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Abstract—Many devices, such as air conditioners and refrig-
erators, are now being connected to the Internet and, as a
consequence, have become targets of cyberattacks. Especially,
the operations by attackers can cause serious problems, which
may harm users. However, such attacks are difficult to detect
because they use the same protocol as legitimate operations by
users. In this paper, we propose a method to detect such attacks
based on user behavior. We model user behavior as a sequence
of events, which includes the operation of IoT devices and other
behavior monitored by any sensors. Our method learns sequences
of events for each one of a predefined set of conditions and detects
attacks by comparing the sequences of the events including the
current operation with the learned sequences. We evaluate our
method by using data collected by monitoring the behavior of
four users. Based on the results of this evaluation, we demonstrate
the accuracy of our method and discuss the limitations of our
method.

Index Terms—Anomaly Detection, IoT, Security, Smart Home,
Behavior Pattern, Operation by Attackers, Consumer Electronics

I. INTRODUCTION

Recently, consumer electronics, such as refrigerators, air
conditioners, and pacemakers, have started to be connected
to the Internet in addition to personal computers and smart-
phones. These devices are called “IoT (Internet of Things)”
devices. Users can obtain information from the IoT devices
and can operate the IoT devices with using a smartphone, a
tablet, or an AI speaker, such as Google Home [1] or Amazon
Echo [2].

As the number of devices connected to the Internet in-
creases, the risk that these devices become the target of
cyberattacks is increasing [3]–[6] and, in fact, direct attacks
and malware targeting IoT devices [7], [8] have already been
observed. Such attacks may be detectable by methods based
on an analysis of the behavior of the attackers [9]–[11] or in
comparison with legitimate usage [12], [13]. Most of current
attacks targeting IoT devices are designed to compromise IoT
devices to create botnets [14], [15]. However, because IoT
devices are closely related to everyday life, there is a risk of
attacks having an immediate and personal effect on users [16].
In particular, the operation of IoT devices by attackers may
make the users unsafe, and may even harm them, by changing
the set temperature of an air conditioner, the setting of a

healthcare device, or similar. Therefore, methods to detect and
prevent operations initiated by attackers are necessary.

Conventionally, security software and intrusion detection
systems are used to detect cyberattacks. They detect attacks by
pattern matching, comparing the packets with predefined rules.
However, packets sent by attackers to operate IoT devices are
the same as the packets sent by legitimate users. In particular,
if an attacker sends packets via the compromised smartphone
of a legitimate user, the packets cannot be distinguished from
packets sent by legitimate users.

In this paper, we propose a method to detect the anomalous
operation of home IoT devices at a home gateway that can
monitor all packets between the home network and the Inter-
net. In this method, the gateway learns the behavior of users for
each condition defined by the time of day and the information
observed by the sensors in the home network. Then, when a
command arrives, the gateway checks whether it matches the
learned behavior. If the command does not match the learned
behavior, the gateway classifies the command as an anomaly.

To evaluate our method, we constructed a network of home
IoT devices in our laboratory. We then selected four students
as subjects and let them use the IoT devices as they liked. We
monitored the home network and recorded the times of control
commands given to the IoT devices. To evaluate our method
using the data collected; we use the monitored commands as
the legitimate commands and investigate whether our method
can detect anomalous commands added to the monitored data.

The rest of this paper is organized as follows. We describe
our method to detect anomalous operations in section II and
explain how to set the parameters in section III. Then, we
evaluate our method in section IV. Finlay, we conclude this
work and discuss future issues in section V.

II. ANOMALY DETECTION FOR SMART HOME

We propose a method to detect the anomalous operation of
home IoT devices by attackers. It is based on that users have
their own patterns of behavior depending on conditions. For
example, when a user returns home and feels cold, they turn
on a heater first and then turn on a humidifier; on the other
hand, when a user feels warm, they never turn on a heater. In
addition, the sequence of operations reflects the characteristics
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Fig. 1: Overview of the detection model.

of users: one user first turns on a heater and then turns on a
humidifier, while another user first turns on a humidifier.

Our method learns such condition-depend operation se-
quences as behavior patterns and classifies deviations from
these learned patterns as anomalous operations.

