided a model via graph pattern matching
and an approximation algorithm, while Liu et al. [14] proposed
a heuristic algorithm for finding near-optimal solutions with
low computational complexity, and Bari et al. [15] provided
a dynamic-programming based heuristic. Metaheuristics are
also frequently used for quickly finding solutions of the dy-
namic placement problem. For instance, Rankothge et al. [16]
regarded the dynamic VNF placement as a combination of
initial placement and scaling of VNFs, and proposed two
respective algorithms based on GA to find a good placement.
Furthermore, Mijumbi et al. [17] addressed the problem of
dynamic VNF placement and scheduling, and proposed an
algorithm based on tabu-search as well as three variants of
the greedy algorithm.

In summary, most of the aforementioned studies tackle
the VNF placement problem by mathematical models or
heuristics. In contrast, our proposal EvoVNFP is a meta-
algorithm that operates as an overlay above any iterative
VNF placement heuristic. By iteratively changing the objective
function, EvoVNFP is able to find placement solutions that are
more adaptable to future traffic changes.

III. SYSTEM AND PROBLEM OVERVIEW

In this section, we explain the system considered in this
study as well as the VNF placement problem and its solutions.

A. Overview of System

An overview of our assumed system is illustrated in Fig. 1.
This system consists of several physical machines (PMi), each
accommodating one or more virtual machines (VMj). The
physical machines are interconnected via routers rk and links
to form a physical network topology as shown at the bottom
of Fig. 1. Furthermore, the system has a controller which
computes the placements of VNFs and deploys them to the
physical system. When the controller receives a new request
for a VNF chain from a user (Step 1), it decomposes each VNF
in the chain into multiple functional components (Step 2) [12].
For example, a firewall can be split into two components: one

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 3

VNF1 VNF2N5 N7
Request

of a user Q5

Controller

(Step 4)
Controller changes

placement

(Step 1)
Request arrives

PM7

VM3

VNF2
Comp1

VNF2
Comp2

: Core

N5

N9

N7

N8

PM1 PM2 PM3 PM4

PM6
PM5

PM10 PM9 PM8 PM7
VM 3

VNF2
Comp 1

VNF2
Comp 2

VM 1 VM 2

VNF1
Comp 1

VNF1
Comp 2

VNF1 VNF2

VNF1
Comp 1

VNF1
Comp 2

N5 N7

N7N5

(Step 2) Controller
breaks down VNFs
into components

VNF2
Comp 1

VNF2
Comp 2

(Step 3)
Controller calculates

new placement

4è.
L :N9á N7á

80(t átrr;

4è-
L :N5á N7á

80(s \ 80(t á

srr;

N6

New
chain

Existing
chain

Decide how to
place chains

Fig. 1. An operational overview of the system. When a new request for a VNF
chain arrives (Step 1), the controller breaks down the VNF into functional
components (Step 2), determines their optimal placement (Step 3), and finally
assigns this placement to the physical system (Step 4).

for classification of packets and another for dropping illegal
packets. This decomposition of VNFs enables the grouping of
functional parts that can be shared by multiple VNFs, leading
to a better utilization of the physical resources. Next, the
controller calculates a new placement of the VNFs and VMs
that satisfies all chains in the system, i.e., it solves the VNF
placement problem (Step 3). Finally, the controller deploys
the new placement to the physical system (Step 4). The main
focus of this paper lies on the calculation of placements at the
controller in Step 3.

B. Problem Description and Solution Method of VNF Place-
ment

In this subsection, we provide an overview of the VNF
placement problem and explain how solutions are found for
these problems. The input to the VNF placement method is
the information about all VNF chains that are currently being
requested by users. The output is the allocation (placement)
of the virtual resources to the physical network. In the VNF
placement problem, components occupy CPU cores on the
VMs they are assigned to that in turn occupy PMs. The
more cores are used for VMs and components, the better
their performance becomes. The number of cores assigned to
components should be set to adequately process the traffic
passing through them. Furthermore, the number of cores for
components and VMs must not exceed the physical limits of
their accommodating VMs and PMs, respectively. Note that a
single VM can host multiple components if it has a sufficient
number of cores to accommodate them. Likewise, a single
PM can also accommodate multiple VMs. The objective of

the VNF placement method is to generate a placement which
meets predetermined criteria, e.g., minimizing the number
of used PMs, while also obeying the constraints, e.g., not
exceeding the capacity of a PM. We will explain the models
and methods that will be used for the evaluation in detail in
Sec. V.

C. Iterative Solution Methods

In this subsection, we discuss about iterative methods that
keep improving the solution until it reaches a sufficient quality.
Most of such iterative methods are metaheuristics. We here-
after focus on two iterative methods that have been proposed
for solving the VNF placement problem, a genetic algorithm
and tabu search.

1) Placement with a Genetic Algorithm (GA): First, we
describe the VNF placement with a genetic algorithm. GA
imitates biological evolution in a highly distributed manner
and operates on a population of possible solutions (individ-
uals) to the given optimization problem encoded as a bit-
string (genome). The evaluation of genomes is performed
each generation on the basis of a fitness function, which the
GA iteratively keeps trying to improve. Over the course of
several generations, all genomes in the population with the
exception of an elite set are randomly modified by genetic
operators, mutation and crossover, and new genomes are being
produced while old genomes that are less suitable for survival
are eliminated in the next generation. One advantage of GAs
is that although they are in essence a random search over the
search space, the quality of the best solution keeps improving
with the number of generations. The typical sequence of a GA
is as follows:

1) Initialization: Initialize the population of individuals as
a set of solution candidates.

2) Fitness calculation: Calculate the fitness of each in-
dividual as the value representing how well it fits the
environment using a predetermined fitness function.

3) Mutation and crossover: Randomly modify the individ-
uals by mutation and crossover. Mutations change only
small parts of an individual, while crossovers combine
two individuals to form new offspring with traits from
both of their parents.

4) Selection: Select good individuals from the population
with the highest fitness for reproduction to form the new
population of the next generation.

5) Termination: Decide whether the algorithm should ter-
minate or not according to a predetermined criterion. If
this criterion is not yet met, return to Step 2.

The loop composed of Steps 2–5 is referred to as one gen-
eration. While repeating multiple generations, the fitness of
all individuals in the population will gradually improve. The
final individuals usually do not reach the globally optimal
solution, but a sufficiently good suboptimal result that is
usually sufficient for real applications. One advantage of GA
is its calculation speed since it can calculate solutions in near
real time while many other optimization methods require much
longer computation time. Note that in the basic GA algorithm
shown above Step 5 is a termination step, while our GA for the

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

Algorithm 1 Genetic Algorithm [16]
1: P ← Initialize()
2: while StoppingCriteriaNotSatisfied() do
3: F ← CalculateFitness(P , f)
4: P ← Selection(P , F)
5: Pm ← Mutation(P)
6: P ← GenerateNewPopulation(P , Pm)
7: end while
8: p← SelectBestIndividual(P)

Output: p

dynamic VNF placement problem continues with its execution
forever without terminating.

