
Master’s Thesis

Title

Biochemically-inspired, adaptive, and autonomous VNF control

for service function chaining

Supervisor

Professor Morito Matsuoka

Author

Ryota Kurokawa

February 6th, 2019

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Biochemically-inspired, adaptive, and autonomous VNF control

for service function chaining

Ryota Kurokawa

Abstract

In Network Function Virtualization (NFV), various Virtual Network Functions (VNFs) are

deployed on general-purpose servers. A flow receiving NFV service may have a Service Function

Chaining (SFC) request that describes the order of VNFs to be applied to the flow. Therefore,

to efficiently operate the NFV system, placement of VNFs on servers, resource allocation to each

VNF, and flow routes are determined adaptively. Furthermore, to quickly respond to environmental

fluctuations, and to maintain the scalability of the NFV services, a distributed control is more

feasible than a centralized one. One way to achieve such behaviors is to exploit a biochemical

mechanism with autonomous dispersibility and self organization.

Our research group has proposed a construction method of service space in virtualized net-

work system based on biochemically-inspired tuple space model. In this method, the behaviors

in the virtualized network system are described by biochemical reactions in tuple spaces. Since

biochemical reaction equations are defined and executed independently in each tuple space, it is

suitable for achieving autonomous and decentralized behaviors. To operate the NFV system, the

above method has been extended to handle flow routes in accordance with SFC requests, and

server resource limitation. The basic behaviors of the extended method have been confirmed with

computer simulation. However, the evaluation assuming various situations in the NFV system has

not been performed. In addition, the method has been implemented and evaluated only in a sim-

ple experimental environment, so the applicability to the actual NFV system has not been clearly

shown.

In this thesis, we assess the performance of the NFV system based on the service space con-

struction method, and show its implementation design. We first explain chemical substances and

1

biochemical reaction equations required for applying the method to the NFV system. We then per-

form computer simulation experiments to clarify that the proposed method can cope with various

situations in the NFV system, such as time variation of traffic amount and a sudden network fail-

ure. We finally present the implementation design of the proposed method based on the existing

NFV framework. In detail, we show the detailed implementation environment using Open Plat-

form for NFV, one of major implementations of the NFV framework with open source softwares.

We also present the implementation of SFC using Network Service Header, proposed by Internet

Engineering Task Force.

Keywords

Network Function Virtualization (NFV)

Service Function Chaining (SFC)

Biochemical Mechanism

Tuple Space Model

Network Service Header (NSH)

2

Contents

1 Introduction 7

2 Related Work 11

3 VNF Control based on Tuple Space Model with Biochemical Reactions 14

3.1 Tuple Space Model . 14

3.2 Application to NFV System . 16

3.2.1 Resource Allocation and Execution of VNFs 16

3.2.2 Diffusion of VNFs . 19

3.2.3 Packet Forwarding . 20

3.2.4 Coexistence of Multiple VNFs . 21

4 Simulation Experiments 23

4.1 τ -Leaping Method . 23

4.2 Common Parameter Settings . 24

4.3 Scenario 1: Placement of VNFs Considering Flow Priorities 24

4.3.1 Application Scenario . 24

4.3.2 Network Topology and Parameter Settings for Simulation Experiments . 26

4.3.3 Simulation Results and Discussion . 28

4.4 Scenario 2: Route changes and VNF migrations on network failures 31

4.4.1 Application Scenario . 31

4.4.2 Network Topology and Parameter Settings for Simulation Experiments . 33

4.4.3 Simulation Results and Discussion . 35

5 Implementation Design of the Proposed Method with the NFV Framework 39

5.1 NFV Framework and its Integration with SDN 39

5.2 Positioning of the Proposed Method . 39

5.3 Implementation Environment . 41

5.4 Handle of Service Function Chaining . 43

5.4.1 Utilization of Network Service Header 43

5.4.2 Stochastic Selection of Flow Routes . 45

3

6 Conclusion and Future Work 49

Acknowledgments 50

Reference 51

4

List of Figures

1 NFV system . 8

2 Tuple space model using biochemical reaction 15

3 Application of tuple space model to NFV system 17

4 Movement of packets in accordance with gradient fields 22

5 Scenario1: Placement of VNFs considering flow priorities 25

6 Scenario1: Network topology for simulation experiments 27

7 Scenario1: Average number of executions of Reaction Equation (4) 29

8 Scenario1: Temporal change in the concentrations of RSRC at node 0 and node 1 30

9 Scenario2: Route changes and VNF migrations on network failures 32

10 Scenario2: Network topology for simulation experiments 34

11 Scenario2: Average number of executions of Reaction Equation (4) 36

12 Scenario2: Temporal change in the concentrations of VNF 37

13 Scenario2: Temporal change in the concentrations of RSRC at all nodes 38

14 NFV framework and its integration with SDN 40

15 System configuration of OPNFV . 42

16 Network Service Header (NSH) . 44

17 Implementation design of SFC using NSH in RFC 8300 44

18 Implementation design of SFC using NSH . 46

19 Stochastic determination of flow route with the proposed method 48

5

List of Tables

1 Comparison of VNF placement methods . 13

2 Correspondence between tuple space model and NFV system 17

3 Scenario1: Temporal change in rate of flows . 27

4 Scenario2: Temporal change in rate of flows . 34

5 Flow entries for handling NSH . 46

6

1 Introduction

Due to the wide and rapid spread of smartphones and tablets, and the development of Internet

of Things (IoT) [1], the number of devices connected to the network is increasing. As a result,

network services have become more diverse, and network traffic has also increased rapidly. In

general, to launch a new network service, new dedicated hardware devices are required. It requires

space and power to accommodate these devices, causing a decrease in revenue and an increase in

energy consumption. In addition, due to the continuous development and expansion of network

services, product life of dedicated hardware devices has been shortened, causing an increase in

capital expenditures. It also results in low flexibility to deal with system failures, maintenance and

operation of hardware.

Network Function Virtualization (NFV) is considered as one possible technique for resolving

such problems [2]. In NFV, network functions on dedicated hardware are achieved by software,

and deployed and executed on general-purpose servers. The network functions achieved by soft-

ware are called Virtual Network Functions (VNFs). Typical VNFs include Firewall [3], Network

Address Translation (NAT) [4], Intrusion Detection System (IDS) [5] and Evolved Packet Core

(EPC) [6, 7]. Figure 1 shows an NFV system. In NFV, multiple VNFs may share the resource on

a single server or one VNF may be distributed to multiple servers to provide services throughout

the network [8, 9]. As a result, it is possible to suppress operational and capital expenditures by

aggregating physical servers. It is also possible to flexibly respond to environmental fluctuations

by reallocating server resources to VNFs, migrating VNFs, and rerouting flow packets.

A flow receiving NFV service may have a Service Function Chaining (SFC) request that de-

scribes the order of VNFs to be applied to the flow. In Figure 1, a flow arriving at the NFV system

receives NFV services in accordance with the SFC request and exits the system. Therefore, to ef-

ficiently operate the NFV system, placement of VNFs to servers, resource allocation to each VNF,

and flow routes are determined adaptively in accordance with the SFC requests, traffic amount of

the flows, and amount of server resource. In addition, to quickly respond to environmental fluctu-

ations such as system failures and changing demands, and to maintain the scalability of the NFV

services, a distributed control is more feasible than a centralized one [10]. One way to achieve

such behaviors is to exploit a biochemical mechanism with autonomous dispersibility and self

organization [11, 12].

7

NFV network

server server server

network
flow

Firewall

switchswitch

switch

IPS
IDS

NAT
Router

packet

Firewall IDS NAT

Service Function Chaining (SFC) request

IPS

Figure 1: NFV system

8

Our research group has proposed a construction method of service space in virtualized network

system based on biochemically-inspired tuple space model [13, 14]. In this method, a server

is considered as a tuple space, and service requests, service demands and server resources are

expressed as chemical substances in tuple spaces. The behaviors in the virtualized network system

are then described by biochemical reaction equations in tuple spaces. Furthermore, by configuring

a network by connecting multiple tuple spaces, the movement and spread of services and requests

in a network system composed of multiple servers are represented. Since biochemical reaction

equations are defined and executed independently in each tuple space, it is suitable for achieving

autonomous and decentralized behaviors. We consider that one of possible application of the above

method is an NFV system. To operate an NFV system, the above method has been extended to

handle flow routes in accordance with SFC requests, and server resource limitation. By including

these behaviors in the method, it is possible to get closer to the actual NFV service. The basic

behaviors of the extended method have been confirmed with computer simulation. However, the

evaluation assuming various situations in the NFV system has not been performed. In addition,

the method has been implemented and evaluated only in a simple experimental environment, so

the applicability to the actual NFV system has not been clearly shown.