In this section, we first explain the model of user behavior
used in our method. Then, we explain how user behavior is
learned and how anomalous operations are detected.

A. Model

Fig. 1 shows the model of user behavior in our method.
1) Condition: We define a condition as a combination

of the time of day and values obtained from sensors. The
variables representing the various components of a condition
will be denoted ci, where the index i runs from 1 to some max-
imum value imax. For example, as in Fig. 1, c1 could represent
time of day, while c2 represents the temperature of a room,
and so on. Of course, continuous data have to be discretized
for tractability. So, we use multiple thresholds for each type
of value. A value of ci that satisfies c

(j)
i ≤ ci ≤ c

(j+1)
i where

c
(j)
i is the jth threshold for the ith variable, is classified into
jth region for that variable.

2) User Behavior: We define an event as any monitored
behavior of a user, including the operation of IoT devices
and any other behavior monitored by the sensors, such as
entering or leaving a room. We define an event sequence to
be a sequence of events that occurs within T seconds of
a previous event. Our method learns a user’s behavior by
learning the event sequences for each condition. The set of
event sequences corresponding to a condition is modeled as
multiple trees whose roots are the first events and whose leaves
are the last events. We detect anomalous event sequences by
checking whether the sequence is included in trees. If the
sequence is not included in the tree, we classify the sequence
as an anomaly.

B. Learning Method

Our method learns user behavior from observed infor-
mation by monitoring events in the home and generating
event sequences. Then, the condition corresponding to an
event sequence is selected from the predefined set. Finally,
the observed sequence is used to update the model for the
corresponding condition.

1) Generation of Event Sequences: Our method regards
events observed within T seconds of one another as belonging
to the same event sequence, constructing the sequence at the
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Fig. 2: Generated event sequences when events A, B, and C
occur.

home gateway. However, this means that some event sequences
may include events from more than one user because a typical
smart home has multiple users. To remove these events,
which should be treated as noise, and learn the essential
event sequence, we generate multiple event sequences by
removing some events from the observed sequence. Fig. 2
shows an example of the generation of event sequences. By
considering these event sequences, we discover the essential
event sequences that include only the events generated by a
single user.

2) Selection of Condition: Our method selects the condition
whose corresponding model is to be updated based on the
condition of the first event in a sequence. However, to make
effective use of event sequences and learn users’ behaviors
even when only a small number of event sequences for
each condition are observed, we update not only the model
corresponding to the condition of its first event but also the
models for similar conditions. When the condition of the
first event is {croot

1 , . . . , croot
imax}, the sequence is used to update

the model for the region for which the variable ci satisfies
croot
i − αi ≤ ci ≤ croot

i + αi for some value αi, which can be
different for each i.

3) Updating the Tree of Event Sequences: When the home
gateway observes an event sequence, we add nodes and links
to the tree corresponding to the selected conditions so that
the event sequence is included in the tree, the first event of
the sequence is the root, and the final event of the sequence
is the leaf. Then, we increment a counter for each link on
the route corresponding to the event sequence. By repeating
this procedure, the count for links related to frequent event
sequences increases. Thus, we detect anomalies by using the
pruned tree which contains only the links whose counters
exceed a threshold nd × Lnum where nd is a parameter, d is
the depth of the link, and Lnum is the total number of learned
operations for the device targeted for detection. By doing so,
we eliminate the noise included in the event sequence.

C. Detection Method

When the home gateway observes a new operation, it
generates event sequences related to the operation. Then, it
compares these sequences with learned behaviors.

1) Generation of Event Sequence: When the home gate-
way observes a new operation, it generates multiple event
sequences, in the same way as during learning, by removing
some events from the sequence of events that occurred within
T seconds after previous event and uses these to check whether
the operation is anomalous.