The algorithm of GA is shown in Algorithm 1 [16]. After
initialization of population P (line 1), the following calculation
continues until the stopping criteria are satisfied (line 2). First,
fitness F is calculated from P and an evaluation function f as
the scores for all individuals in the population (line 3) and the
individuals in P are arranged according to their corresponding
scores (line 4). Then, the individuals in P are mutated and
saved as Pm (line 5). The mutation changes one of the partial
placements in the selected full placement and consists of two
operations: replacing the VNFs to other PMs and rewiring the
paths of the chains. This GA only utilizes mutations and no
crossovers. Finally, a new population P is generated from the
old P and Pm (line 6). After the stopping criteria has been
satisfied, the best individual in P is selected as the output (line
8).

2) Placement with Tabu Search: In tabu search, we contin-
uously generate a set of solutions which are close to the current
solution, called neighborhood, and select the best solution in
the neighborhood. We also save the operation which is used
to generate the next solution from the current solution in a
tabu list for several steps. This prevents us from repeating
the operations in the tabu list, which helps preventing getting
stuck in locally optimal solutions. In tabu search, it is possible
to choose a worse solution than the current one as the next
solution, and therefore we separately save the best solution so
far as the best solution.

An algorithm of tabu search [17] is shown in Algorithm 2.
The current solution z, the best solution z∗, and a tabu list
Tl are initialized at the beginning (line 1), after which the
following loop continues until stopping criteria are satisfied
(line 2). First, N(z) is calculated as the neighborhood of z,
while being careful not to do operations in Tl (line 3). Then,
the best solution in N(z) is selected as z and Tl is updated
(line 4–5). If the score of z is higher than that of z∗, z∗ is
replaced with z and Tl is updated (line 6–9). After the stopping
criteria has been satisfied, z∗ is selected as the output.

IV. PROPOSED META-ALGORITHM FOR DYNAMICALLY
CONTROLLING VNF PLACEMENTS

In this section, we explain the algorithm of our proposal
EvoVNFP, which is a meta-algorithm operating above an iter-
ative VNF placement method. First, we provide an overview of
how EvoVNFP controls the VNF placement method. Second,

Algorithm 2 Tabu Search [17]
1: z, z∗, Tl ← Initialize()
2: while StoppingCriteriaNotSatisfied() do
3: N(z)← CalcNeighborhood(z, Tl)
4: z ← CalcBestIndividualInNeighborhood(N(z))
5: Tl ← UpdateTabuList(Tl)
6: if IsCurrentScoreHigherThanBestScore(z, z∗) then
7: Tl ← UpdateTabuList(Tl)
8: z∗ ← z
9: end if

10: end while
Output: z∗

we summarize the concepts of EvoVNFP and its underlying
method MVG [18] in Sec. IV-B. Third, we explain the
mechanism of EvoVNFP in greater detail.

A. Overview of EvoVNFP

EvoVNFP has two distinct features. We will explain them
by using Fig. 2. This figure shows how a pure method, e.g.,
GA or tabu search, and a method with EvoVNFP run when
computing their solutions over time. EvoVNFP controls goals
of an underlying method, as shown in the figure. The first
feature of EvoVNFP is that it periodically switches between
two (or more) evaluation functions every fixed number of
steps, referred to as period, which calculate the goodness of
the placements, even when there is no external change of the
traffic. In Fig. 2, the pure method uses a single evaluation
objective function at a certain epoch between two sequential
changes of requests while the method with EvoVNFP uses two
kinds of evaluation functions, the original objective function
and a relaxed objective function, and switches between them
every period. The relaxed objective function is created by
artificially modifying the original objective function. The
second feature of EvoVNFP is its reuse of candidate solutions.
The pure methods generally make new candidates of solutions
at the beginning of each epoch. However, the methods with
EvoVNFP utilize the final candidates of solutions from the
evaluation functions of the previous epoch as the initial
candidates of solutions for the subsequent evaluation functions.

Next, we will explain details of the concepts of MVG and
EvoVNFP. These two concepts differ in their behavior and
therefore their resulting structures are also different.

B. Mechanism of Modularly Varying Goals (MVG)

Our proposal EvoVNFP is inspired by Modularly Varying
Goals (MVG) [18], which is a meta-algorithm for controlling
a GA to obtain a modular grouping of individuals. Instead
of computing the fitness for a single goal like the pure GA,
MVG imitates biological evolution under varying environ-
ments by switching between multiple goals every fixed number
of generations. If the underlying problem is “modular”, i.e.,
it can be decomposed into basic functions that deal with
shared subfunctions contributing to the current goal, MVG
is able to find these common modules. For example, [18]
presents an example for the construction of a circuit according

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 5

Fig. 2. An overview of a pure method (top) and a method with EvoVNFP
(bottom)

to given logical functions (goals) and where the nodes are
logical gates. The authors designed a logic circuit which has
four boolean input variables X,Y, Z, and W , and a single
output with the GA iteratively switching between two logical
functions over time as goals G1 = (X ⊕ Y) ∧ (Z ⊕W) and
G2 = (X ⊕ Y) ∨ (Z ⊕W). In this case, the basic functional
modules that G1 and G2 have in common are (X ⊕ Y) and
(Z⊕W). Due to construction, both G1 and G2 are composed
of the same two basic function modules, but combine these
two modules with different operators (∧ and ∨) for G1 and G2,
respectively. As a result, MVG eventually generates solutions
consisting of the basic function modules that do not change
over time and the respective operators linking the modules.
This permits an efficient and fast switching between goals G1

and G2 that only involves the change of a single operator. By
this way, MVG is able to control GAs to generate solutions
with a modular structure that correspond to the modularity of
the goals.

Furthermore, it was shown in [19] that MVG can generate
their solutions quickly as the iterative switching between goals
decreases the probability that solutions get stuck at local
optima. A pure GA uses only a single goal and therefore its
evolution may eventually stagnate. On the other hand, MVG
switches between at least two goals, which modifies the direc-
tion of the search in the solution space of the evolution process.
Note that a certain improvement could also be achieved if a
GA would switch between arbitrary non-modular goals, but it
was shown in [19] that the highest speedup in convergence is
achieved if the goals are indeed modular.

C. Evolvable VNF Placement (EvoVNFP)

We outline the basic mechanism of our proposal Evolvable
VNF placement (EvoVNFP) [20], [21], which applies the
concept of MVG to the VNF placement problem.