In this thesis, we assess the performance of the NFV system based on the service space con-

struction method, and show its implementation design. First, we briefly summarize how to apply

the service space construction method to the NFV system, explained in [14]. In particular, we de-

scribe various behaviors in the NFV system, such as the execution of VNFs to flow packets, server

resource allocation to each VNF, diffusion of VNFs, packet forwarding, and coexistence of multi-

ple VNFs on a single server, by biochemical reaction equations in tuple spaces. Then, we perform

computer simulation experiments assuming various situations in the NFV system, such as time

variation of traffic amount and a sudden network failure. Through the simulation experiments, we

confirm that the proposed method can cope with dynamical changes in the NFV system.

We then explain how to incorporate the proposed method to NFV framework [15] proposed

by European Telecommunications Standards Institute (ETSI) Industry Specification Group (ISG).

We show the detailed implementation environment using Open Platform for NFV (OPNFV) [16],

one of major implementation of the NFV framework with open source softwares such as Open-

Stack [17], OpenDaylight [18], and Kernel-based Virtual Machine (KVM) [19]. In addition, we

present an example of the implementation of SFC using Network Service Header (NSH) [20]

9

proposed by Internet Engineering Task Force (IETF).

The rest of this thesis is organized as follows. Section 2 summarizes the related work. Sec-

tion 3 explains the tuple space model using biochemical reactions and how to apply the model

to NFV system. Section 4 shows the simulation results to confirm that the proposed method can

cope with dynamical network situations in the NFV system. Section 5 shows the implementation

design of the proposed method with the NFV framework and a realization of the implementation

of SFC using NSH. Finally, Section 6 concludes this thesis and presents some directions for future

research.

10

2 Related Work

Various methods have been proposed for placement of VNFs in the NFV system [21]. These

existing works, as well as the method proposed in our research group [13, 14], are summarized in

Table 1.

The authors of [22–27] proposed various methods for dynamic placement of VNFs. In [22],

the authors studied the deployment of NFV middleboxes considering the traffic changing effects

by middleboxes to achieve the optimal network performance. In [23], the authors presented a

dynamic placement approach of VNFs to maintain low end-to-end latency in edge and cloud com-

puting environments. In [24], the authors presented a placement algorithm of VNFs based on the

estimation of the access location of users. It considers the migration of VNF instances to higher

accessed locations. In [25], the authors proposed VNF placement strategies in edge and cloud

computing environments to optimize resource utilization, prevent cloud overload, and avoid the

violation of QoS requirements. The authors of [26] studied the migration of flows for NFV elastic

contol including scaling, load balancing, failure recovery, and upgrading of VNFs. In [27], the

authors proposed a dynamic scaling algorithm of VNF instances considering the tradeoff between

response time and operation cost. However, the authors of [22–27] did not consider SFC requests

of accommodated flows.

The authors of [28–31] proposed VNF placement methods considering SFC requests. In [28],

the authors proposed a dynamic programming algorithm for VNF placement that maximizes ac-

ceptance rate of SFC requests, resource utilization, and provider’s revenue. In [29], the authors

studied SFC orchestration mechanism across multiple data centers to minimize overall costs in-

cluding the deployment cost of VNFs and bandwidth cost between data centers. It is possible

to scale-in and scale-out VNF instances depending on the number of jobs in the system. How-

ever, [28, 29] did not consider the relocation of VNFs against changes in network environment

over time.

In [30], the authors presented a model of the dynamic and adaptive placement of VNFs consid-

ering the relocation of VNFs. In [31], the authors proposed a dynamic SFC deployment approach

to reduce hop violations of SFC requests in data centers. The hop violations are reduced by mi-

grating VNF instances to the other servers. However, the authors of [30, 31] did not consider the

dynamic scaling of VNF instances and the reconfiguration of flow paths.

11

In [32], the authors proposed a VNF placement algorithm to meet latency requirements of

SFC requests, as well as minimizing energy consumption. The proposed algorithm considers the

migration of VNFs, the integration of multiple VNFs with low demand into one, and the replication

of highly-demanded VNFs. The paths of SFC requests are then reconfigured. The authors of [33]

studied a dynamic placement algorithm of VNFs to maximize network throughput, that considers

the migration of VNF instances and instantiation of new VNF instances.

In our proposed method, we consider the SFC requests of accommodated flows in the NFV

system. In addition, the proposed method enables the dynamic and adaptive relocation of VNFs,

and scaling of VNF instances in accordance with changes in network environments. Furthermore,

the proposed method controls the NFV system in a distributed fashion, while most of existing

methods assume centralized control.

12

Table 1: Comparison of VNF placement methods
[22, 25] [23, 24] [26] [27] [28, 29] [30, 31] [32, 33] Proposed

Dynamic placement of VNFs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Consideration of SFC requests ✓ ✓ ✓ ✓

Migration of VNFs ✓ ✓ ✓ ✓

Scaling of VNF instances ✓ ✓ ✓ ✓

Reconfiguration of flow paths ✓ ✓ ✓

Distributed system control ✓

13

3 VNF Control based on Tuple Space Model with Biochemical Reac-

tions

In this section, we summarize the tuple space model using biochemical reactions and how to apply

the model to NFV system, described in [14].

3.1 Tuple Space Model

A tuple space model in [14] is one of the models that describes a distributed system. Figure 2

depicts the tuple space model in this thesis. In the figure, a component of the distributed system

is modeled as a tuple space. In a tuple space, biochemical reactions occur. Then, tuples in the

tuple space correspond to chemical substances, and the amount of tuples corresponds to the con-

centrations of chemical substances. The concentrations of tuples can be increased and decreased

by defining and executing biochemical reactions in tuple spaces.

A reaction rate of a biochemical reaction is determined by the product of the concentration of

each reactant and the rate coefficient defined in the biochemical reaction equation. For example,

we consider that the following reaction equation is defined, which defines X and Y as reactants,

Z as a product, and a as a reaction rate coefficient.

X |Y a−→ Z

If the concentrations of reactants X and Y are respectively x and y, the reaction rate is axy. Due

to this property, the reaction rates in biochemical reactions are controlled by the concentrations of

reactants and the rate coefficients defined in biochemical reaction equations.

In addition, a network can be configured by connecting multiple tuple spaces. It is possible

to achieve the interaction among multiple tuple spaces by defining biochemical reactions that

describe the diffusion and movement of tuples among tuple spaces. Since biochemical reactions

in each tuple space occur independently, autonomous and decentralized behaviors in networked

system can be described.

14

: Tuple Space : Chemical Substances (Tuple)

+ + →
→++ +

Tuple Space

Biochemical Reaction

Biochemical Reaction Biochemical Reaction

Distributed System

Tuple Space

Tuple Space Tuple Space

→++ +

+ + →
→++ +

→++ +

Biochemical Reaction

Figure 2: Tuple space model using biochemical reaction

15

3.2 Application to NFV System

Figure 3 depicts the application of the model described in SubSection 3.1 to NFV system. To

apply the tuple space model to NFV system, a tuple space is associated with a server that deploys

and executes VNFs. Tuples in the tuple spaces correspond to demands of VNFs, flow packets,

server resources, and so on. The behaviors in the NFV system are described by biochemical

reaction equations in tuple spaces. Biochemical reaction equations are defined to adaptively and

autonomously determine placement of VNFs on the servers, the resource allocation to each VNF,

and flow routes in accordance with SFC requests, traffic amount of the flows, and the amount of

server resources. Table 2 shows the correspondence between the tuple space model and the NFV

system.

An SFC request for a flow, represented by a series of VNFs, f1, f2, f3, ..., fend is described as

follows.

c = {f1, f2, f3, ..., fend}

When VNF f1 is executed to the flow with an SFC request c, c changes as follows.

c←− c\{f1} = {f2, f3, ..., fend}

A VNF that is executed at first in c is represented by f1(c). In this thesis, the subscript f , c and t of

chemical substances represent a VNF, an SFC request, and a server, respectively. In what follows,

we present biochemical reaction equations that achieve various behaviors for the NFV system.