2) Decision making: We check whether the new opera-
tion is anomalous or not by comparing the generated event
sequences with the learned behaviors. We first select the
condition corresponding to the first operation of the generated
sequences. Then, we compare each of the generated sequences
with the learned sequences for the selected condition by
finding the events in the tree. First, we find the tree whose
root is the first event of the event sequence. Then, we find
the node that is connected to the found root and is the second
event of the event sequence. We repeat searching for nodes
until nodes corresponding to all events in the sequence are
found or no corresponding nodes are found. We repeat the
check for all generated event sequences using the above steps.
If all sequences have events whose corresponding nodes are
not found in the learned behavior, we classify the operation
as an anomaly. On the other hand, if corresponding nodes are
found for all events in one of the sequences and the node
corresponding to the final event is the leaf, we decide that
all the events in the sequence are legitimate. If corresponding
nodes are found for all events in one of the sequences but
the node corresponding to the final event is not the leaf, we
wait for the next event. If the next event does not occur for
T seconds, we finish searching for the sequence. If the next
event occurs, we generate event sequences including the next
event and compare the sequences with learned behaviors using
the same steps as described above.

III. PARAMETER SETTING

In this section, we describe the method used to set param-
eters. Our method has three kinds of parameter, T , αi, and
nd. T affects the generation of event sequences, while αi and
nd affect the model used for the detection. Thus, we set the
parameter T independently from the other parameters so as
to generate suitable event sequences. To set parameters, we
use events monitored for P weeks. The information on the
monitored events includes the kind of event, the time, and
the sensor values defining the conditions corresponding to the
events.

1) Setting the Parameter T : First, we set the parameter T .
A user may operate multiple devices simultaneously or within
a small interval of time. In this paper, we set T so that the
operations of such related devices are included in the event
sequences.

Algorithm 1 shows the steps used to set T . In these
steps, T is incremented until the generated event sequences
become stable. We check whether the generated event se-
quences are stable by counting the number of pairs of events
included in the same event sequence using Algorithm 2.
The number of pairs of events included in the same event
sequence (NumOfPair(T )) initially increases with T . However,
the number becomes stable when T is large enough that
the operations of related devices are included in the same
sequences. Algorithm 2 regards the generated event sequences
as stable when the difference between NumOfPair(T ′) and
NumOfPair(T ′ + Tinc) is less than N for all T ′ satisfying

Algorithm 1 Setting the parameter T

Input: P : Period of the parameter setting (weeks)
Output: T
T ⇐ Tinit

while ISNUMBEROFSEQUENCESSTABLE(T ) == False do
T ⇐ T + Tinc

end while
return T

Algorithm 2 Whether generated event sequences are stable

Input: T
Output: True | False

function ISNUMBEROFSEQUENCESSTABLE(T )
T ′ ⇐ T
while T − T ′ ≤ T stable

inc do
T ′ ⇐ T ′ + Tinc

if NumOfPair(T ′+Tinc) - NumOfPair(T ′) ≥ N then
return False

end if
end while
return True

end function

T ≤ T ′ < T + T stable
inc , where T stable

inc is a preset parameter.

2) Setting the Parameters αi and nd: After setting the
parameter T , we set the parameters α and n, where α =
{α1, · · · , αimax} and n = {n1, · · · , ndmax}. imax is the number
of values used to define the condition, and dmax is a predefined
value indicating the depth of the tree considered when setting
parameters. For the links whose depth d′ is larger than dmax,
we use ndmax as nd′ .

The parameters α and n have impacts on the detection ratio
(D), that is the proportion of anomalous operations detected as
anomalies, and misdetection ratio (M ), that is the proportion
of legitimate operations detected as anomalies. In this paper,
we set these parameters to obtain the highest detection ratio
from among the values that given an acceptable misdetection
ratio, M ≤ M goal. In order to calculate the detection and
misdetection ratio, we perform the “Detection Test” shown as
Algorithm 4. The detection test calculates the detection and
misdetection ratio when anomalous operations of IoT devices
are added to event datasets by using cross-validation. At first,
we use event datasets to learn behaviors except for a certain
day. Then, we add 100 anomalous operations in the omitted
day and count the number of detected anomalous operations
and misdetected legitimate operations. After doing this for
each day, we sum up the numbers of both and calculate the
detection and misdetection ratio.