The mechanisms of EvoVNFP explained in Sec. IV-A assist
in generating solutions with a (temporal) “core-periphery”
rather than a modular structure in the placements. Modularity
and core-periphery are two distinct categories of network
topologies that have been well studied. Modular networks have
dense connections between nodes of the same module and
sparse connections between nodes in different modules [27].
On the other hand, a core-periphery structure has one (or
more) densely connected groups of nodes, referred to as core,

Module

Method without
meta-algorithm

Method with
MVG

Method with
EvoVNFP

Initial State

switch
goals

Goal A

Goal B

change
goal

change
goal

change
goal

Core

Periphery

Periphery

...
...

timestep P

timestep P E s

odd timesteps

even timesteps

Fig. 3. Differences in concepts of changing evaluation functions and their
impact on the resulting topology type.

which remains stable over time even when goals are varied,
and a periphery of sparsely connected nodes which change
more rapidly in order to adapt to the goal changes [28]. This
structure helps reduce the costs for reconfiguring placements
whenever requests arrive or depart, while maintaining the
chains for the remaining requests. The concepts of a pure
method without meta-algorithm, a pure method with MVG,
and a pure method with EvoVNFP are illustrated in Fig. 3.
The resulting network structure obtained from the method
without meta-algorithm would be rather random while the
method with MVG, and the method with EvoVNFP produce
more regular structures. However, the latter two differ in
their regularity. While the method with MVG produces a
more modular structure, the method with EvoVNFP generates
a core-periphery structure. In the dynamic VNF placement
problem, the core-periphery structure reduces the time to
calculate subsequent placements because the placement can
be easily reconfigured by only considering their differences
(periphery). This also reduces the reconfiguration costs of VM
placements and component placements, and the amount of
resources allocated to them in the physical network.

What remains is for us to describe how EvoVNFP switches
the evaluation functions periodically between actual evaluation
functions (dark gray periods in Fig. 2) and relaxed ones (light
gray periods in Fig. 2). Relaxing an evaluation function means
that we do not consider the originally requested chain in its
entirety as goal for our heuristic, but only a subset of its
functional modules. This behavior is inspired by an example
of MVG for evolving RNA structure in [19]. When relaxing
an evaluation function, it should remain mostly similar to the
original evaluation function because if the two varying goals
do not have any common parts, our method would not be able
to find a good modular overlap.

We show a psuedocode of EvoVNFP in Algorithm 3. The
input parameter is the length of periods Tp. First, we initialize
an original goal go and make a set of relaxed goals Gr from

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

Algorithm 3 Algorithm of EvoVNFP
Input: Tp

1: go ← InitializeGoal()
2: Gr ← GenerateRelaxedGoals(go)
3: l← 0
4: while StoppingCriteriaNotSatisfied() do
5: if GoalChangedAtPreviousStep() then
6: go ← UpdateGoal()
7: Gr ← GenerateRelaxedGoals(go)
8: end if
9: if (l mod Tp) = 0 then

10: gc ← SwitchCurrentGoal(go, Gr)
11: end if
12: DoOperationsOfIterativeMethod(gc)
13: l← l + 1
14: end while

go (line 1 and 2). Then the underlying iterative method starts
running. EvoVNFP checks for two things at the beginning of
every step. One is whether new arrivals, departures, or changes
of requests occurred at the previous step or not (line 5). If they
occurred, we update go and calculate its new Gr (line 6 and
7). The other check is whether the current step is when we
must switch the goal, i.e., whether the equation (l mod Tp)
= 0 is met or not, where l is the number of total elapsed
steps (line 9). If such a timing takes place, we switch the goal
and save it as a current goal gc (line 10). After EvoVNFP
has finished these checks, the underlying method calculates
placements using gc (line 12). The underlying method stops
when the stopping criteria are satisfied (line 4) and finally the
underlying method outputs a placement as a solution.

V. NUMERICAL EVALUATION OF EVOVNFP MECHANISM

We now investigate the performance of EvoVNFP. In order
to study the adaptability of EvoVNFP, we first investigate the
quality of the solutions from EvoVNFP with a simple GA.
We first explain the model and the problem formulation of the
VNF placement problem from [20], the settings used for the
simulation runs, and the evaluation metrics, followed by the
numerical results and their discussions.

A. Model of NFV System

To relate the number of cores of a component with its
performance, we evaluate the performance of one core by
its processing amount, i.e., the number of instructions it
can process, and define the term processing capacity as the
maximum processing amount that cores can process per time
unit (seconds). We assume that the performance of a PM and
VM are proportional to the number of cores they can use.
Then, the processing capacity of a machine with n cores is
n ·C, where we define C as the processing capacity of a core.

We define request flows as flows of the traffic of the users
who send requests to the controller. A request Ru from user u
is represented as Ru = (srcu, dstu, chainu, bu): srcu is the
ingress router, dstu is the egress router, chainu is the chain
of VNFs, and bu is the requested transmission rate. Figure

1 shows an example of two request flows Ru1 and Ru2 of
users u1 and u2. Note that VNF components can be shared if
multiple chains of requests include the same VNFs.

We assume that queuing delay occurs in both routers and
components in this study. The queuing delay is not constant
because it depends on the current performance and load of
the components. The propagation delay, on the other hand,
is assumed as a constant delay when the request flow passes
through a particular link. We define request flow delay tu as
the sum of all queuing delays and all propagation delays of
the request flow from user u.

In order to consider the queuing delays analytically, we have
to define arrival and service rates at routers and components.
Service rate of router r is assumed as a constant value Mr

packet/s and service rate of component j is µk,j,a = (nk,j,a ·
C)/Ta packet/s, where nk,j,a is the number of cores which
the component j of VNF a occupies on VM k and Ta is the
processing amount needed by VMs which have components
of VNF a to process a packet. Arrival rate at router r is λr =∑

r′ p
u
(r,r′) · bu bit/s, where λr is the sum of the transmission

rates of all request flows arriving at the router r and pu(r,r′) is
a binary indicator variable which is 1 when the request flow
of a user u passes through a link between routers r and r′,
and otherwise 0. Arrival rate at component j is the sum of the
transmission rates of all the request flows which request VNF
a and it is represented as va bit/s. For the sake of simplicity, we
assume that each component behaves like an M/M/1 queuing
system.

The delay of the entire placement is calculated after the
paths of the request flows have been decided. The delays of
each traffic flow are first calculated and then they are averaged
with weights corresponding to the transmission rates. Finally,
the total delay of a placement d̂ is calculated as the average
of request flow delays tu weighted with the transmission rates
bu of each user u as:

d̂ =
∑
u

bu∑
u bu
· tu.

