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Abstract

Many devices, such as air conditioners, heaters, and refrigerators, are now being con-

nected to the Internet. These devices are called “IoT” devices. As the number of these

IoT devices increases, they have become targets of cyberattacks. Especially, the opera-

tions by attackers can cause serious problems, which may harm users or make users unsafe.

However, such attacks are difficult to detect using security software or IDS, because the

attackers use the same protocol as legitimate operations by users.

In this thesis, we propose a method to detect such attacks based on user behavior. We

model user behavior as a sequence of user’s events, which includes the operation of IoT

devices and other behavior monitored by any sensors such as user’s entering and leaving.

Our method learns the sequences of events for each one of a set of conditions predefined

by the time and sensor values such as room temperature and humidity. After learning, our

method detects attacks by comparing the sequences of the events including the current

operation with the learned sequences.

For the evaluation of our method, we constructed a network of home IoT devices in our

laboratory. We selected four subject students, let them use the devices as they like, and

captured all packets of the home network. We obtained times of users’ entering/leaving

and operating the home IoT devices, using the captured packets, and evaluated our method

using the obtained data. When the method observed sequences of events related to the

operations, our method detected around 95–100% of anomalous operations with less than

23% of misdetection ratio. Based on the results, we demonstrate the accuracy of our

method and discuss the limitations of our method.
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1 Introduction

Recently, home appliances and healthcare devices, such as refrigerators, air conditioners,

and pacemakers, have started to be connected to the Internet in addition to personal

computers and smartphones. These devices are called “IoT (Internet of Things)” devices.

Users can obtain information from the IoT devices and can operate the IoT devices with

using a smartphone, a tablet, or an AI speaker, such as Google Home [1] or Amazon

Echo [2].

Currently, seven billion IoT devices are connected to the network. 215 billion IoT

devices will be connected to the network in 2025 [3]. As the number of devices connected

to the Internet increases, the risk that these devices become the target of cyberattacks is

increasing [4–7] and, in fact, direct attacks and malware targeting IoT devices [8, 9] have

already been observed.

Most of the current attacks targeting IoT devices are designed to compromise IoT

devices to create botnets [10, 11]. Such attacks may be detectable by methods based

on an analysis of the behavior of the attackers [12–14] or in comparison with legitimate

usage [15,16].

However, because IoT devices are closely related to everyday life, there is a risk of

attacks having an immediate and personal effect on users [17]. In particular, the operation

of IoT devices by attackers may make the users unsafe, and may even harm them, by

changing the set temperature of an air conditioner, the setting of a healthcare device, or

similar. In addition, in a case that high wattage IoT devices simultaneously operated,

power demand would change greatly and the change may cause a large scale blackout [18].

Therefore, methods to detect and prevent operations initiated by attackers are necessary.

Conventionally, security software and intrusion detection systems are used to detect

cyberattacks [19]. They detect attacks by pattern matching, comparing the packets with

predefined rules or detecting outliers of statistical information of observed traffic. However,

because packets sent by attackers to operate IoT devices are the same as the packets sent

by legitimate users and packets of operating IoT devices are small, existing methods have

difficulty in detecting anomalous operations. In particular, if an attacker sends packets

via the compromised smartphone of a legitimate user, the packets cannot be distinguished
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from packets sent by legitimate users.

In this thesis, we propose a method to detect the anomalous operation of home IoT

devices based on learning users’ behavior related to the operation of IoT devices. In this

method to detect the anomalous operation, a home gateway that can monitor all packets

between the home network and the Internet learns users’ behaviors and detect anomalous

operations. A home gateway that connects to the home IoT devices, home IoT sensors

and smartphones can collect environment information in home obtained from sensors such

as room temperature and humidity. Also, a home gateway can get information whether

a user is at home based on the information, using information that whether a user’s

smartphone is connected to the home network [20]. In addition, a home gateway can

grasp operations of home IoT devices from the home and via the network, because the

home gateway relays packets that operate the home IoT devices via the Internet and from

home smartphone. Using such information, a home gateway learns the behaviors of users

for each condition defined by the time of day and the information observed by the sensors

in the home network. Then, when a command arrives, the gateway checks whether it

matches the learned behavior. If the command does not match the learned behavior, the

gateway classifies the command as an anomaly.