Algorithm 3 shows the steps followed to set parameters
α and n, and we obtain optimal parameters by calling
Optαn(Null,Null, k = 1,M goal). This function finds optimal
parameter values by recursively calling itself with k incre-
mented by 1. This function finds optimal parameters by fixing



the k′th parameters for k′ < k. As αi becomes large, the
misdetection ratio becomes small, because the observed event
sequences are used to update a larger range of conditions
and similar event sequences are regarded as legitimate even
if the condition is slightly different from that of the learned
sequence. Therefore, if we cannot achieve a misdetection ratio
less than M goal by setting αi = α′

i, an acceptable misdetection
ratio cannot be achieved for αi ≤ α′

i. Similarly, as nd becomes
small, more event sequences are used as legitimate behavior,
and the misdetection ratio becomes small. That is, if we
cannot achieve a misdetection ratio less than M goal by setting
nd = n′

d, an acceptable misdetection ratio cannot be achived
for nd ≥ n′

d. Therefore, to reduce the calculation time, we
avoid considering such parameters in Algorithm 3.

If no parameters satisfy the target misdetection ratio, our
algorithm cannot find suitable parameters. When such cases
occurred in our evaluation, we increased the misdetection ratio
until suitable parameters could be found.

IV. EVALUATION

A. Evaluation Environment

1) Evaluation Dataset: To evaluate our method, we con-
structed a network of home IoT devices in our laboratory.
We deployed 15 kinds of connectable home appliances and
sensors: a heater, a coffee maker, a refrigerator, electric fans,
TVs, and temperature sensors. We let four subjects use the
appliances as they liked. We captured all packets in the home
network and recorded the times of operations of the home IoT
devices and sensor data. The sensor data includes information
on whether smartphones are connected to the home network.
From this information, we generate the events that a user
enters or leaves the home. The sensor data also includes the
temperature, humidity, and noise values; however, these do
not change significantly in our environment. Therefore, in this
evaluation, only the time of day is used to define the condition.

2) Evaluation Procedure: In this section, we use two
metrics: the detection ratio and the misdetection ratio.

a) Misdetection Ratio: To evaluate the misdetection ratio
in a straightforward way, we would need a sufficient number of
legitimate operations in the test data. However, we have only a
limited number of legitimate operations in our collected data.
Therefore, we evaluate the misdetection ratio by Leave-One-
Out Cross-Validation (LOOCV) [17]. LOOCV separates the
dataset into multiple small datasets and verifies one of them
after training using the others. After verifying all patterns of
the test dataset, we summarize the results.

For this paper, we separated the data by day and used the
data for one day as the test data and used the data for the
other days to learn legitimate behaviors.

b) Detection Ratio: In our evaluation, we added anoma-
lous operations into observed legitimate operations to obtain
the detection ratio. We used a strategy similar to that for the
evaluation of misdetection to obtain the detection ratio: we
separated the dataset by day and used the data for one day for
the test and the remaining data for learning.

Algorithm 3 Optimal α, n, and Detection-Misdetection Ratio

Input: αin,nin, k,M goal

Output: D,M,αbest,nbest

function OPTαn(αin,nin, k,M goal)
for 0 < k′ < k do

if k′ ≤ imax then
αk′ ⇐ αin

k′

else
nk′−imax ⇐ nin

k′−imax

end if
end for
(Dbest,M best) ⇐ (0.0, 1.0)
if k ≤ imax then

αk ⇐ αmax
k

else
nk−imax ⇐ nmin

k−imax

end if
while True do

if k < imax + dmax then
(D′,M ′,α′,n′)⇐OPTαn(α,n, k + 1,M goal)

else
(D′,M ′) ⇐ DETECTIONTEST(α,n)
(α′,n′) ⇐ (α,n)

end if
if M ′ > M goal then

Break
else if D′ > D then

(Dbest,M best,αbest,nbest)⇐(D′,M ′,α′,n′)
end if
if k ≤ imax then

αk ⇐ αk − αdec
k

if αk < αmin
k then

Break
end if

else
nk−imax ⇐ nk−imax + ninc

k−imax

if nk−imax > nmax
k−imax then

Break
end if

end if
end while
return (Dbest,M best,αbest,nbest)

end function

We added 100 anomalous operations into the test data
for each day and tried to detect them. Then, we obtain
the detection ratio by counting the total number of detected
anomalous operations for all days and dividing by 100 ×
number of days of observations.