B. Formulation of VNF Placement Problem

We showed in [20] that the VNF placement problem can
be described by Eqs. (1)–(4) based on the model explained in
Sec. V-A.

minimize d̂+W ·
∑
i,k

mi,k (1)

subject to La ·
va
S
≤ nk,j,a · C ∀k, j, a (2)∑

k

mi,k ≤ Ni ∀i (3)∑
j,a

nk,j,a ≤ mi,k ∀k, i (4)

variables mi,k, nk,j,a

Definitions of the symbols used in Eqs. (1)–(4) are given in
Table I. Our objective is to reduce the average delays for all
chains in the system and the total number of used CPU cores

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 7

TABLE I
DEFINITIONS OF SYMBOLS USED IN VNF PLACEMENT PROBLEM

d̂ Average delay of all chains in the system
W Weight coefficient
mi,k Number of cores that VM k occupies on PM i

La
Processing amount that VMs need to provide to components
of VNF a

va Arrival rate of traffic at VNF a
S Size of one packet

nk,j,a
Number of cores that component a of VNF j occupies on
VM k

C
Maximum number of instructions that a CPU core can process
per unit time (s)

Ni Number of cores of PM i

PM1 PM2 PM3

xxxx
xxxx
xxxx
xxxx

VM1 VM4

xxxxx
xxxxx
xxxxx
xxxxx

VM2

xxxx
xxxx
xxxx
xxxx

VM3

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

VNF1
C1

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VNF1
C2

VNF2
C1

VNF2
C2

PM1 PM2 PM3

VM1

xxxx
xxxx
xxxx
xxxx

VM4VM2 VM3

VNF1
C1

VNF1
C2

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VNF2
C1

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

VNF2
C2

PM1 PM2 PM3

xxxx
xxxx
xxxx
xxxx
xxxx

VM1

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VM4

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VM2

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VM3

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VNF1
C1

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

VNF1
C2

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

VNF2
C1

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

VNF2
C2

PM1 PM2 PM3

VM1 VM4VM2 VM3

VNF1
C1

VNF1
C2

VNF2
C1

VNF2
C2

Individual

PM layer

VM layer

Component
layer

Crossover
point

Crossover
point

Fig. 4. Example of crossover in GA between two individuals representing
VNF placements

as shown in Eq. (1). Constraint (2) means that there must be
a sufficient number of cores for a component to process all
traffic passing through it. Constraint (3) means that the number
of cores for all VMs on a PM must not exceed the total number
of cores of the PM. Likewise, Constraint (4) means that the
total number of cores for all components on a VM must not
exceed the number of available cores of the VM.

C. Design of GA Parameters

We explain the design of GA used in this subsection for the
analysis of the mechanisms of EvoVNFP.

1) Individuals: We specifically design the individuals for
application to this VNF placement problem. In Fig. 4, four
simplified schematics of individuals are shown. Each individ-
ual has 3 layers: a PM layer, a VM layer, and a component
layer which corresponds to the three elements in the VNF
placement model: PMs, VMs, and components, respectively.
Connections between the PM layer and the VM layer represent
assignments of VMs to PMs and connections between the VM
layer and component layer represent placements of compo-
nents on VMs. Furthermore, nodes maintain the information
of the number of cores that each corresponding PM, VM, or
components has.

2) Fitness function: We design the fitness function as

F =

(
d̂

dmax
+
W (
∑

i,kmi,k)

cmax

)−1
(5)

if the individual meets the constraints given in Eqs. (2)–(4)
of Sec. V. Here, dmax is the delay of a request flow with
the maximum number of components, each component having
80% utilization, and the hop length being the maximum hop
length in the physical network plus three, and cmax is the
maximum possible number of cores.

If the individual violates any one of the constraints, we
simply set fitness as F = αZ where α is a negative constant,
e.g. α = −0.1, and Z is the number of violations against the
constraints.

3) Crossovers and mutations: Crossovers and mutations are
operations that randomly change the individuals in a similar
way as in real biological evolution. A crossover consists of
randomly selecting two individuals, setting crossover points in
each of the VM and component layers, and recombining the
left and right parts crosswise from the two parent genomes to
two new child genomes, see Fig. 4. Each node in the VM and
component layers has only one link directed to its upper layer
(PM and VM, respectively). The two individuals at the top
of the figure are the original ones prior to the crossover. The
crossover points on the VM and component layers are marked
as blue and orange dashed lines. The two individuals at the
bottom of this figure are the ones which are the result of this
crossover.

Mutations are performed by randomly selecting one of the
following four operations:
• choose an existing link between the PM and VM layers

and replace the PM node with a different node on the
same layer,

• choose an existing link between the VM and component
layers and replace the VM node with a different node on
the same layer,

• change the number of cores of a node on VM layer, or
• change the number of cores of a node on component

layer.
4) Selection: After calculating the return values of the

fitness functions, GA ranks all solutions in descending or-
der of their return values. A fixed number of high-ranking
individuals is saved as elites and directly passed to the next
generation without crossovers or mutations. All other lower-
ranking individuals must undergo mutations and crossovers as
described above before being passed to the next generation.

D. Simulation Settings

We consider a physical network composed of 40 routers
where each router is connected to 2 PMs, i.e., there are
80 PMs in total, and each PM has 32 CPU cores. The
physical topology of this considered network is assumed to
be that of the pan-European data network for the research and
education community GÉANT [29]. The propagation delay on
the physical links between any two routers is 20 ms.

For our evaluation, we assume a discrete-time system with
the time units of generations. Intervals of arrivals and sojourn

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

times of the requests in the system are variable and follow
geometric distributions because we assume that this system is a
standard queuing system. We used three kinds of arrival rates:
high (1 request per 333 generations), middle (1 request per
500 generations), and low (1 request per 1000 generations).
The higher the arrival rates, the more difficult the problem
in assigning resources becomes. Furthermore, the patterns of
the request arrivals and departures are the same for GA with
and without EvoVNFP. We assume that there are 4 kinds of
VNFs called VNF1, VNF2, VNF3, and VNF4 that can be
arbitrarily combined into chains. Users request one of the 40
possible chains among all combinations of VNF1–4 that have
a maximum length of 3.

All other parameters are chosen based on realistic val-
ues, such as currently available commercial machines or
switches[30], and they are summarized in the following. The
requested transmission rate bu(t) of user u is 50 Mbit/s, the
processing capacity of a single core is C = 3.0 GHz, the size
of a packet S = 1500 bit, and the service rate of router r is
Mr = 3.0 Gpacket/s.

Updates for improving the real physical placements are only
performed if the newly computed solution is at least 10%
better than the current real placement. We assume that there
are 20 requests already in the system at the beginning of
the simulation in order to reduce the transient period. The
maximum number of requests is set to 40 and we reject any
requests that would exceed this number.

The number of generations for each simulation run is 10000,
the total number of individuals is 1000, of which there are 100
elites. Probabilities for mutation and crossover are 0.8 and 0.5,
respectively. The individuals of the GAs have 80 nodes in their
PM layers, which corresponds to the number of PMs in the
physical network. They also have 320 nodes in their VM and
component layers, respectively. The length of the periods of
the fluctuating goals Tp in EvoVNFP is set to 10 generations.

E. Evaluation Metrics

The metrics we use in the following evaluation fall into two
categories. In the first category, we evaluate the performance
of the GA and GA with EvoVNFP from the viewpoint of the
VNF placement problem. The three considered metrics in this
category are as follows.

1) Success probability: The probability that the meth-
ods can obtain feasible solutions between any two situation
changes. It is calculated from all results of a simulation run.

2) Delay and number of cores: We also evaluate the quality
of generated placements in terms of average delay of all chains
in the best placements over all generations and the number of
cores in the best placements in all generations. We calculate
the results of the two metrics at every generation.

3) Costs for reconfiguration: We evaluate the costs for
reconfiguration needed to update a placement [31]. These costs
should be kept small to reduce the downtime of the services
and consist of two metrics: the number of migrations and
the number of resizings. A migration means that a VM or
a component is moved from one PM to another PM, whereas
resizing means that the number of cores assigned to a VM

or a component is changed. Here, we only consider stateless
network functions, which can be arbitrarily migrated.