3.2.1 Resource Allocation and Execution of VNFs

It is desirable that placement of VNFs on servers and resource allocation to each VNF are deter-

mined in accordance with demands of VNFs. It is required that VNFs in low demand have low

priority in the server and those in high demand have high priority to be executed. When a packet

of a flow with an SFC request c arrives at a server, VNF f 1 (c) is applied to the packet. Then,

when c is composed of multiple VNFs, the SFC request c changes so that the executed VNF is

deleted from c. On the other hand, when c is composed of one VNF, the packet disappears. The

above behaviors are described by Reaction Equations (1) and (2).

16

: Server : Server resource

+ + →
→++ +

Server

Biochemical Reaction

Biochemical Reaction Biochemical Reaction

NFV System

Server

Server Server

→++ +

+ + →
→++ +

→++ +

Biochemical Reaction

Packets

Packets

: Demand of VNF : Flow packet

Figure 3: Application of tuple space model to NFV system

Table 2: Correspondence between tuple space model and NFV system

Tuple Space Model NFV System

Tuple Spaces General-purpose Servers

Chemical Substances Demand of VNFs, Flow Packets, Server Resources, Gradient Fields for VNFs

Biochemical Reactions
Apply VNFs to Packets, Demand Increase of VNFs, Decay of VNFs

Server Resource Allocation to VNFs, Diffusion of VNFs, Packet Forwarding

17

VNFf 1 (c) |PKTc
rus−−→



VNFf 1 (c) |VNFf 1 (c) |PKTc\{f 1 (c)}

| toserve(VNFf 1 (c),PKTc) (c\{f1(c)} ̸= ∅)

VNFf 1 (c) |VNFf 1 (c)

| toserve(VNFf 1 (c),PKTc) (c\{f1(c)} = ∅)

(1)

VNFf
rds−−→ 0 (2)

In the above Equations, substance VNFf 1 (c) indicates the VNF to be applied for a flow. A VNF

with a large concentration value means that its execution is highly demanded. Substance PKTc

represents a packet constituting a flow with c. Substance toserve(VNFf 1 (c),PKTc) indicates

result of applying the VNF to a packet of a flow with c. rus and rds are the rate coefficients

of Reaction Equations (1) and (2), respectively, to determine the rate of reactions. Reaction (1)

indicates that a VNF is executed to packets of a flow on a server, and the concentration of VNF

increases to represent the demand increase for the corresponding VNF. Reaction (2) indicates that

VNF decays at a rate proportional to its concentration.

The execution rate of a biochemical reaction is determined in proportion to the product of the

concentration of each reactant of the reaction. Therefore, in Reaction Equation (1), as the con-

centrations of VNF and PKT increase, the reaction rate increases without limitation. However,

servers have their performance constraints determined by server resources such as CPU capacity

and memory size. Therefore, using only Reaction (1) is not suitable for describing the behaviors

in the NFV system. To describe the above constraints, enzyme-catalyzed reactions mechanism in

biochemical reactions are exploited [34]. In enzyme-catalyzed reactions, the reaction rate can be

controlled by the concentration of the catalyst which does not affect the reaction itself. The ba-

sic equation of the enzyme-catalyzed reaction is shown in the following Reaction Equation, which

defines E as an enzyme, S as a substrate, ES as an enzyme-substrate complex, and P as a product.

E |S ⇆ ES → E |P

The execution rate of the enzyme-catalyzed reaction can be determined by introducing an enzyme-

substrate complex into the reaction [35]. To describe the constraints of server resources, Reaction

18

Equation (1) is extended into the following Reaction Equations (3) and (4) by applying enzyme-

catalyzed reactions mechanism.

RSRCt |VNFf

rv1
⇆
ru1

RS VNFf (3)

RS VNFf 1 (c) |PKTc

rv2
⇆
ru2

MEDIATEc
rw−→



VNFf 1 (c) |VNFf 1 (c) |PKTc\{f 1 (c)}|RSRCt

| toserve(VNFf 1 (c),PKTc) (c\{f1(c)} ̸= ∅)

VNFf 1 (c) |VNFf 1 (c) |RSRCt

| toserve(VNFf 1 (c),PKTc) (c\{f1(c)} = ∅)

(4)

The concentrations of substances RSRCt，RS VNFf , and MEDIATEc respectively represent

the amount of available resources of a server t, the amount of server resources allocated to VNF

f , and the amount of server resources allocated to the flow packets with SFC request c. rv1 and

ru1 are the rate coefficients for Reaction Equation (3), and rv2 , ru2 and rw are the rate coefficients

for Reaction Equation (4). Reaction Equation (3) indicates that server resources are allocated in

accordance with the demand of each VNF, and that the allocation is controlled by the concentration

of RSRC . Reaction Equation (4) indicates that VNF f is executed on the basis of the amount of

allocated resources.

3.2.2 Diffusion of VNFs

To describe the diffusion of highly-demanded VNFs to other servers, Reaction Equation (5) is

described.

VNFf
rmf−−→ VNFf

; (5)

rms is the rate coefficient for Reaction Equation (5). This Reaction Equation indicates that a

highly-demanded VNF in a server diffuses to the surrounding connected servers at a rate propor-

tional to its concentration. This diffusion destination of VNFs is stochastically determined in ac-

cordance with the concentrations of VNF at connected tuple spaces. As a result, highly-demanded

VNFs are distibuted to multiple servers.

19

3.2.3 Packet Forwarding

When packets remain unprocessed in a server due to a lack of server resources for corresponding

VNF, it is required that the packets move to another server that can process the corresponding

VNF. Furthermore, the forwarding direction of packets should be determined so that the packets

would approach a server executing the corresponding VNFs with enough server resources. To

achieve these behaviors, a gradient field is exploited to determine the moving directions of packets.

A gradient field for each VNF is constructed based on the demand of VNFs and the available

resources on each server. The moving direction of packets is then determined in accordance with

the gradient field. For that purpose, Reaction Equations (6)-(10) are introduced.

VNFf |RSRCt
rrg−−→ VNFf |RSRCt |GRADf (6)

VNFf |RS VNFf
rrg−−→ VNFf |RS VNFf |GRADf (7)

GRADf
rdg−−→ 0 (8)

GRADf
rmg−−→ GRAD;

f (GRAD−
f) (9)

PKTc
rmp−−→ PKT;

c (GRAD+
f) (10)

Substance GRADf establishes a gradient field for VNF f . rrg is the rate coefficient for Reaction

Equation (6) and (7), and rdg , rmg and rmp are the rate coefficients for Reaction Equation (8),

(9) and (10), respectively. Reaction Equation (6) and (7) indicate that GRAD is generated at a

rate proportional to the concentrations of VNF , RSRC , and RS VNF . Reaction Equation (8)

indicates that GRAD decays at a rate proportional to its concentration. Reaction Equation (9)

indicates that GRAD spreads to the surrounding servers with smaller concentration of GRAD .

Therefore, the gradient field is constructed so that the server providing VNFs with enough re-

sources becomes a summit with the largest concentration of GRAD , and the surrounding servers

have smaller concentration of GRAD in accordance with the distance from the summit. Reaction

Equation (10) describes the movement of PKT to the surrounding servers with large concentration

of GRAD . The forwarding direction of packets are stochastically determined at a proportional to

the concentrations of GRAD at connected tuple spaces. Figure 4 depicts the movement of packets

with the SFC request c = {f0, f1, f2}. The gradient fields are respectively generated for each

VNF. First, packets move in the direction of the summit of the gradient field for f0. Then, after

applying f0 to the packets, they move in the direction of the summit of the gradient field for f1.

20

Finally, after applying f1 to the packets, they move in the direction of the summit of the gradient

field for f2.

3.2.4 Coexistence of Multiple VNFs

When multiple VNFs coexist on a single server, it is required to share server resources by allocat-

ing them in accordance with the demand of each VNF. Therefore, the above-mentioned biochem-

ical reaction equations are defined for each VNF.

21

Gradient
field of f0

Gradient
field of f1

Gradient
field of f2

SFC request { }, .f0 f1 f2

Figure 4: Movement of packets in accordance with gradient fields

22

4 Simulation Experiments

In this section, we assess the performance of the NFV system based on the method described in

Section 3. The basic behaviors of the proposed method, such as placement of VNFs on servers,

resource allocation to each VNF, and flow routing in accordance with SFC requests, have been

confirmed in [14]. We then confirm that the proposed method can cope with dynamical changes

in the NFV system.