B. Evaluation Results

We evaluated three datasets; the dataset obtained for one
month in January 2017, and the datasets obtained for the three
months of April, June, and August 2017 and the three months
of May, July, and September 2017. In each period, the same



Algorithm 4 Detection Test

Input: α,n
Output: D,M

function DETECTIONTEST(α,n)
for each Day ∈ Period of parameter setting do

Insert 100 anomaly operations into the Day
Learn users’ behavior without the Day with α
Detect the Day’s operations with n

end for
Sum up the results of each Day
return Calculate D,M

end function

TABLE I: Detection Results for January 2017

Detection Detected Misdetection Misdetection
Ratio /Total Ratio /Total

Coffee Maker 0.157 346/2200 0.000 0/48
Heater 0.959 2110/2200 0.182 2/11
Humidifier 0.080 176/2200 0.000 0/38
TV A 1.000 2200/2200 1.000 8/8
TV B 1.000 2200/2200 0.000 0/2

subjects were using the devices. The first dataset was obtained
in the winter, and the subjects used the heater. The other
datasets were obtained from the spring to the summer, and the
subjects did not use the heater but used the electronic fans.

1) Results from the Data for 1 Month: First, we used
the dataset obtained in January 2017. In this evaluation, we
set the parameters by using the data monitored in the first
week. When determining optimal parameter values, we set
M goal = 0.10,

{
Tinit, Tinc, T

stable
inc

}
= {0, 10, 120}, N =

10 × P , imax = 1,
{
αmin
1 , αdec

1 , αmax
1

}
= {600, 600, 43200},

dmax = 2, and
{{

nmin
1 , nmin

2

}
,
{
ninc
1 , ninc

2

}
, {nmax

1 , nmax
2 }

}
=

{{0.00, 0.00} , {2/Pnum, 1/Pnum} , {1.00, 1.00}}, where Pnum

is the number of operations used for parameter setting for
the device targeted for detection.

After setting parameters, we evaluate our method by
LOOCV using the data monitored in the last three weeks.
In this evaluation, we also use the data monitored in the first
week as training data to learn the legitimate behaviors.

Table I shows the results of our evaluation in this case. Over
95% of anomalous operations of the heater were detected.
The high detection rate is achieved by using the learned
event sequences. Our method learned three patterns of event
sequences related to the heater; the patterns that a user operates
a humidifier before operating a heater, a user operates a heater
before operating a coffee maker, and the user01 leaves the
room after operating a heater on the afternoon. Even if an
anomalous operation command arrives, we detect anomaly
unless the operation matches the above-learned behaviors.

The number of misdetection of legitimate operations of the
heater is two, which is slightly larger than the predefined target
ratio M goal. The misdetected operations are related to the event
sequence in which a user operates the heater before operating
the humidifier. Such event sequences occurred only a few times
in one month and our method did not learn such a sequence

TABLE II: Detection Results for Apr., June, and Aug. 2017.

Detection Detected Misdetection Misdetection
Ratio /Total Ratio /Total

Coffee Maker 0.611 3908/6400 0.058 3/52
Electric Fan A 0.998 6384/6400 0.000 0/9
Electric Fan B 0.999 6399/6400 0.000 0/6
TV A 0.996 6377/6400 0.171 7/41
TV B 1.000 6400/6400 0.400 4/10
TV C 0.999 6397/6400 0.000 0/10
TV D 0.999 6398/6400 0.111 1/9

TABLE III: Detection Results for May, July, and Sept. 2017.

Detection Detected Misdetection Misdetection
Ratio /Total Ratio /Total

Coffee Maker 0.057 368/6500 0.000 0/89
Electric Fan A 0.991 6439/6500 0.074 2/27
Electric Fan B 0.986 6409/6500 0.302 13/43
TV A 0.998 6485/6500 0.231 3/13
TV B 0.999 6497/6500 0.077 1/13
TV C 0.999 6496/6500 0.000 0/3

as legitimate.
Table I shows that the detection ratios for operations of the

coffee maker or the humidifier are small. This is caused by
single operation: for most of the operations of the humidifier
or the coffee maker, previous or subsequent events were not
observed. In addition, they were operated at various times of
day. We set parameters so that such single operations at various
times of day cannot be detected as anomalies. As a result, most
of such operations are regarded as legitimate.