The second category includes five evaluation metrics for
the internal structure of all solutions (individuals) in the
population.

1) The number of used PMs: The number of PMs which
accommodate one or more VMs. This metric represents how
widely the components are distributed over the physical net-
work. The larger this metric is, the more distributed the
components are.

2) The number of used VMs: The number of VMs that
accommodate one or more components. This metric represents
how much the chains requesting the same components share
these components among each other. The smaller the results
of this metric are, the more the components are shared.

3) Genetic variation of each position in individuals: The
entropy of the values of each position [23]. In this evaluation,
the positions correspond to the elements in the individuals,
i.e., nodes and links, and the entropy H(Xi) for position i is
defined in Eq. (6),

H(Xi) = −
∑
j

βi log βi (6)

with Xi representing a random variable of the value in position
i, βi =

∑
k ηiP (T = Tk), and ηi = P (Xi = j|T = Tk). The

larger H(Xi) is, the more diverse the values in position i
are among all individuals in the population during the whole
simulation. Given that there are for example three individuals
in the population and if VM1 of the three individuals in the
population occupies 10 cores, the H(Xi) of VM1 is minimal.
On the other hand, if VM1 of the three individuals occupies 5,
7, and 9 cores, respectively, the H(Xi) of VM1 is maximal.

4) Conditional entropy H(Xi|T) and mutual information
I(Xi, T): These metrics for the values of each position of
the goals are defined in Eqs. (7) and (8), respectively,

H(Xi|T) = −
∑
k

H(Xi|T = Tk) (7)

I(Xi, T) = H(Xi)−H(Xi|T) (8)

where T represents a random variable of states of goals and
H(Xi|T = Tk) = −

∑
j P (Xi = j|T = Tk) logP (Xi =

j|T = Tk). The term H(Xi|T) represents how diverse the
values at position i are when the population evolves towards
each goal, and I(Xi, T) becomes large when the values at
position i are diverse during a whole simulation but not
diverse among the populations which are evolving towards
each goal. They are used to detect the positions which are
important for adapting to new goals, called triggers in [23].
These triggers are positions which have low H(Xi|T) and
high I(Xi, T), which means that the values of these positions
change frequently in the generations when goals change but do
not change frequently when goals do not change. The authors
of [23] showed that these positions appear clearly in MVG but
not in normal GA which only uses a single goal to evolve.

Figure 5 represents an example of triggers in a VNF place-
ment. The individual on the right represents the placement
on the left. Comp1 and VM1 in the placement, i.e., the
nodes which represent Comp1 and VM1 in the individual, are

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 9

VM1

Comp1

Hub
node

Triggers
PM1 ...

PM1 VM1 ...

Triggers

...Comp
1

=

Fig. 5. Example of triggers in VNF placement problem

triggers because changing the number of cores for them affects
almost all chains which pass through the hub node in the phys-
ical network. Moreover, Fig. 6 provides an explanation for the
detection of triggers by calculating entropy H(Xi), conditional
entropy H(Xi|T), and mutual information I(Xi, T). H(Xi)
represents how the values of position i among individuals in
the population are diverse in the simulation. The larger H(Xi)
is, the more diverse they are. On the other hand, H(Xi|T)
represents how each set of values corresponding to each goal
of position i are diverse. The larger H(Xi|T) is, the more
diverse each set of values are. According to Eq. (8), when
H(Xi) is large and H(Xi|T) is small, I(Xi|T) becomes
large. Large I(Xi|T) means that the values at position i are
significantly modified at goal changes, but not diverse when
the goal is kept. We use both of H(Xi|T) and I(Xi|T) to
detect the trigger because high I(Xi|T) does not always mean
that H(Xi|T) is low. I(Xi|T) becomes high when both of
H(Xi) and H(Xi|T) are high and when both are low.

F. Numerical Results

We now present the results from the simulation runs. First,
we show the evaluation of the metrics from the viewpoint
of the VNF placement problem. The differences between the
pure GA and GA with EvoVNFP (denoted as GA+EvoVNFP)
are that the individuals are reinitialized at every traffic change
(arrival/departure of requests) and there are no periodic goal
changes. The results in the figures below are obtained as
average values of 100 simulation runs.

First, we show the results of the success probability for
calculating placements in Fig. 7. The x-axis shows the request
arrival rate, the y-axis the success probability, and for each plot
we also show the 95% confidence intervals. In both graphs,
the results of GA+EvoVNFP are consistently higher than GA
at all arrival rates. Furthermore, Fig. 7 shows that when the
arrival rate increases, GA+EvoVNFP maintains high values
while those of GA significantly decrease. This implies that
GA+EvoVNFP can follow and adapt to heavy traffic dynamics,
i.e., rapid arrivals and departures of the requests.

Next, we show the results of the performance of the calcu-
lated placements in Fig. 8. The results are represented by CDFs
where the x-axis represents various metrics and the y-axis
shows the cumulative probability. Note that GA+EvoVNFP
has a disadvantage in this comparison because we only show
the results of feasible solutions. Considering the results in
Fig. 7, GA+EvoVNFP can generate solutions of difficult
situations, i.e., situations where the methods have to place
many chains. To generate the placement for these situations,
GA+EvoVNFP needs to utilize many cores for placing all

chains. Moreover, the side effect is that the delay becomes
larger in such dense placements. In spite of this disadvantage,
the graphs in Figs. 8(a) and 8(b) indicate that the results of
GA+EvoVNFP are better regarding the number of cores and
delays than those of GA at the different arrival rates. This is
because the mechanism of fluctuating goals in EvoVNFP that
helps reducing the calculation time works well. In summary,
GA+EvoVNFP can generate placements which have better
performance while following the dynamics of arrivals.

We now show the results of the cost for reconfiguration in
Figs. 8(c) and 8(d) that are also represented by CDFs in the
same way as before. For both of the number of migrations
and resizings, we can see that the results of GA+EvoVNFP
are better than those of GA at all arrival rates. The reason
for this is that a placement for an epoch is very different
from that of its subsequent epoch due to the reinitialization
of populations in GA. These results show that placements
generated by GA+EvoVNFP can adapt to the dynamic arrivals
and departures of chains with less placement changes.

Next, we discuss the results of the number of used PMs
and VMs shown as CDFs in Figs. 9(a) and 9(b), respectively.
In Fig. 9(a), we can see that GA+EvoVNFP uses a slightly
smaller number of PMs than GA, which means that, in the
individuals generated by GA+EvoVNFP, the PMs are not
widely distributed in the physical machines. Furthermore,
Fig. 9(b) shows that GA+EvoVNFP uses almost the same
number of VMs as GA. Combined with the result shown in
Fig. 9(a), it means that each PM in the placements generated
by GA+EvoVNFP uses a higher number of VMs than GA.
Generally, the more distributed the PMs, VMs, and compo-
nents are in the physical network, the more easy it is to
adapt to the new situations because we can use extra unused
resources to change the placements. However, the results
show that distributing the components is not the strategy that
GA+EvoVNFP uses to adapt to dynamic changes.