4.1 τ -Leaping Method

In order to simulate the model with biochemical reactions, we exploit τ -leaping method [36],

which is one of stochastic simulation algorithms that can capture the inherent stochasticity in

many biochemical systems. The basic idea of τ -leaping method is to obtain temporal change in

concentrations of chemical substances by executing reactions simultaneously during preselected

time τ . The procedures of τ -leaping algorithm are briefly explained as follows.

Step 1 Set τ for the time step of the simulation

Step 2 Calculate reaction rates of biochemical reactions by the product of concentrations of reac-

tants and reaction rate coefficients

Step 3 Determine the number of executions of biochemical reactions during time τ , using a Pois-

son random variable

Step 4 Execute biochemical reactions as many times as the number determined in Step 3, and

update the concentrations of substances

Step 5 Progress simulation time by τ

Step 6 Return to Step 2

The value of τ should be chosen to balance the trade-off relationship between simulation accuracy

and simulation speed. As the value of τ increases, the results become different from the actual

behavior while the simulation can proceed faster. In [37], the authors determined the optimal

value of τ especially for the simulation accuracy, at the sacrifice of the computational cost of the

simulation. In [14], the value of τ was detemined by performing some preliminary experiments.

23

In the simulation experiments in this section, the value of τ is set to 0.6 [msec], which is identical

to that in [14].

4.2 Common Parameter Settings

The initial values of the concentrations of substances VNF for the VNFs placed on servers are

set to 2,000. The initial values of the concentrations of other chemical substances except RSRC

are set to 0. Unless otherwise specified, the reaction rate coefficients of Reaction Equations (3)-

(10) are set as ru1 = 0.0003, rv1 = 0.278, ru2 = 0.1, rv2 = 0.001, rw = 0.05, rd = 0.01,

rmf = 0.003, rrg = 0.0001, rdg = 0.03, rmg = 0.005, rmp = 0.3, as used in [14].

4.3 Scenario 1: Placement of VNFs Considering Flow Priorities

4.3.1 Application Scenario

In this scenario, we consider the situation where there are two kinds of application flows with

SFC requests that have different priorities on the latency requirements. Figure 5 depicts this sce-

nario. In the figure, Web service and video streaming service are provisioned in edge and cloud

computing environments. In the beginning, a Web server and a video streaming server are placed

in the cloud. The both servers receive requests from user devices, and send content packets to

the user devices. Flows between the Web server and user devices require functions of rendering

and caching in the network. On the other hand, transcoding and caching functions are applied

to flows between the video streaming server and the user devices. Consequently, these VNFs are

deployed in the network, that are called as VNF 0 and VNF 1, respectively. Furthermore, the SFC

requests of the flows in the NFV system are {Web server→VNF 0→User device} and {Streaming

server→VNF 1→User device}. These SFCs are respectively denoted by SFC 0 and SFC 1. We

assume that the flows for the video streaming service have higher priority in being executed at the

edge server to meet the latency requirements.

24

Core server
(Web server)

Core server
(Video streaming server)

Edge server

SFC request 0 (Web service)
● Web server → VNF0 → User device

Core server

No VNF

Edge

Cloud CloudCloud

Resource

Resource

VNF0: Web content cache
● Render and store HTML contents

VNF1: Video content cache
● Trandcode and store video streams

User devices

SFC request 1 (Video streaming service)
● Streaming server → VNF1 → User device

(a) Edge server being not busy

Edge server

Core server

No VNF

Edge

Cloud CloudCloud

Resource

Resource

VNF0: Web content cache
● Render and store HTML contents

VNF1: Video content cache
● Trandcode and store video streams

User devices

Migrate VNF

SFC request 0 (Web service)
● Web server → VNF0 → User device

SFC request 1 (Video streaming service)
● Streaming server → VNF1 → User device

Core server
(Video streaming server)

Core server
(Web server)

(b) Edge server being busy

Edge
server

Core server

Edge

Cloud CloudCloud

Resource

Resource

VNF0: Web content
cache
● Render and
store HTML contents

VNF1: Video content cache
● Trandcode and store video streams

SFC request 0 (Web service)
● Web server → VNF0 → User device

SFC request 1 (Video streaming service)
● Streaming server → VNF1 → User device

User devices

Core server
(Video streaming server)

Core server
(Web server)

(c) Migrating the Web service VNF to the cloud server

Figure 5: Scenario1: Placement of VNFs considering flow priorities

25

As depicted in Figure 5(a), in case of edge server being not busy, VNF 0 and VNF 1 are

deployed on the edge server to realize contents caching for both services near the user devices.

In Figure 5(b), since the number of user devices increases, the edge server becomes busy and all

packets cannot be processed only at the edge server. Then, as depicted in Figure 5(c), VNF 0 is

migrated to the cloud server, while VNF 1 remains on the edge server to avoid the degradation of

the quality of both services.

4.3.2 Network Topology and Parameter Settings for Simulation Experiments

Figure 6 depicts the network topology for simulation experiments of Scenario 1, that consists of

two nodes and a link. Node 0 and node 1 correspond to the edge server and the cloud server,

respectively. VNFf0 and VNFf1 correspond to VNF 0 and VNF 1 in Figure 5, respectively. There

are two flows with SFC requests c0 = {f0} and c1 = {f1}, corresponding to the flows with SFC 0

and SFC 1. These flows are denoted by flow 0 and flow 1, respectively.

The simulation time is 2,000 [msec]. VNFf0 and VNFf1 are initially deployed on node 0,

and their initial concentrations are set to 2,000. The initial concentrations of RSRC at node 0

and node 1 are set to 500 and 1,000, respectively, which means that the cloud server has larger

and sufficient resource than the edge server. Table 3 shows the temporal change in flow rates.

In the table, t is defined as simuation time. For 0 ≤ t ≤ 1, 000, packets of flow 0 and flow 1

arrive at node 0 at 5 packets per time step, corresponding to 8.3 [Kpps]. At t = 1, 000, the rates of

both flows are increased to 20 packets per time step, corresponding to 33.3 [Kpps]. Note that for

0 ≤ t ≤ 1, 000, the edge server can process all incoming packets, and for 1, 000 < t ≤ 2, 000, the

edge server cannot process all packets.

To prioritize the execution of VNF 1 at node 0, the rate coefficient ru1 in Reaction Equation (3)

is adjusted. We utilize ru1 = 0.0003 for the VNFf0 , and ru1 = 0.003 for the VNFf1 at node 0,

to prioritize flow 1. We also perform simulation experiments with ru1 = 0.0003 for VNFf0 and

VNFf1 at node 0 for comparison purposes.

26

0 1
: NodeX

: Network link

RSR : 1, 000C1

VN : 2, 000Ff0

VN : 2, 000Ff
1

RSR : 500C0

Initial concentration

Initial concentration

Node 1 (Cloud)Node 0 (Edge)

: { }c1 f1

: { }c0 f0

Figure 6: Scenario1: Network topology for simulation experiments

Table 3: Scenario1: Temporal change in rate of flows

Flow Priority
Rate

0 ≤ t ≤ 1, 000 [msec] 1, 000 < t ≤ 2, 000 [msec]

flow 0 low 8.3 [Kpps] 33.3 [Kpps]

flow 1 high 8.3 [Kpps] 33.3 [Kpps]

27

4.3.3 Simulation Results and Discussion

Figure 7 plots the average number of executions of Reaction Equation (4), that corresponds to the

executions of VNFs to flow packets, as a function of simulation time step. Figures 7(a) and 7(b)

show simulation results with ru1 = 0.0003 and ru1 = 0.003 for VNFf0 at node 0, respectively.

Figure 8 shows the temporal change in the concentrations of RSRC at node 0 and node 1.

For 0 ≤ t ≤ 1, 000, VNFf0 and VNFf1 are executed almost only at node 0. This is because

node 0 has sufficient resources to execute both VNFs to flow packets. It can be confirmed from the

concentration of RSRC0 in Figure 8. For 1, 000 < t ≤ 2, 000, VNFf0 and VNFf1 are executed

at node 0 and node 1 in a distributed manner, when using the same value of ru1 for VNFf0 and

VNFf1 . This is because node 0 has insufficient resources to execute both VNFs due to the increase

in flow rates. It can be confirmed from the concentration of RSRC0 in Figure 8(a). On the other

hand, when setting ru1 in accordance with flow priorities, VNFf0 and VNFf1 are executed at

node 1 and node 0, respectively. This behavior realizes that the VNF in video streaming service

with higher priority is preferentially executed at the edge server, as depicted in Figure 5.