The rest of this thesis is organized as follows. We describe our method to detect

anomalous operations in section 2. Then, we evaluate our method in section 3. Finlay, we

conclude this work and discuss future issues in section 4.
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2 Anomaly Detection Based on User Behavior
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Figure 1: Overview of Anomaly Detection for Smart Home Based on User Behavior

We propose a method to detect the anomalous operation of home IoT devices by

attackers, shown in Figure 1. It is based on that users have their own patterns of behavior

depending on conditions. For example, when a user returns home and feels cold, they

turn on a heater first and then turn on a humidifier; on the other hand, when a user feels

warm, they never turn on a heater. In addition, the sequence of operations reflects the

characteristics of users: one user first turns on a heater and then turns on a humidifier,

while another user first turns on a humidifier.

Our method learns such condition-depend operation sequences as behavior patterns

and classifies deviations from these learned patterns as anomalous operations.

In this section, we first explain the model of user behavior used in our method. Then,

we explain how user behavior is learned and how anomalous operations are detected.
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2.1 Learning Model
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Figure 2: Overview of the Detection Method

Figure 2 shows the model of user behavior in our method.

2.1.1 Condition

We define a condition as a combination of the time of day and values obtained from sensors.

The variables representing the various components of a condition will be denoted ci, where

the index i runs from 1 to some maximum value imax. For example, as in Figure 2, c1

could represent time of day, while c2 represents the temperature of a room, and so on.

Of course, continuous data have to be discretized for tractability. So, we use multiple

thresholds for each type of value. A value of ci that satisfies c
(j)
i ≤ ci ≤ c

(j+1)
i where c

(j)
i

is the jth threshold for the ith variable, is classified into jth region for that variable.

2.1.2 User Behavior

We define an event as any monitored behavior of a user, including the operation of IoT

devices and any other behavior monitored by the sensors, such as entering or leaving a

room. We define an event sequence to be a sequence of events that occurs within T seconds

of a previous event. Our method learns a user’s behavior by learning the event sequences

for each condition. The set of event sequences corresponding to a condition is modeled as

multiple trees whose roots are the first events and whose leaves are the last events. We
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detect anomalous event sequences by checking whether the sequence is included in trees.

If the sequence is not included in the tree, we classify the sequence as an anomaly.

2.2 Learning User Behavior

Our method learns user behavior from observed information by monitoring events in the

home and generating event sequences. Then, the condition corresponding to an event

sequence is selected from the predefined set. Finally, the observed sequence is used to

update the model for the corresponding condition.

2.2.1 Generation of Event Sequences

Our method regards events observed within T seconds of one another as belonging to the

same event sequence, constructing the sequence at the home gateway. However, this means

that some event sequences may include events from more than one user because a typical

smart home has multiple users. To remove these events, which should be treated as noise,

and learn the essential event sequence, we generate multiple event sequences by removing

some events from the observed sequence. Figure 3 shows an example of the generation

of event sequences. By considering these event sequences, we discover the essential event

sequences that include only the events generated by a single user.
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Figure 3: Generated Event Sequences when Events A, B, and C Occur
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2.2.2 Selection of Conditions

Our method selects the condition whose corresponding model is to be updated based

on the condition of the first event in a sequence. However, to make effective use of event

sequences and learn users’ behaviors even when only a small number of event sequences for

each condition are observed, we update not only the model corresponding to the condition

of its first event but also the models for similar conditions. When the condition of the

first event is
{
croot1 , . . . , crootimax

}
, the sequence is used to update the model for the region for

which the variable ci satisfies c
root
i − αi ≤ ci ≤ crooti + αi for some value αi, which can be

different for each i.