The results of Genetic Variation are shown in Fig. 9(c).
The x-axis and y-axis of the graph in Fig. 9(c) represent the
values of the Genetic Variation and the cumulative probability,
respectively. From Fig. 9(c), we can see that GA+EvoVNFP
has smaller values than GA. This is because GA initializes
all individuals in the population when the requests change.
This result implies that the diversity of the individuals in the
population does not lead to the high adaptability of EvoVNFP.

Finally, we show the results of entropy H(Xi|T) and
mutual information I(Xi;T) in Fig. 9(d) and Fig. 9(e), re-
spectively. The results in Fig. 9(d) show that H(Xi|T) of
GA+EvoVNFP is the smallest of both values. Moreover, the
shapes of CDF plots of EvoVNFP in Fig. 9(e) show that
most of the results of I(Xi;T) are low values but a few
of the results of GA+EvoVNFP are high values. This means
that GA+EvoVNFP has a few positions whose H(Xi|T) are
low and I(Xi;T) are high, i.e., they are triggers. This is the
mechanism which enhances the adaptability of EvoVNFP so
that it can generate placements which have a few triggers and
can easily adapt to the dynamics by only changing the values
of the triggers. While GA also has a similar shape of H(Xi|T)
as those of GA+EvoVNFP, most of the values of I(Xi;T) are
high, which means that GA cannot generate small numbers of

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

Fig. 6. A schematic explanation of detection of triggers with entropy, conditional entropy, and mutual information

1 1.5 2 2.5 3 3.5

arrival rate 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

s
u
c
c
e
s
s
 p

ro
b
a
b
ili

ty

GA+EvoVNFP
GA

Fig. 7. Evaluation results of success probability over arrival rate

triggers in appropriate positions.

G. Discussion
As a result of the evaluation shown above, we found that

EvoVNFP has a mechanism for generating a small number
of triggers among its individuals. Surprisingly, EvoVNFP
does not have any other mechanisms which can improve the
performance of the dynamic VNF placement problem, for
example by widely distributing the components to the physical
network or diversifying the individuals in the population. It
seems that GA+EvoVNFP has a few kinds of individuals
which have a small number of triggers within the population.
When arrivals or departures of requests occur, GA+EvoVNFP
can quickly adapt to the new situation because the population
of GA+EvoVNFP has a lot of individuals with triggers and
therefore the probability that mutations and crossovers change
the values of triggers is high while keeping the number of
triggers in each individual small.

VI. COMPARATIVE EVALUATION OF EVOVNFP
PERFORMANCE

In this section, we show the results of evaluation of per-
formance of EvoVNFP by combining it with two state-of-

the-art iterative VNF placement methods utilizing GA and
tabu search [16], [17]. Their respective algorithms are shown
in Sec. III-C. We selected these two methods because their
mechanisms significantly differ: the GA is based on selection
and the tabu search is based on neighbor searches. In general,
the GA is better than the tabu search when the solution spaces
of problems are larger and more complex and it is therefore
difficult to find optimal or suboptimal solutions with neighbor
searches. We used the source code of the simulation program
provided by the authors of ref. [16] for implementation in
order to have a fair comparison [32]. For this evaluation,
we had to slightly simplify the VNF placement problem
compared to Sec. V. In the remainder of this section, we
explain the modified models, as well as the simulation settings
and evaluation metrics before we discuss the results.

A. System Model

Each PM has an available capacity and each physical link
has an available bandwidth in this model. Similarly, we set the
required capacity of each VNF in the chains and the required
bandwidth of each virtual link in the chains. We define the
VNF placement problem as how to place the VNFs and virtual
links on PMs and physical links, respectively, so that the sum
of the required capacity or bandwidth on each PMs or each
physical link does not exceed its available capacity.

In this model, we assume that there is a fixed number
of chains in the physical network and the required capacity
and bandwidth of the chains may change over time. When
the required capacity or bandwidth changes, it may become
necessary to reassign the VNFs and virtual links to PMs
and physical links, respectively, in order to assure sufficient
performance of the chains.

B. Simulation Settings

The physical network is in this study a fat tree consisting of
64 PMs as shown in Fig. 10. The available capacity of each PM
is 900 units and the available bandwidth on each physical link
is 3000 units. There are 88 chains in the system, where each
chain contains 2–7 VNFs. The choice of these parameters was

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 11

0 200 400 600 800 1000 1200 1400 1600 1800

number of cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a

b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(a) Number of cores

0 100 200 300 400 500 600

delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a
b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(b) Delay

0 20 40 60 80 100 120 140 160

cost to change placement (component migration)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a
b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(c) Number of migrations

0 20 40 60 80 100 120 140 160

cost to change placement (component resizing)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a
b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(d) Number of resizings

Fig. 8. CDFs of performance metrics of GA and GA+EvoVNFP for the VNF placement problem. Three different arrival rates of λlow (1 request per 1000
generations), λmiddle (1 request per 500 generations), and λhigh (1 request per 333 generations) are considered for both methods.

68 70 72 74 76 78 80
number of used PMs

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(a) Number of used PMs

120 140 160 180 200 220 240
number of used VMs

0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(b) Number of used VMs

0 2 4 6 8 10
Genetic Variation

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(c) Genetic Variation

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a

b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(d) H(Xi|T)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

b
a
b
ili

ty

GA+EvoVNFP:
high

GA:
high

GA+EvoVNFP:
middle

GA:
middle

GA+EvoVNFP:
low

GA:
low

(e) I(Xi;T)

Fig. 9. CDFs of evaluation metrics for characterizing the internal structure of individuals. Similar to Fig. 8, three different arrival rates of λlow (1 request
per 1000 generations), λmiddle (1 request per 500 generations), and λhigh (1 request per 333 generations) are considered for both methods.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

8 PMs

...

8 PMs

...

8 PMs

...

8 PMs

...

8 PMs

...

8 PMs

...

8 PMs

...

8 PMs

...

Fig. 10. Fat tree physical network for comparative evaluation

... ...

sc
o

re
 (

lo
w

e
r

is
 b

e
tt

e
r)

goal

change

goal

change

goal

change

goal

change

goal

change

over HçÛ
over HçÛ

under HçÛ

under HçÛ

step

obtain these lengths

goal

change

over HçÛ

(1 step)

Fig. 11. Illustration of how to calculate number of steps until convergence

inspired by the settings in [16]. The system receives an input
with changes of several chains at every fixed time step. An
input includes two kinds of information: the variation amount
of the required bandwidth for the selected chains and whether
the number of VNFs in each chain has to be scaled up/down
or not. The required capacity of each VNF is initially set to
100 units and increased to 200 units or decreased to 50 units.
The required bandwidth of each link is initially selected from
the range [1, 30] and the amount of the variation in scaling
up/down is selected from [1, 30]. We consider six different
values regarding the number of modifications to the chains at
a time, i.e., 5, 10, 15, 20, 25, and 30 changes.