28

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf0
, PKTc0

)
Node0: toserve(VNFf1

, PKTc1
)

Node1: toserve(VNFf0
, PKTc0

)
Node1: toserve(VNFf1

, PKTc1
)

(a) ru1 = 0.0003

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf0
, PKTc0

)
Node0: toserve(VNFf1

, PKTc1
)

Node1: toserve(VNFf0
, PKTc0

)
Node1: toserve(VNFf1

, PKTc1
)

(b) ru1 = 0.003

Figure 7: Scenario1: Average number of executions of Reaction Equation (4)

29

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: RSRC0
Node1: RSRC1

(a) ru1 = 0.0003

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: RSRC0
Node1: RSRC1

(b) ru1 = 0.003

Figure 8: Scenario1: Temporal change in the concentrations of RSRC at node 0 and node 1

30

4.4 Scenario 2: Route changes and VNF migrations on network failures

4.4.1 Application Scenario

In this scenario, we consider the situation where failures of network link occur. Figure 9 depicts

this scenario. In the figure, two Web services are provisioned in cloud computing environment.

The both of Web server 0 and Web server 1 receive requests from user devices, and send content

packets to the user devices. Flows between the Web servers and user devices require a function

for filtering, monitoring, and blocking HTTP traffic, a function for monitoring and controling

incoming and outgoing network traffic, a function for rendering and caching in the network, and

a function for translating network addresses. Consequently, four VNFs exist in the network, that

are denoted by VNF 0, VNF 1, VNF 2, and VNF 3. Initially, VNF 0, VNF 1, VNF 2, and

VNF 3 are respectively deployed on server 0, server 1, server 2, and server 3. VNF 1 is applied

to the flow between Web server 0 and user devices, and VNF 0, VNF 2, VNF 3 are sequentially

applied to the flow Web server 1 and user devices. The SFC requests of the two flows are {Web

server→VNF1→User device} and {Web server→VNF0→VNF2→VNF3→User device}, that is

called SFC 0 and SFC 1.

Figure 9(a) shows the situation where the system is operated normally. In Figure 9(b), a

network link between server 0 and server 2 is disconnected due to network failures. Then, server 0

forwards flow packets via server 1 to continue the service. Additionally, VNF 2 is migrated to

server 1 to reduce the number of hops. In Figure 9(c), the number of user devices increases and

server 1 becomes busy, that means all packets cannot be processed only at server 1. Then, VNF 1

and VNF 2 are executed at server 1 and server 2 in a distributed manner.

31

Web server1Server0

VNF0: Web Application Firewall
● Filter packets

VNF2: Web content cache
● Render and store HTML contents

User devices

Server2Server1

Web server0

User devices

Server3 SFC request 1 (Web service)
● Web server1 → VNF0 → VNF2 → VNF3 → User device

SFC request 0 (Web service)
● Web server0 → VNF1 → User device

VNF3: NAT
● Translate network address

VNF1: Firewall
● Filter packets

(a) System being operated normally

Web server1Server0

VNF0: Web Application Firewall
● Filter packets

VNF2: Web content cache
● Render and store HTML contents

User devices

Server2Server1

Web server0

User devices

Server3

SFC request 0 (Web service)
● Web server0 → VNF1 → User device

Migrate VNF

SFC request 1 (Web service)
● Web server1 → VNF0 → VNF2 → VNF3 → User device

VNF3: NAT
● Translate network address

VNF1: Firewall
● Filter packets

(b) System failures occur

Web server1Server0

VNF0: Web Application Firewall
● Filter packets

No VNF

User devices

Server2Server1

Web server0

User devices

Server3

VNF1: Web content cache
● Render and store HTML contents

VNF2: Firewall
● Filter packets

SFC request 0 (Web service)
● Web server0 → VNF1 → User device

Replicate VNFs

SFC request 1 (Web service)
● Web server1 → VNF0 → VNF2 → VNF3 → User device

VNF3: NAT
● Translate network address

(c) The server being busy

Figure 9: Scenario2: Route changes and VNF migrations on network failures

32

4.4.2 Network Topology and Parameter Settings for Simulation Experiments

Figure 10 depicts the network topology for Scenario 2, that consists of four nodes and five links.

Node 0, node 1, node 2, and node 3 correspond to server 0, server 1, server 2, and server 3 in

Figure 9, respectively. VNFf0 , VNFf1 , VNFf2 , and VNFf3 correspond to VNF 0, VNF 1, VNF 2,

and VNF 3, and are initially deployed on node 0, node 1, node 2, and node 3, respectively. There

are two flows with SFC requests c0 = {f1} and c1 = {f0, f2, f3}, corresponding to the flows

with SFC 0 and SFC 1, that are called flow 0 and flow 1, respectively. When VNFf0 is executed

to the flow with c1, c1 changes as c2 = {f2, f3}. When VNFf2 is executed to the flow with c2,

c2 changes as c3 = {f3}. The flows with SFC requests c2 and c3 are called flow 2 and flow 3,

respectively.

The simulation time is 3,000 [msec]. The initial concentrations of VNFf0 , VNFf1 , VNFf2 , and

VNFf3 are set to 2,000. The initial concentrations of RSRC at all nodes are set to 1,000. Table 4

shows the temporal change in flow rates. In the table, t is defined as simulation time. For 0 ≤ t ≤

2, 000, packets of flow 0 arrive at node 1 at 10 packets per time step, corresponding to 16.6 [Kpps].

Packets of flow 1 arrive at node 0 at 20 packets per time step, corresponding to 33.3 [Kpps]. At

t = 2, 000, the rate of flow 0 is increased to 30 packets per time step, corresponding to 50 [Kpps].

Note that for 0 ≤ t ≤ 2, 000, node 1 processes all incoming packets, and for 2, 000 < t ≤ 3, 000,

node 1 cannot process all packets. In addition, at t = 1, 000, a network link between node 0 and

node 2 is disconnected.

When we configure the diffusion of VNFs so that all VNFs can be diffused to any other nodes,

the concentrations of VNFf1 and VNFf2 increase at node 0 by executions of Reaction Equation (4)

because packets of flow 1 arrive at node 0. Then, VNFf1 and VNFf2 are executed at node 0, and

we cannot confirm the behaviors in Scenario 2. Therefore, the diffusion areas of VNFf1 and

VNFf2 are limited to node 1 and node 2, and the reaction rate coefficient rmf for VNFf0 and

VNFf3 of Reaction Equation (5) is set to 0, so that the route of flow 1 is adequately changed on

network failure, and that VNFf1 and VNFf2 are executed at node 1 and node 2 in a distributed

manner, when the amount of traffic increases.

33

0

VN : 2, 000Ff0

RSR : 1, 000C0

Initial concentration

: { , , }c1 f0 f2 f3

1 2

VN : 2, 000Ff2

RSR : 1, 000C2

Initial concentration

VN : 2, 000Ff1

RSR : 1, 000C1

Initial concentration

 : No diffusion
 : Diffuse to Node1 and Node2
 : Diffuse to Node1 and Node2
 : No diffusion

VNFf0

VNFf
1

VNFf
2

VNFf3

3

VN : 2, 000Ff3

RSR : 1, 000C3

Initial concentration
Diffusion of VNFs

: { }c0 f1

: NodeX

: Network link

Node 0

Node 1 Node 2

Node 3

Figure 10: Scenario2: Network topology for simulation experiments

Table 4: Scenario2: Temporal change in rate of flows

Flow
Rate

0 ≤ t ≤ 2, 000 [msec] 2, 000 < t ≤ 3, 000 [msec]

flow 0 16.6 [Kpps] 50 [Kpps]

flow 1 33.3 [Kpps] 33.3 [Kpps]

34

4.4.3 Simulation Results and Discussion

Figure 11 plots the average number of executions of Reaction Equation (4). Figures 11(a), 11(b),

11(c), and 11(d) are results for VNFf0 , VNFf1 , VNFf2 , and VNFf3 , respectively. Figure 12 shows

the temporal change in the concentrations of VNFf0 , VNFf1 , VNFf2 , and VNFf3 . Figure 13

shows the temporal change in the concentrations of RSRC at all nodes.