2.2.3 Updating the Tree of Event Sequences

When the home gateway observes an event sequence, we add nodes and links to the tree

corresponding to the selected conditions so that the event sequence is included in the

tree, the first event of the sequence is the root, and the final event of the sequence is

the leaf. Then, we increment a counter for each link on the route corresponding to the

event sequence. By repeating this procedure, the count for links related to frequent event

sequences increases. Thus, we detect anomalies by using the pruned tree which contains

only the links whose counters exceed a threshold nd ×Lnum where nd is a parameter, d is

the depth of the link, and Lnum is the total number of learned operations for the device

targeted for detection. By doing so, we eliminate the noise included in the event sequence.

2.3 Detection

When the home gateway observes a new operation, it generates event sequences related

to the operation. Then, it compares these sequences with learned behaviors.

2.3.1 Generation of Event Sequences

When the home gateway observes a new operation, it generates multiple event sequences,

in the same way as during learning, by removing some events from the sequence of events

that occurred within T seconds after previous event and uses these to check whether the

operation is anomalous.
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2.3.2 Decision-Making Method

We check whether the new operation is anomalous or not by comparing the generated

event sequences with the learned behaviors. We first select the condition corresponding

to the first operation of the generated sequences. Then, we compare each of the generated

sequences with the learned sequences for the selected condition by finding the events in

the tree. First, we find the tree whose root is the first event of the event sequence. Then,

we find the node that is connected to the found root and is the second event of the

event sequence. We repeat searching for nodes until nodes corresponding to all events in

the sequence are found or no corresponding nodes are found. We repeat the check for

all generated event sequences using the above steps. If all sequences have events whose

corresponding nodes are not found in the learned behavior, we classify the operation as

an anomaly. On the other hand, if corresponding nodes are found for all events in one of

the sequences and the node corresponding to the final event is the leaf, we decide that all

the events in the sequence are legitimate. If corresponding nodes are found for all events

in one of the sequences but the node corresponding to the final event is not the leaf, we

wait for the next event. If the next event does not occur for T seconds, we finish searching

for the sequence. If the next event occurs, we generate event sequences including the next

event and compare the sequences with learned behaviors using the same steps as described

above.

13



2.4 Parameter Setting

In this section, we describe the method used to set parameters. Our method has three

kinds of parameter, T , αi, and nd. T affects the generation of event sequences, while αi and

nd affect the model used for the detection. Thus, we set the parameter T independently

from the other parameters so as to generate suitable event sequences. To set parameters,

we use events monitored for P weeks. The information on the monitored events includes

the kind of event, the time, and the sensor values defining the conditions corresponding

to the events.

2.4.1 Setting the Parameter T

First, we set the parameter T . A user may operate multiple devices simultaneously or

within a small interval of time. In this thesis, we set T so that the operations of such

related devices are included in the event sequences.

Algorithm 1 shows the steps used to set T . In these steps, T is incremented until

the generated event sequences become stable. We check whether the generated event

sequences are stable by counting the number of pairs of events included in the same

event sequence using Algorithm 2. The number of pairs of events included in the same

event sequence (NumOfPair(T )) initially increases with T . However, the number becomes

stable when T is large enough that the operations of related devices are included in the

same sequences. Algorithm 2 regards the generated event sequences as stable when the

difference between NumOfPair(T ′) and NumOfPair(T ′ + Tinc) is less than N for all T ′

satisfying T ≤ T ′ < T + T stable
inc , where T stable

inc is a preset parameter.