The evaluation function of these reference methods is based
on the one in [16], [33], [34] as follows:

F =
Ts
M

+
Ul

L
+

(L− Tl)
L

+
Cs

M
+
Cl

L
, (9)

where M and L are the number of PMs and links in the
physical network, respectively. Ts and Tl are the number of
used PMs and used links, Ul is the bandwidth usage, and
Cs and Cl represent how many VNFs and chains are on
different PMs and links in the current placement compared
to the previous placement, respectively.

Equation (9) contains five terms of which the first three are
similar to the fitness function in Eq. (5), while the last two
terms represent the differences between successive placements.
We added these terms to Eq. (9) in order to include the effects
of adaptability on the calculation of the score F .

1) GA Settings: The number of individuals in the GA
population is 50 and only the best individual is passed as elite
to the next step without mutation. At each step, one individual
is selected from the non-elite population and mutated. The
stopping criterion is reached after one epoch of 500 steps.

2) Tabu Search Settings: The size of the tabu list is 7, which
is known to be the best value for general applications [35].

The tabu list stores migrations of VNFs in a chain to new
PMs. The neighborhood of a placement is composed of all
placements that are created from the original placement by
randomly selecting a chain and migrating all VNFs in the
chain to all other PMs. The stopping criterion is reached after
500 steps.

The settings of EvoVNFP are as follows. The length of
the periods Tp is 100. The number of chains removed in the
original goals when we relax them is 1. We investigated also
other values, but found that these are the most suitable.

C. Evaluation Metrics

Finally, we use the following metrics in this evaluation:
1) Number of steps to converge: Figure 11 shows how we

calculated this metric. We calculated it for each epoch. First,
we set a value lth to judge whether the solution converge or
not. When the score does not change for over lth steps, we
judge the solution is converged. Then we obtain the number
of steps between the beginning of the epochs and the timing
where the converged solutions are generated. The fourth epoch
in Fig. 11 is a special case. The score does not stays the same
for over lth steps. In this case, we obtain the length between
the beginning of the epochs and the timing where the final
solutions in the epochs are generated.

2) Mean score of converged solutions: The mean score of
all converged solutions in all epochs. We judge the conver-
gence according to the same way in the case of the number
of steps to converge.

D. Numerical Results

We discuss the results of the evaluation of the performance
of EvoVNFP here. These results are obtained from 300 simula-
tion runs. The x-axes represent the number of request changes
input to the system at one time and the y-axes represent
values of the metrics and for each plot we also show the 95%
confidence intervals. We set lth to 100 steps.

First, we show the number of steps to converge in Fig. 12(a).
In most cases, GA+EvoVNFP and TS+EvoVNFP are better
than their versions without EvoVNFP. GA+EvoVNFP im-
proves GA by up to 25% and TS+EvoVNFP improves TS by
up to 48%. This means that the mechanism of EvoVNFP which
periodically changes the goals for speedup works effectively.
When we compare the methods based on the GA and the
ones based on the tabu search, tabu search are better due to
the fewer number of steps.

Second, we show the results of the mean score of converged
solutions in Fig. 12(b). The plots for GA+EvoVNFP and
GA are almost the same, same as TS+EvoVNFP and TS.
We explain the reason in the following. When we see these
results in more detail, i.e., checking the results of each term
in the evaluation function, we can see that GA+EvoVNFP
and TS+EvoVNFP use more PMs and links than GA and
TS, respectively. The methods with EvoVNFP usually use
more resources in order to increase adaptability. According to
Eq. (9), the more links are used, the better the score becomes.
Furthermore, using many links leads to smaller bandwidth
usage. That is why the results become almost the same. When

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

OTOKURA et al.: EVOLVABLE VIRTUAL NETWORK PLACEMENT METHOD: MECHANISM AND PERFORMANCE EVALUATION 13

5 10 15 20 25 30

number of request changes at one time

0

20

40

60

80

100

120

140

n
u
m

b
e
r

o
f
s
te

p
s
 t
o
 c

o
n
v
e
rg

e

GA+EvoVNFP
GA
TS+EvoVNFP
TS

(a) Number of steps to converge

5 10 15 20 25 30

number of request changes at one time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
e
a
n
 s

c
o
re

 o
f
c
o
n
v
e
rg

e
d
 s

o
lu

ti
o
n

GA+EvoVNFP
GA
TS+EvoVNFP
TS

(b) Scores of converged solutions

Fig. 12. Results of evaluation of performance of EvoVNFP

we compare the methods based on GA and the ones based
on tabu search, those based on tabu search are better on the
whole. Considering that they are also better in terms of the
number of steps to converge, it seems that the shape of the
solution space is more suitable for tabu search than for GA.

In terms of the runtime, the methods with EvoVNFP take
longer to find a solution than those without. This is expected
because EvoVNFP requires a small computational overhead.
When we compare the methods based on GA to tabu search,
GA performs better on the whole. This is because the calcu-
lation of the neighborhood in tabu search takes a lot of time.
From the results above, tabu search can obtain better solutions
but at the cost of a higher computation time compared to GA.
Therefore, it would be better to select the most appropriate
method according to the situation.

VII. CONCLUSION

In this paper, we evaluated the mechanism and the perfor-
mance of EvoVNFP. First, we investigated the mechanisms of
EvoVNFP that enhance the adaptability of underlying methods
by analyzing the structure of the placements which the GA
combined with EvoVNFP generates. Second, we evaluated
how much EvoVNFP improves underlying methods when
combining it with two state-of-the-art VNF placement methods
which are based on GA and tabu search, respectively. As a re-
sult of our evaluation, it is found that the placements generated
by the GA with EvoVNFP include triggers, which assist in the
adaptation toward new goals. Furthermore, it is also found that,
regarding both methods, EvoVNFP can reduce the number
of steps for calculation without decreasing the goodness of
the placements. Our future work includes incorporating other
effective strategies to EvoVNFP in order to further enhance
its adaptability while maintaining the mechanism of triggers.

ACKNOWLEDGMENT

This research was supported by “Program for Leading
Graduate Schools” of the Ministry of Education, Culture,
Sports, Science and Technology, Japan, and “Research and
Development of Innovative Network Technologies to Create

the Future”, the Commissioned Research of the National Insti-
tute of Information and Communications Technology (NICT),
Japan.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surv. Tutor., vol. 18(1), pp. 236–262,
Jan. 2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[3] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: A survey,” IEEE Commun. Mag., pp.
24–31, Nov. 2013.

[4] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in Proc. IEEE SDN4FNS, Nov. 2013.

[5] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proc. ACM CoNEXT, Dec. 2014.

[6] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Proc. IEEE CNMS, Nov. 2014, pp.
418–423.

[7] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and
B. Mukherjee, “On service-chaining strategies using virtual network
functions in operator networks,” Comput Netw., vol. 133, pp. 1–16, Mar.
2018.

[8] D. Cho, J. Taheri, A. Y. Zomaya, and L. Wang, “Virtual network function
placement: Towards minimizing network latency and lead time,” in Proc.
IEEE CloudCom, Dec. 2017, pp. 90–97.