For 0 ≤ t ≤ 1, 000, VNFf1 is executed at node 1 in Figure 11(b). It can be confirmed

from the concentration of VNFf1 in Figure 12(b). VNFf0 , VNFf2 , and VNFf3 are executed at

node 0, node 2, and node 3 in Figures 11(a), 11(c), and 11(d). For 1, 000 < t ≤ 2, 000, VNFf2 is

executed at node 1. This is because VNFf2 is migrated to node 1, where packets of flow 1 arrive

after VNFf0 is applied. This behavior realizes that server 0 forwards flow packets via server 1

and VNF 2 is migrated to server 1, as depicted in Figure 9. For 2, 000 < t ≤ 3, 000, VNFf1

and VNFf2 are executed at both of node 1 and node 2 in a distibuted manner. This is because

node 1 has insufficient resources to execute VNFf1 and VNFf2 . It can be confirmed from the

concentration of RSRC1 in Figure 13. From the above results, we confirmed that the behaviors in

Scenario 2 can be achieved.

35

 0

 10

 20

 30

 40

 50

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf0
, PKTc1

)
Node1: toserve(VNFf0

, PKTc1
)

Node2: toserve(VNFf0
, PKTc1

)
Node3: toserve(VNFf0

, PKTc1
)

(a) average execution number of VNFf0

 0

 10

 20

 30

 40

 50

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf1
, PKTc0

)
Node1: toserve(VNFf1

, PKTc0
)

Node2: toserve(VNFf1
, PKTc0

)
Node3: toserve(VNFf1

, PKTc0
)

(b) average execution number of VNFf1

 0

 10

 20

 30

 40

 50

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf2
, PKTc2

)
Node1: toserve(VNFf2

, PKTc2
)

Node2: toserve(VNFf2
, PKTc2

)
Node3: toserve(VNFf2

, PKTc2
)

(c) average execution number of VNFf2

 0

 10

 20

 30

 40

 50

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: toserve(VNFf3
, PKTc3

)
Node1: toserve(VNFf3

, PKTc3
)

Node2: toserve(VNFf3
, PKTc3

)
Node3: toserve(VNFf3

, PKTc3
)

(d) average execution number of VNFf3

Figure 11: Scenario2: Average number of executions of Reaction Equation (4)

36

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: VNFf0Node1: VNFf0Node2: VNFf0Node3: VNFf0

(a) VNFf0

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: VNFf1Node1: VNFf1Node2: VNFf1Node3: VNFf1

(b) VNFf1

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: VNFf2Node1: VNFf2Node2: VNFf2Node3: VNFf2

(c) VNFf2

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: VNFf3Node1: VNFf3Node2: VNFf3Node3: VNFf3

(d) VNFf3

Figure 12: Scenario2: Temporal change in the concentrations of VNF

37

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
on

ce
nt

ra
tio

n

t [msec]

Node0: RSRC0
Node1: RSRC1
Node2: RSRC2
Node3: RSRC3

Figure 13: Scenario2: Temporal change in the concentrations of RSRC at all nodes

38

5 Implementation Design of the Proposed Method with the NFV Frame-

work

In this section, we describe the implementation design of the method proposed in Section 3, based

on the NFV framework [15] and its integration with SDN [38] proposed by ETSI ISG.

5.1 NFV Framework and its Integration with SDN

Figure 14 depicts NFV framework and its integration with SDN. In the NFV framework, there are

three main components: VNF, NFV Infrastructure (NFVI), and NFV Management and Orchestra-

tion (NFV MANO). VNF is the software implementation of a network function and is deployed

on a virtual machine (VM). NFVI is an infrastructure to execute VNFs and manages physical and

virtual resources. Physical resources are virtualized at virtualization layer such as hypervisor, and

provided as a VM that deploys VNFs. NFV MANO manages the lifecycle and orchestration of

resources in NFVI and VNFs. NFV MANO includes three functions: NFV Orchestrator (NFVO),

VNF Manager (VNFM), and Virtualized Infrastructure Manager (VIM). NFVO manages SFC and

orchestrates VNFs. VNFM manages the lifecycle (create, update, and delete) of VNFs. VIM

manages computing, network, and storage resources in NFVI, and allocates resources to VNFs.

In [38], the integration of SDN in the NFV framework is discussed. SDN Controller is utilized

to manage the physical resources in NFVI. SDN Switch is included in network resources in NFVI.

5.2 Positioning of the Proposed Method

As depicted in Figure 14, VIM is extended to include the management function of biochemical

reaction equations (‘Biochemical Reactions” in the figure) for proposed method. In Figure 14, the

communication interfaces between functions are also illustrated. Vn-Nf is used to execute VNFs

in the environment provided by NFVI. Or-Vnfm is used to acquire the state of VNFs for SFC

by NFVO. Vi-Vnfm is used for resource allocation request by VNFM, and exchanging the state

information of resources in NFVI. Or-Vi is used for resource allocation request by NFVO, and

exchanging the state information of resources in NFVI. Nf-Vi is used to monitor the state of NFVI

and biochemical reaction equations by VIM. Ve-Vnfm is used to manage the lifecycle of VNFs.

Ss-Sc is used to control SDN Switch by SDN Controller. Or-Sc is used to receive flow routes by

SDN Controller.

39

OSS / BSS

NFVI

Network Management and
Orchestration

EM1 EM2 EMn

VNF1 VNF2 VNFn

Virtual Resources

Virtualization Layer

Computing Storage Network

NFV
Orchestrator

Virtualized
Infrastructure
Manager(s)

VNF
Manager(s)

Physical Resources

Computing Storage Network

SDN Controller

Biochemical
Reactions

SDN Switch

Vn­Nf

Ve­Vnfm

Nf­Vi

Or­Vi

Or­Vnfm

Vi­Vnfm

 Service,
VNF, and

Infrastructure
Description

Sc­Ss

Or­Sc

Nf­Or

Figure 14: NFV framework and its integration with SDN

40

We adopt OPNFV [16] to implement the NFV framework. OPNFV aims at implementing

the whole of NFV framework by integrating OSS as OpenStack [17], OpenDaylight [18], Open

vSwitch [39], and KVM [19]. In OPNFV, since OpenFlow is used as a southbound protocol for

SDN, we introduce the implementation design of the proposed method with OpenFlow.

5.3 Implementation Environment

Figure 15 depicts the system configuration of OPNFV and the placement of functions shown

in Figure 14. In Figure 15, the NFV framework is implemented on a single physical machine.

Multiple VMs and virtual switches are implemented on the physical machine. There are three

types of VMs: Jump Server, Controller, and Compute. Jump Server is utilized for installing

and maintaining Controller, Compute, and networking environment in the system. Controller is

utilized for implementing NFV MANO nd SDN Controller. Compute is utilized for implementing

VNFs and NFVI. VMs for deploying VNFs can be placed on Compute. There are four types of

networks in the system: Admin, Tenant, Public, and Storage. Admin Network is used for installing

and maintaining the NFV system. Tenant Network is used for network traffic generated by tenants

on the NFV system. Public Network is used to connect to external networks. Storage Network is

used for I/O processing of storage.

NFV MANO in Figure 14 is implemented on Controller using OpenStack in Figure 15. SDN

Controller and Switch are respectively implemented on Controller with OpenDaylight and Open

vSwitch. VNFs are deployed on VMs on Compute. NFVI is constructed with Compute, and

virtual resources are provided with KVM.

In Figure 15, BR is a program that implements the tuple space of the proposed method, and

runs as one process on each VM deploying VNFs on Compute. BR creates a tuple space and

executes biochemical reaction equations. The concentration of PKT can be updated in accor-

dance with the flow rate monitored at VNF. However, considering the software implementation of

existing network functions and implementation difficulties, one possible alternative is to monitor

the flow rate at the corresponding port of the SDN Switch. Resource allocation to VNFs, and

activation and deactivation of VNFs can be performed by each VM on Compute executing VNFs

in a distributed manner, in accordance with the concentrations of MEDIATE and VNF of the

corresponding tuple space. For ease of implementation, such VNF control can be conducted at

VIM on the Controller in a centralized manner.

41

NFV MANO

NFVI

Bridge

Virtual Switch

Server
(Physical)

Jump Server
(Virtual)

Virtual Switch Virtual Switch Virtual Switch

Admin
Network

Tenant
Network

Public
Network

Storage
Network

Compute (Virtual)

SW

SW

Controller (Virtual)

NFVO VNFM VIM

SDN Controller

Compute (Virtual)

VM

VNF BR VNF

VM

VNF BR VNF

SW

SW

VM

VNF BR VNF

VM

VNF BR VNF

Figure 15: System configuration of OPNFV

42

In the proposed method, the moving direction of packets is stochastically determined as ex-

plained in SubSection 3.2.3. However, such stochastic behavior may cause a routing loop in the

actual network environment. Therefore, in our implementation, flow routes are determined by

SDN Controller in a centralized manner. In detail, NFVO collects the information of the concen-

tration of GRAD at each tuple space, and determines the active flow routes. The flow routes are

then installed in SDN Switches via the SDN Controller.