Table I also indicates that all anomalous operations of TVs
are detected, but the misdetection ratio for TV A is quite
high. This is caused by the low number of operations used
to learn legitimate behavior. Furthermore, the monitored event
sequences related to TV A vary quite a lot. As a result, an
event sequence cannot be learned as legitimate by its similarity
to other event sequences. The misdetection ratio of TV B is
small because many event sequences are used for detection.

2) Results for Data from 3 Months: We also evaluated our
method by using datasets for two sets of three months: April,
June, and August 2017 and May, July, and September 2017.
We used data monitored in the first week of each month to set
parameter values and to learn legitimate behaviors, and then
performed LOOCV using the remaining data in a similar way
and with same parameters as for the 1-month data.

Tables II and III show the results of the evaluation in
these cases. Our method detected more than 98% of all
anomalous operations, except for those of the coffee maker.
This is because our method successfully learns legitimate event
sequences that are repeated many times, such as the sequence
that electronic fans are often turned on immediately after
entering the room.

Tables II and III show that the misdetection ratios for
operations of the TVs are smaller than for the dataset for
one month. This is because we used more event sequences to
learn legitimate behavior. As a result, when a new legitimate
operation arrives, the operation can be regarded as legitimate,
because similar event sequences have been learned. However,
even when we use more data, we cannot detect the anomalous



operations of the coffee maker accurately. In addition, the
misdetection ratios for TV B in Table II and for Electronic
Fan B and TV A in Table III are also large. This is caused
by their single operation. Therefore, to improve the detection
of anomalous operations and reduce the misdetection of the
legitimate operations, we need a method to accurately identify
such single operations as legitimate, which is one of our future
research topics.

3) Discussion: Our method could detect around 95–100%
of anomalous operations if the events related to legitimate op-
erations can be monitored. However, our method also produced
several misdetections. These are either single operations, for
which related events are not observed, or rare operations
whose corresponding event sequences are rare.

Our method achieves accurate detection of anomalous op-
erations by comparing event sequences. However, we cannot
utilize a sequence to check a single operation and the condition
of the operation is the only information we have to determine
whether such an operation is legitimate.

One approach to improving the accuracy of identification for
single operations is to deploy sensors that can monitor events
related to these operations. For example, single operations of
the humidifier occurred after the water tank became empty.
If we can monitor the water tank of the humidifier, we can
obtain events related to its operation. Consequently, such
operations of the humidifier are no longer single operation.
Another approach to improving the accuracy of identification
of legitimate single operations is to use more information to
define the conditions. In our evaluation, we used only the
time of day to define the condition. However, if we define
a condition in such a way as to distinguish conditions where
legitimate operations are performed from other conditions, we
can identify legitimate single operations accurately. Methods
to identify the legitimate single operations are included in our
future research topics.

The mitigation of misdetection of rare legitimate operations
is another challenge, as we cannot obtain a sufficient amount
of training data to accurately identify such rare operations
in each home. One approach to obtaining more training data
is to use data monitored at other homes. However, several
issues to be solved before this could be done. One issue is
the difference between homes; information about users whose
behaviors when using the devices are different may be useless.
Thus, we need a method to obtain data from other homes that
have users with similar behaviors. Privacy is another issue.
That is, we need a method that uses the data from other homes
without exchanging private information. This is also one of our
future research topics.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to detect the anomalous
operation of home IoT devices. This method learns sequences
of user behaviors for each condition that is defined by time of
day, sensed temperatures, humidity and so on. Then, when
an operation command arrives, the method compares the
current sequence with the learned sequences for the condition

corresponding to the current condition. If they do not match,
our method classifies the operation as an anomaly.

We constructed a network of home IoT devices in our
laboratory and let four subjects use the devices. We recorded
the times at which the devices were operated along with
sensor data. Using this data, we evaluated the detection and
misdetection ratios for our method. The results demonstrate
that our method detects around 95–100% of anomalous op-
erations if events related to legitimate operations are ob-
served. However, our method cannot accurately identify single
operations for which related events are not observed. Rare
legitimate operations are also difficult to identify, which results
in misdetection. The development of methods to accurately
identify rare or single operations is something we will address
in future research.
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