[9] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE CloudNet,
Oct. 2015, pp. 171–177.

[10] J. Cao, Y. Zhang, W. An, X. Chen, Y. Han, and J. Sun, “VNF placement
in hybrid NFV environment: Modeling and genetic algorithms,” in Proc.
IEEE ICPADS, Dec. 2016, pp. 769–777.

[11] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE INFOCOM, Apr.
2015, pp. 1346–1354.

[12] “GS NFV-SWA 001—v1.1.1—network functions virtualisation (NFV);
virtual network functions architecture,” ETSI, Dec. 2014.

[13] B. Zhang, J. Hwang, and T. Wood, “Toward online virtual network
function placement in software defined networks,” in Proc. IEEE/ACM
IWQoS, Jun. 2016, pp. 1–6.

[14] Y. Liu, H. Zhang, H. Guan, and Y. Wang, “A method for adaptive
resource adjustment of dynamic service function chain,” IEEE Access,
Nov. 2018.

[15] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Trans.
Netw. Service Manag., vol. 13, no. 4, pp. 725–739, Dec. 2016.

1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2890273, IEEE
Transactions on Network and Service Management

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. YY, ZZ 2017

[16] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing resource
allocation for virtualized network functions in a cloud center using
genetic algorithms,” IEEE Trans. Netw. Service Manag., vol. 14, no. 2,
pp. 343–356, Jun. 2017.

[17] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and S. Davy,
“Design and evaluation of algorithms for mapping and scheduling of
virtual network functions,” in Proc. IEEE NetSoft, Apr. 2015, pp. 1–9.

[18] N. Kashtan and U. Alon, “Spontaneous evolution of modularity and
network motifs,” Proc. Natl. Acad. Sci. USA, vol. 102, no. 39, pp.
13 773–13 778, Sep. 2005.

[19] N. Kashtan, E. Noor, and U. Alon, “Varying environments can speed
up evolution,” Proc. Natl. Acad. Sci. USA, vol. 104, no. 34, pp. 13 711–
13 716, Aug. 2007.

[20] M. Otokura, K. Leibnitz, Y. Koizumi, D. Kominami, T. Shimokawa, and
M. Murata, “Application of evolutionary mechanism to dynamic virtual
network function placemen,” in Proc. IEEE CoolSDN, Nov. 2016.

[21] ——, “Impact of fluctuating goals on adaptability of evolvable VNF
placement method,” in Proc. ASON, Nov. 2016, pp. 304–310.

[22] C. Dovrolis and J. T. Streelman, “Evolvable network architectures: What
can we learn from biology?” Comput. Commun. Rev., vol. 40, no. 2, pp.
72–77, Apr. 2010.

[23] M. Parter, N. Kashtan, and U. Alon, “Facilitated variation: How evolu-
tion learns from past environments to generalize to new environments,”
PLoS Comput. Biol., vol. 4, no. 11, p. e1000206, Nov. 2008.

[24] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surv. Tutor.,
vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[25] M. Rost and S. Schmid, “Virtual network embedding approximations:
Leveraging randomized rounding,” in Proc. IFIP Networking, May 2018.

[26] ——, “Charting the complexity landscape of virtual network embed-
dings,” in Proc. IFIP Networking, May 2018.

[27] M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Natl. Acad. Sci. USA, vol. 103, no. 23, pp. 8577–8582, 2006.

[28] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, “Structure and dynamics
of core/periphery networks,” J. Complex Netw., vol. 1, no. 2, pp. 93–123,
2013.

[29] “European Topology map (pdf) Dec 2018,” https://www.geant.org/
Resources/Documents/GEANT Topology Map December 2018.pdf.

[30] “T series Core Routers: T320, T640, T1600, TX Matrix, and
TX Matrix Plus,” https://lafibre.info/images/datacenter/200908 juniper
routeur t1600.pdf.

[31] C. Wang, J. Llorca, A. M. Tulino, and T. Javidi, “Dynamic cloud
network control under reconfiguration delay and cost,” CoRR, vol.
abs/1802.06581, 2018.

[32] “GP based resource allocation for VNFs, starts with an DFS initial
solution, continue with a simple scaling method,” https://github.com/
windyswsw/GPwithDFSandScaling.

[33] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in Proc.
IFIP/IEEE IM, May 2015, pp. 89–97.

[34] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Experimental results on
the use of genetic algorithms for scaling virtualized network functions,”
in Proc. IEEE NFV-SDN, Nov. 2015, pp. 47–53.

[35] F. Glover, “Tabu search: A tutorial,” Interfaces, 1990.

Mari Otokura is currently a third year doctor
course student at the Graduate School of Informa-
tion Science and Technology, Osaka University. Her
research interests include modeling and performance
analysis of communication networking, especially
the application of biological evolvability to network
virtualization.

Kenji Leibnitz received his M.Sc. and Ph.D. de-
grees in information science from the University
of Würzburg, Germany. After joining the reserach
group of Prof. Murata at Osaka University in May
2004, he joined the National Institute of Information
and Communications Technology (NICT) in 2010.
Since April 2013 he is with the Center of Infor-
mation and Neural Networks (CiNet) of NICT and
Osaka University. His research interests include the
modeling and performance analysis of communi-
cation networks, especially biologically and brain

inspired mechanisms for self-organization in future networks.

Yuki Koizumi is an associate professor of Gradu-
ate School of Information Science and Technology,
Osaka University, Japan. Prior to that, he worked
as an assistant professor at Osaka University. He
received his master and Ph.D. degrees in information
science from Osaka University in 2006 and 2009, re-
spectively. His research interests include information
centric networking and mobile networking.

Daichi Kominami received his M.E. and D.E. de-
grees from Osaka University, Japan, in 2010 and
2013. He is currently an Assistant Professor at the
Graduate School of Economics, Osaka University,
Japan. His research interests include distributed con-
trol in communication networks.

Tetsuya Shimokawa received his M.E. and
Ph.D. degrees in engineering from Osaka University
in Japan, after which he was a Research Assistant
and Specially Appointed Associate Professor at Os-
aka University. Since April 2010 he is a Senior Re-
searcher at NICT and from April 2013 he is with the
Center of Information and Neural Networks (CiNet)
of NICT and Osaka University. His interests include
the mathematical modeling of the role of stochastic
information processing in cognitive functions of the
brain.

Masayuki Murata received the M.E. and D.E.
degrees from Osaka University, Japan, in 1984 and
1988, respectively. In April 1984, he joined Tokyo
Research Laboratory, IBM Japan, as a Researcher.
He returned to Osaka University and was from 1987
to 1989 an Assistant Professor at the Computation
Center, and from 1989 to 1999 at the Department
of Information and Computer Sciences. In April
1999, he became a Professor of the Cybermedia
Center and he is since April 2004 with the Graduate
School of Information Science and Technology. He

has more than five hundred papers of international and domestic journals and
conferences. His research interests include computer communication network
architecture, performance modeling and evaluation.