5.4 Handle of Service Function Chaining

The mechanism of Network Service Header (NSH) [20] proposed by IETF is briefly explained.

The implementation design of SFC using NSH is then described.

5.4.1 Utilization of Network Service Header

NSH is a header added to flow packets to control the flow with an SFC request in the NFV system.

Figure 16 depicts the format of NSH. NSH is composed of three fields: Base Header, Service

Path Header, and Context Header. Base Header contains the basic information of NSH such as

version, header length, and payload information. Service Path Header contains the identifier of

a flow route and the state of SFC of the flow. Context Header contains the metadata. Service

Path Header is composed of Service Path Identifier (SPI) and Service Index (SI). SPI has an ID of

Service Function Path (SFP), which is described below. SI has the remaining number of functions

to be executed to the flow. Therefore, with a pair of SPI and SI, the next function to be executed

to the flow can be identified.

Figure 17 depicts the implementation design of SFC using NSH, as described in RFC 8300

[20]. In the figure, Service Function (SF) means the function to be executed to flow packets.

Service Function Forwarder (SFF) forwards flow packets to the specified SF or another SFF. SFP

represents a flow route with detailed location of servers in which required SFs exist. SFP is used

for forwarding packets to the designated server in accordance with the SFC request. Service

Classifier (SC) is located at the entrance of the NFV system, which determines an SFP for a flow,

and inserts an NSH into the packets.

43

Base Header (32)

Context Header (32)

Service Path Header (Service Path Identifier (24) + Service Index (8))

0 1 2 3 4
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 16: Network Service Header (NSH)

Service Function
(SF) Service Function

(SF)

NAT0

Service
Classifier (SC)

Server1

Network
flow

Service Function
Forwarder (SFF)

Firewall0

Packet

Firewall NAT

SFC request

SPI: 0x000064

SI: 0x01

Insert NSH
Delete NSH Service Function

Forwarder (SFF)

Update NSH
Update NSH Server0

Firewall0
Firewall1

NAT0

NAT0

Service Function Path

Firewall1

SPI: 0x000064

SI: 0x10

SPI: 0x000064

SI: 0x00

Figure 17: Implementation design of SFC using NSH in RFC 8300

44

In Figure 17, we consider the situation where flow packets having an SFC request of {Firewall

→ NAT} arrive at the NFV system. Since there are two SFs of firewall (“Firewall0” and “Fire-

wall1”) and one SF of NAT (“NAT0”) in the system, the SFP for the flow could be {Firewall0→

NAT0} or {Firewall1 → NAT0}. There candidates are managed by the SC. The SC determines

an SFP from the candidates for the flow and inserts NSH into the flow packets arriving at the SC.

Here, NSH includes SPI of 0x000064 and SI of 0x10. When an SF is executed to a flow packet,

the SF decrements the value of SI by one and forwards the packet to corresponding SFF. When SI

becomes zero, the SFF deletes the NSH from the packet. Otherwise, the SFF forwards the packet

to the next SF.

For ease of implementation, Service Path Header is only utilized and other two fields (Base

Header and Context Header) are not implemented. To handle NSH in the NFV system, encapsula-

tion and decapsulation functions of OpenFlow are exploited. Note that the latest version of Open

vSwitch can encapsulate and decapsulate packets with NSH.

Table 5 describes samples of flow entries of inserting, updating, and deleting NSH with Open-

Flow. In the table, nsh spi and nsh si respectively correspond to SPI and SI in NSH. The flow entry

for insertion indicates that packets arriving at port 1 of SDN Switch are encapsulated with NSH

including nsh spi of 0x000064 and nsh si of 0x10, and output to port2. The flow entry for update

indicates that for packets including nsh spi of 0x000064 and nsh si of 0x10, the value of nsh si is

decremented to 0x01, and the packets output to port3. The flow entry for deletion indicates that

packets including nsh si of 0x00 are decapsulated and output to port 1.

Figure 18 depicts the implementation of SFC using NSH in our implementation. SFs and SFFs

are respectively provided as VNFs on the servers and SDN Switches. SFP is managed by NFVO

on NFV MANO. SC is implemented in NFVO and SDN Controller.

5.4.2 Stochastic Selection of Flow Routes

In NFV, a route of packets is generally detemined in a flow-by-flow manner. On the other hand, in

the proposed method, as described in SubSection 3.2.3, it is stochastically detemined in a packet-

by-packet manner. Therefore, the stochastic determination of flow routes is proposed to fill the

gap.

45

Table 5: Flow entries for handling NSH

Match Field Action

Insertion in port=1, ip
encap(hdr=nsh), set field=0x000064→ nsh spi,

set field=0x10→nsh si, output:2

Update nsp spi=0x000064, nsh si=0x10, ip set field=0x01→nsh si, output:3

Deletion nsh si=0x00, ip decap(), output:1

NAT0

NFV MANO Server0 Server1

Network
flow

SDN
Switch1

SDN
Switch0

Firewall0 Firewall1

Packet

NAT

SFC request

Insert NSH
Delete NSH

Update NSH

NFVO

SDN Controller

Firewall0
Firewall1

NAT0

NAT0

Service Function Path

Firewall

SPI: 0x000064

SI: 0x10

SPI: 0x000064

SI: 0x01

SPI: 0x000064

SI: 0x00

Figure 18: Implementation design of SFC using NSH

46

Figure 19 depicts the stochastic determination of flow route with the proposed method. In the

figure, we consider the situation where flow packets have an SFC request of {Firewall→ NAT}

arrive at the NFV system. BRs are runnning on servers (“Server0” and “Server1”) to create tuple

spaces. Since there are two VNFs for firewall (“Firewall0” and “Firewall1”) and one VNF of NAT

(“NAT0”), the SFP for a flow could be {Firewall0→ NAT0} or {Firewall1→ NAT0}. When flow

packets arrive at the SDN Switch, the SFP for the flow is stochastically determined on the basis of

the concentrations of GRAD at both VNFs. In the figure, since the concentrations of GRAD at

Firewall0 and Firewall1 are respectively 2,000 and 1,000, {Firewall0→ NAT0} or {Firewall1→

NAT0} is respectively assigned to the flow with the probability of 0.66 and 0.33.

47

NAT0

NFV MANO
Server0 Server1

Network
flow

SDN Switch1
SDN Switch0

Firewall0 Firewall1

Packet

NAT

SFC request

NFVO

SDN Controller

Firewall0
Firewall1

NAT0

NAT0
Service Function Path

GRAD: 2,000 GRAD: 1,000

Firewall

Figure 19: Stochastic determination of flow route with the proposed method

48

6 Conclusion and Future Work

In this thesis, we evaluated the performance of the NFV system based on biochemically-inspired

tuple space model, and presented its implementation design. Specifically, we explained the tuple

space model using biochemical reactions and how to apply the model to NFV system. We then

performed computer simulation experiments assuming two situations in the NFV system. We

confirmed that the proposed method can cope with dynamical environmental changes in the NFV

system. Furthermore, we presented the implementation design of the proposed method with the

NFV framework. In detail, we described the function placement of the proposed method in the

NFV framework and showed the detailed implementation environment. We finally presented an

example of the implementation of SFC using NSH.

For future work, we plan to extend the proposed method to include more factors of the actual

network environment, such as the effect of the propagation delay and the link bandwidth between

tuple spaces. It is also necessary to achieve discrete resource allocation to VNFs to accommodate

the CPU core-based resource control in the current virtualized computing environment. Further-

more, it is also important to implement and evaluate the NFV system based on the proposed

method based on the described design in this thesis.

49

Acknowledgments

I want to thank so many people for helping me during master’s degree studies. I would like

to express my deepest gratitude to my supervisor, Professor Morito Matsuoka. He taught my

attitude towards research and also gave my support and useful comments in various situations.