14



Algorithm 1 Setting the parameter T

Input: P : Period of the parameter setting (weeks)

Output: T

T ⇐ Tinit

while IsNumberOfSequencesStable(T ) == False do

T ⇐ T + Tinc

end while

return T

Algorithm 2 Whether generated event sequences are stable

Input: T

Output: True | False

function IsNumberOfSequencesStable(T )

T ′ ⇐ T

while T − T ′ ≤ T stable
inc do

T ′ ⇐ T ′ + Tinc

if NumOfPair(T ′ + Tinc) - NumOfPair(T ′) ≥ N then

return False

end if

end while

return True

end function

15



2.4.2 Setting the Parameters αi and nd

After setting the parameter T , we set the parameters α and n, where α = {α1, · · · , αimax}

and n = {n1, · · · , ndmax}. imax is the number of values used to define the condition,

and dmax is a predefined value indicating the depth of the tree considered when setting

parameters. For the links whose depth d′ is larger than dmax, we use ndmax as nd′ .

The parameters α and n have impacts on the detection ratio (D), that is the pro-

portion of anomalous operations detected as anomalies, and misdetection ratio (M), that

is the proportion of legitimate operations detected as anomalies. In this thesis, we set

these parameters to obtain the highest detection ratio from among the values that given

an acceptable misdetection ratio, M ≤ M goal. In order to calculate the detection and

misdetection ratio, we perform the “Detection Test” shown as Algorithm 4. The detection

test calculates the detection and misdetection ratio when anomalous operations of IoT de-

vices are added to event datasets by using cross-validation. At first, we use event datasets

to learn behaviors except for a certain day. Then, we add 100 anomalous operations in

the omitted day and count the number of detected anomalous operations and misdetected

legitimate operations. After doing this for each day, we sum up the numbers of both and

calculate the detection and misdetection ratio.

Algorithm 3 shows the steps followed to set parameters α and n, and we obtain op-

timal parameters by calling Optαn(Null,Null, k = 1,M goal). This function finds optimal

parameter values by recursively calling itself with k incremented by 1. This function finds

optimal parameters by fixing the k′th parameters for k′ < k. As αi becomes large, the

misdetection ratio becomes small, because the observed event sequences are used to up-

date a larger range of conditions and similar event sequences are regarded as legitimate

even if the condition is slightly different from that of the learned sequence. Therefore, if

we cannot achieve a misdetection ratio less than M goal by setting αi = α′
i, an acceptable

misdetection ratio cannot be achieved for αi ≤ α′
i. Similarly, as nd becomes small, more

event sequences are used as legitimate behavior, and the misdetection ratio becomes small.

That is, if we cannot achieve a misdetection ratio less than M goal by setting nd = n′
d, an

acceptable misdetection ratio cannot be achived for nd ≥ n′
d. Therefore, to reduce the

calculation time, we avoid considering such parameters in Algorithm 3.
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If no parameters satisfy the target misdetection ratio, our algorithm cannot find suit-

able parameters. When such cases occurred in our evaluation, we increased the misdetec-

tion ratio until suitable parameters could be found.

17



Algorithm 3 Optimal α, n, and Detection-Misdetection Ratio

Input: αin,nin, k,M goal

Output: D,M,αbest,nbest

function Optαn(αin,nin, k,M goal)

for 0 < k′ < k do

if k′ ≤ imax then

αk′ ⇐ αin
k′

else

nk′−imax ⇐ nin
k′−imax

end if

end for

(Dbest,M best) ⇐ (0.0, 1.0)

if k ≤ imax then

αk ⇐ αmax
k

else

nk−imax ⇐ nmin
k−imax

end if

while True do

if k < imax + dmax then

(D′,M ′,α′,n′)⇐Optαn(α,n, k + 1,M goal)

else

(D′,M ′) ⇐ DetectionTest(α,n)

(α′,n′) ⇐ (α,n)

end if

if M ′ > M goal then

Break

else if D′ > D then

(Dbest,M best,αbest,nbest)⇐(D′,M ′,α′,n′)

end if

if k ≤ imax then

18



αk ⇐ αk − αdec
k

if αk < αmin
k then

Break

end if

else

nk−imax ⇐ nk−imax + ninc
k−imax

if nk−imax > nmax
k−imax then

Break

end if

end if

end while

return (Dbest,M best,αbest,nbest)

end function

19



Algorithm 4 Detection Test

Input: α,n

Output: D,M

function DetectionTest(α,n)

for each Day ∈ Period of parameter setting do

Insert 100 anomaly operations into the Day

Learn users’ behavior without the Day with α

Detect the Day’s operations with n

end for

Sum up the results of each Day

return Calculate D,M

end function

20



3 Evaluation

3.1 Evaluation Environment

Internet

Capturing
Packet

Operating Tablet

Mirroring

Home IoT Devices

Wireless
Access Point

Gateway 
Switch

Figure 4: Experimental Home Network Environment

To evaluate our method, we constructed a network of home IoT devices in our labo-

ratory, shown in Figure 4, and captured all packets. Because the “Gateway Switch” in

Figure 4 relays all packets of home IoT devices, we can capture every operation packets

of home IoT devices. We deployed 13 kinds of connectable home appliances, shown in

Table 1 and nine kinds of sensors, shown in Table 2. We selected four subjects of students

of the laboratory and let them use the home IoT devices as they liked for a month. In

addition, we ask them to record operating logs including time of entering and leaving the

laboratory and time of operating home IoT devices. We confirmed the times of opera-
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Table 1: List of Deployed IoT Devices

Devices Number of Set Devices

Air Purifier 2

Automatic Cooker 1

Coffee Maker 1

Electric Fan 4

Heater 1

Humidifier 1

Lighting Equipment 6

Microwave 1

Monitor Camera 1

Recorder 4

Refrigerator 1

Robot Vacuum 1

TV 4

tions of home IoT devices and users’ entering/leaving the laboratory can be obtained from

captured packets, comparing the time of operations obtained from captured packets with

log recorded by subjects. We also captured sensor data. The sensor data includes the

temperature, humidity, noise values, and so on.
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Table 2: List of Deployed IoT Sensors

Sensors Number of Set Devices

CO2 Sensor 2

Humidity Sensor 3

Noise Sensor 1

Particulate Matter Sensor 1

Pressure Sensor 1

Rainfall Sensor 1

Temperature Sensor 3

VOC Sensor 1

Wind Sensor 1
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3.2 Dataset

We recorded the times of operations of the home IoT devices from captured packets by

the increasing or decreasing of the number of packets of each device. From information

that whether smartphones are connected to the home network, we generate the events

that a user enters or leaves the home. From these information of events and behavior

logs recorded by the user, we evaluated our method. However, the value of sensors that

includes temperature, humidity, and noise, did not change significantly in our environment.

Therefore, in this evaluation, only the time of day is used to define the condition.

3.3 Procedure

We evaluated three datasets; the dataset obtained for one month in January 2017, and

the datasets obtained for the three months of April, June, and August 2017 and the three

months of May, July, and September 2017. In each period, the same subjects were using

the devices. The first dataset was obtained in the winter, and the subjects used the heater.

The other datasets were obtained from the spring to the summer, and the subjects did

not use the heater but used the electronic fans.

In this section, we use two metrics: the detection ratio and the misdetection ratio.

3.3.1 Misdetection Ratio

To evaluate the misdetection ratio in a straightforward way, we would need a sufficient

number of legitimate operations in the test data. However, we have only a limited number

of legitimate operations in our collected data. Therefore, we evaluate the misdetection

ratio by Leave-One-Out Cross-Validation (LOOCV) [21]. LOOCV separates the dataset

into multiple small datasets and verifies one of them after training using the others. After

verifying all patterns of the test dataset, we summarize the results.

For this thesis, we separated the data by day and used the data for one day as the test

data and used the data for the other days to learn legitimate behaviors.
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3.3.2 Detection Ratio

In our evaluation, we added anomalous operations into observed legitimate operations

to obtain the detection ratio. We used a strategy similar to that for the evaluation of

misdetection to obtain the detection ratio: we separated the dataset by day and used the

data for one day for the test and the remaining data for learning.