And I would like to show my greatest appreciation to Professor Masayuki Murata. He gave me

insightful advice, guidance and encouragement. It is thanks to him that I have worked so far with

trial and error in my first research. Furthermore, I would like to express the deepest appreciation

to Associate Professor Go Hasegawa. He gave me elaborated guidance and invaluable firsthand

advice. It is thanks to him that I remember my interest and positive feelings in research and I am

able to keep my motivation for my research. I would like to appreciate to Assistant Professor Yuya

Tarutani. He gave me beneficial comments about my research and life in the laboratory. I would

like to students of Matsuoka Laboratory for their support of my laboratory life. Finally, I truly

thank my friends and colleagues in Graduate School of Information Science and Technology of

Osaka University, for their great encouragement and support.

50

References

[1] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking for Internet of Things:

A Survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–2008, Dec. 2017.

[2] ETSI, “Network Function Virtualisation - White Paper 1.” available at https://portal.

etsi.org/nfv/nfv_white_paper.pdf.

[3] K. Neupane, R. Haddad, and L. Chen, “Next Generation Firewall for Network Security: A

Survey,” in Proceedings of SoutheastCon 2018, pp. 1–6, April 2018.

[4] D. Wing, “Network Address Translation: Extending the Internet Address Space,” IEEE In-

ternet Computing, vol. 14, no. 4, pp. 66–70, July 2010.

[5] A. Borkar, A. Donode, and A. Kumari, “A Survey on Intrusion Detection System (IDS)

and Internal Intrusion Detection and Protection System (IIDPS),” in Proceedings of 2017

International Conference on Inventive Computing and Informatics (ICICI), pp. 949–953,

Nov. 2017.

[6] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, “SDN/NFV-based Mobile Packet

Core Network Architectures: A Survey,” IEEE Communications Surveys Tutorials, vol. 19,

no. 3, pp. 1567–1602, thirdquarter 2017.

[7] C. H. T. Arteaga, F. Rissoi, and O. M. C. Rendon, “An Adaptive Scaling Mechanism for

Managing. Performance Variations in Network Functions Virtualization: A Case Study in

an NFV-based EPC,” in Proceedings of International Conference on Network and Service

Management (CNSM), pp. 1–7, Nov. 2017.

[8] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A Comprehensive Survey,”

IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532, Sep.

2016.

[9] A. Engelmann and A. Jukan, “A Reliability Study of Parallelized VNF Chaining,” in Pro-

ceedings of IEEE International Conference on Communications (ICC), pp. 1–6, May 2018.

51

[10] Z. Allybokus, K. Avrachenkov, J. Leguay, and L. Maggi, “Multi-path Alpha-fair Resource

Allocation at Scale in Distributed Software-Defined Networks,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 12, pp. 2655–2666, Dec. 2018.

[11] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial Coordination of Pervasive

Services through Chemical-inspired Tuple Spaces,” ACM Transactions on Autonomous and

Adaptive Systems (TAAS), vol. 6, no. 2, pp. 1–24, June 2011.

[12] Marco Piraccini, “BioTuCSoN: Biochemical Extension of TuCSoN to Support Self-

organising Coordination,” Master’s thesis, University of Bologna, Mar. 2013.

[13] G. Hasegawa, S. Sakurai, and M. Murata”, “Biochemically-inspired Method for Constructing

Service Space in Virtualized Network System,” in Proceedings of ICIN 2016, Mar. 2016.

[14] Koki Sakata, “Adaptive and Autonomous Placement Method of Virtualized Network Func-

tions based on Biochemical Reactions,” Master’s thesis, Osaka University, Feb. 2018.

[15] ETSI GS NFV 002, “Network Functions Virtualisation (NFV); Architectural Frame-

work.” available at http://www.etsi.org/deliver/etsi_gs/NFV/001_099/

002/01.02.01_60/gs_NFV002v010201p.pdf.

[16] “OPNFV.” available at https://www.opnfv.org.

[17] “OpenStack.” available at https://www.openstack.org.

[18] “OpenDaylight.” available at https://www.opendaylight.org.

[19] “KVM.” available at https://www.linux-kvm.org.

[20] “Network Service Header (NSH).” available at https://www.rfc-editor.org/

rfc/pdfrfc/rfc8300.txt.pdf.

[21] X. Li and C. Qian, “A Survey of Network Function Placement,” in Proceedings of IEEE An-

nual Consumer Communications Networking Conference (CCNC), pp. 948–953, Jan. 2016.

[22] W. Ma, C. Medina, and D. Pan, “Traffic-aware Placement of NFV Middleboxes,” in Pro-

ceedings of IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec. 2015.

52

[23] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, Latency-optimal vNF Place-

ment at the Network Edge,” in Proceedings of IEEE Conference on Computer Communica-

tions, pp. 693–701, April 2018.

[24] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards Edge Slicing: VNF Placement

Algorithms for a Dynamic & Realistic Edge Cloud Environment,” in Proceedings of IEEE

Global Communications Conference, pp. 1–6, Dec. 2017.

[25] F. B. Jemaa, G. Pujolle, and M. Pariente, “Analytical Models for QoS-driven VNF Placement

and Provisioning in Wireless Carrier Cloud,” in Proceedings of ACM International Confer-

ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 148–155,

Nov. 2016.

[26] C. Sun, J. Bi, Z. Meng, X. Zhang, and wngxin Hu, “OFM: Optimized Flow Migration for

NFV Elasticity Control,” in Proceedings of IWQoS, pp. 1–10, June 2018.

[27] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic Auto Scaling Algorithm (DASA)

for 5G Mobile Networks,” in Proceedings of IEEE Global Communications Conference

(GLOBECOM), pp. 1–6, Dec. 2016.

[28] C. Ghribi, M. Mechtri, and D. Zeghlache, “A Dynamic Programming Algorithm for Joint

VNF Placement and Chaining,” in Proceedings of ACM Workshop on Cloud-Assisted Net-

working, CAN ’16, (New York, NY, USA), pp. 19–24, ACM, Dec. 2016.

[29] X. Zhong, Y. Wang, X. Qiu, and S. Guo, “Cost-aware Service Function Chain Orchestra-

tion across Multiple Data Centers,” in Proceedings of IEEE/IFIP Network Operations and

Management Symposium, pp. 1–7, April 2018.

[30] P. T. A. Quang, K. D. Singh, A. Bradai, and A. Benslimane, “QAAV: Quality of Service-

aware Adaptive Allocation of Virtual Network Functions in Wireless Network,” in Proceed-

ings of IEEE International Conference on Communications (ICC), pp. 1–6, May 2018.

[31] Y.-F. Wu, Y.-L. Su, and C. H.-P. Wen, “TVM: Tabular VM Migration for Reducing Hop

Violations of Service Chains in Cloud Datacenters,” in Proceedings of IEEE International

Conference on Communications (ICC), pp. 1–6, May 2017.

53

[32] S. Kim, S. Park, Y. Kim, S. Kim, and K. Lee, “VNF-EQ: Dynamic Placement of Virtual

Network Functions for Energy Efficiency and QoS Guarantee in NFV,” Cluster Computing,

vol. 20, no. 3, pp. 2107–2117, Sep. 2017.

[33] M. Huang, W. Liang, Y. Ma, and S. Guo, “Throughput Maximization of Delay-sensitive

Request Admissions via Virtualized Network Function Placements and Migrations,” in Pro-

ceedings of IEEE International Conference on Communications (ICC), pp. 1–7, May 2018.

[34] R. Goldberg, Y. B Tewari, and T. Bhat, “Thermodynamics of Enzyme-catalyzed Reactions,”

Science Direct, vol. 20, no. 16, pp. 2874–2877, Dec. 2004.

[35] L. Michaelis, M. Leonora Menten, K. A Johnson, and R. Goody, “The Original Michaelis

Constant: Translation of the 1913 Michaelis-Menten Paper,” Biochemistry, vol. 50, no. 39,

pp. 8264–8269, Sep. 2011.

[36] H. Li, Y. Cao, L. Petzold, and D. T Gillespie, “Algorithms and Software for Stochastic

Simulation of Biochemical Reacting Systems,” Biotechnology Progress, vol. 24, pp. 56–61,

Feb. 2008.

[37] C. V. Rao and A. Arkin, “Stochastic Chemical Kinetics and the Quasi-steady-state Assump-

tion: Application to the Gillespie Algorithm,” Journal of Chemical Physics, vol. 118, no. 11,

pp. 4999–5010, Aug. 2002.

[38] ETSI GS NFV 005, “Network Functions Virtualisation (NFV); Ecosystem; Report on

SDN Usage in NFV Architectural Framework.” available at https://www.etsi.

org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-

EVE005v010101p.pdf.

[39] “Open vSwitch.” available at https://www.openvswitch.org.

54