We added 100 anomalous operations into the test data for each day and tried to detect

them. Then, we obtain the detection ratio by counting the total number of detected

anomalous operations for all days and dividing by 100× number of days of observations.

3.4 Hyperparameters Setting

When determining optimal parameter values, we set hyperparameters as Table 3, where

Pnum is the number of operations used for parameter setting for the device targeted for

detection.

Table 3: Hyperparameters for Evaluation

Hyperparameter Value

M goal 0.10

Tinit, Tinc, T
stable
inc 0, 10, 120

N 10× P

imax 1

αmin
1 , αdec

1 , αmax
1 600, 600, 43200

dmax 2

nmin
1 , ninc

1 , nmax
1 0.00, 2/Pnum, 1.00

nmin
2 , ninc

2 , nmax
2 0.00, 1/Pnum, 1.00
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3.5 Evaluation Results

3.5.1 Evaluation Results for One Month

Table 4: Detection Results for January 2017

Detection Detected Misdetection Misdetection

Ratio /Total Ratio /Total

Coffee Maker 0.157 346/2200 0.000 0/48

Heater 0.959 2110/2200 0.182 2/11

Humidifier 0.080 176/2200 0.000 0/38

TV A 1.000 2200/2200 1.000 8/8

TV B 1.000 2200/2200 0.000 0/2

First, we used the dataset obtained in January 2017. In this evaluation, we set the

parameters by using the data monitored in the first week. After setting parameters, we

evaluate our method by LOOCV using the data monitored in the last three weeks. In this

evaluation, we also use the data monitored in the first week as training data to learn the

legitimate behaviors.

Table 4 shows the results of our evaluation in this case. Over 95% of anomalous

operations of the heater were detected. The high detection rate is achieved by using the

learned event sequences. Our method learned three patterns of event sequences related to

the heater; the patterns that a user operates a humidifier before operating a heater, a user

operates a heater before operating a coffee maker, and the user01 leaves the room after

operating a heater on the afternoon. Even if an anomalous operation command arrives,

we detect anomaly unless the operation matches the above-learned behaviors.

The number of misdetection of legitimate operations of the heater is two, which is

slightly larger than the predefined target ratio M goal. The misdetected operations are

related to the event sequence in which a user operates the heater before operating the

humidifier. Such event sequences occurred only a few times in one month and our method

did not learn such a sequence as legitimate.

Table 4 shows that the detection ratios for operations of the coffee maker or the
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humidifier are small. This is caused by single operation: for most of the operations of

the humidifier or the coffee maker, previous or subsequent events were not observed. In

addition, they were operated at various times of day. We set parameters so that such

single operations at various times of day cannot be detected as anomalies. As a result,

most of such operations are regarded as legitimate.

Table 4 also indicates that all anomalous operations of TVs are detected, but the

misdetection ratio for TV A is quite high. This is caused by the low number of operations

used to learn legitimate behavior. Furthermore, the monitored event sequences related to

TV A vary quite a lot. As a result, an event sequence cannot be learned as legitimate by

its similarity to other event sequences. The misdetection ratio of TV B is small because

many event sequences are used for detection.
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3.5.2 Evaluation Results for Three Months

Table 5: Detection Results for April, June, and August 2017.

Detection Detected Misdetection Misdetection

Ratio /Total Ratio /Total

Coffee Maker 0.611 3908/6400 0.058 3/52

Electric Fan A 0.998 6384/6400 0.000 0/9

Electric Fan B 0.999 6399/6400 0.000 0/6

TV A 0.996 6377/6400 0.171 7/41

TV B 1.000 6400/6400 0.400 4/10

TV C 0.999 6397/6400 0.000 0/10

TV D 0.999 6398/6400 0.111 1/9

Table 6: Detection Results for May, July, and September 2017.

Detection Detected Misdetection Misdetection

Ratio /Total Ratio /Total

Coffee Maker 0.057 368/6500 0.000 0/89

Electric Fan A 0.991 6439/6500 0.074 2/27

Electric Fan B 0.986 6409/6500 0.302 13/43

TV A 0.998 6485/6500 0.231 3/13

TV B 0.999 6497/6500 0.077 1/13

TV C 0.999 6496/6500 0.000 0/3

We also evaluated our method by using datasets for two sets of three months: April,

June, and August 2017 and May, July, and September 2017. We used data monitored in

the first week of each month to set parameter values and to learn legitimate behaviors,

and then performed LOOCV using the remaining data in a similar way and with same

parameters as for the 1-month data.

Tables 5 and 6 show the results of the evaluation in these cases. Our method detected

more than 98% of all anomalous operations, except for those of the coffee maker. This is
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because our method successfully learns legitimate event sequences that are repeated many

times, such as the sequence that electronic fans are often turned on immediately after

entering the room.

Tables 5 and 6 show that the misdetection ratios for operations of the TVs are smaller

than for the dataset for one month. This is because we used more event sequences to

learn legitimate behavior. As a result, when a new legitimate operation arrives, the

operation can be regarded as legitimate, because similar event sequences have been learned.

However, even when we use more data, we cannot detect the anomalous operations of the

coffee maker accurately. In addition, the misdetection ratios for TV B in Table 5 and

for Electronic Fan B and TV A in Table 6 are also large. This is caused by their single

operation. Therefore, to improve the detection of anomalous operations and reduce the

misdetection of the legitimate operations, we need a method to accurately identify such

single operations as legitimate, which is one of our future research topics.
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3.6 Discussion

Our method could detect around 95–100% of anomalous operations if the events related to

legitimate operations can be monitored. However, our method also produced several mis-

detections. These are either single operations, for which related events are not observed,

or rare operations whose corresponding event sequences are rare.

Our method achieves accurate detection of anomalous operations by comparing event

sequences. However, we cannot utilize a sequence to check a single operation and the

condition of the operation is the only information we have to determine whether such an

operation is legitimate.

One approach to improving the accuracy of identification for single operations is to

deploy sensors that can monitor events related to these operations. For example, single

operations of the humidifier occurred after the water tank became empty. If we can

monitor the water tank of the humidifier, we can obtain events related to its operation.

Consequently, such operations of the humidifier are no longer single operation. Another

approach to improving the accuracy of identification of legitimate single operations is to

use more information to define the conditions. In our evaluation, we used only the time

of day to define the condition. However, if we define a condition in such a way as to

distinguish conditions where legitimate operations are performed from other conditions,

we can identify legitimate single operations accurately. Methods to identify the legitimate

single operations are included in our future research topics.

The mitigation of misdetection of rare legitimate operations is another challenge, as

we cannot obtain a sufficient amount of training data to accurately identify such rare

operations in each home. One approach to obtaining more training data is to use data

monitored at other homes. However, several issues to be solved before this could be done.

One issue is the difference between homes; information about users whose behaviors when

using the devices are different may be useless. Thus, we need a method to obtain data

from other homes that have users with similar behaviors. Privacy is another issue. That

is, we need a method that uses the data from other homes without exchanging private

information. This is also one of our future research topics.
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4 Conclusion and Future Work

In this thesis, we proposed a method to detect the anomalous operation of home IoT

devices. This method learns sequences of user behaviors for each condition that is defined

by time of day, sensed temperatures, humidity and so on. Then, when an operation

command arrives, the method compares the current sequence with the learned sequences

for the condition corresponding to the current condition. If they do not match, our method

classifies the operation as an anomaly.

We constructed a network of home IoT devices in our laboratory and let four subjects

use the devices. We recorded the times at which the devices were operated along with

sensor data. Using this data, we evaluated the detection and misdetection ratios for our

method. The results demonstrate that our method detects around 95–100% of anomalous

operations if events related to legitimate operations are observed. However, our method

cannot accurately identify single operations for which related events are not observed.

Rare legitimate operations are also difficult to identify, which results in misdetection. The

development of methods to accurately identify rare or single operations is something we

will address in future research.
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