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Because of the rapid growth in the scale and complexity of information networks, self-organizing systems

are increasingly being used to realize novel network control systems that are highly scalable, adaptable, and

robust. However, the uncertainty of information (with regard to incompleteness, vagueness, and dynamics)

in self-organizing systems makes it difficult for them to work appropriately in accordance with the net-

work state. In this study, we apply a model of the collective decision-making of animal groups to enable

self-organizing control mechanisms to adapt to information uncertainty. Specifically, we apply a mathemat-

ical model of collective decision-making that is known as the effective leadership model (ELM). In the ELM,

informed individuals (those who are experienced or well-informed) take the role of leading the others. In con-

trast, uninformed individuals (those who perceive only local information) follow neighboring individuals. As

a result of the collective behavior of informed/uninformed individuals, the animal group achieves consen-

sus. We consider a self-organizing control mechanism using potential-based routing with an optimal control,

and propose a mechanism for determining a data-packet forwarding scheme based on the ELM. Through

evaluation by simulation, we show that, in a situation in which the perceived information is incomplete and

dynamic, nodes can forward data packets in accordance with the network state by applying the ELM.
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1 INTRODUCTION

Self-organization is a promising approach for controlling complicated, large-scale networks. The
components of a self-organizing system behave automatically and autonomously based on simple
rules and local interactions among components. This leads to the emergence of global patterns
or behavior at a macroscopic level (Dressler 2008; Müller-Schloer et al. 2011; Prokopenko 2014).
The bottom-up mechanism leads to low communication and computational costs for such emer-
gence. However, in practice there are some challenges to using self-organizing control systems in
industrial and business systems.

In most self-organizing systems, components have access to only local information. Although
this feature certainly lowers communication and computational costs, it also sometimes leads the
system to a solution that is only locally optimal. Moreover, the information that is available to
components tends to be uncertain (i.e., incomplete, vague, or dynamic) because of effects such
as noise and fluctuation and because systems tend to change dynamically, so information that
components have already collected can become outdated.

To address the issue of information uncertainty, we apply the collective decision-making of
swarms (Zhang et al. 2008; Conradt 2011, 2013) to self-organizing control systems. In swarms
of animals such as birds, fish, and insects, the ability and energy of an individual is limited; a
single member of a swarm perceives only itself and its surrounding environment. However, con-
vergence to a state in which all individuals make the same, correct decision is achieved through
local interactions among individuals. In this study, we apply the effective leadership model (ELM)
(Couzin et al. 2005; Conradt et al. 2009), in which there are two types of individuals: those who
are informed and those who are uninformed. Informed individuals take leadership roles; using their
superior knowledge and experience, they can make correct decisions in accordance with the states
of the swarm and the surrounding environment. In contrast, uninformed individuals perceive only
the states of neighboring individuals and duly follow them. Consequently, uninformed individuals
follow informed individuals, and this leads all individuals to make the same, correct decision. With
the ELM, it has been demonstrated that the fraction of leaders required for an identically correct
decision to be made diminishes with the size of the swarm (Couzin et al. 2005, thereby indicat-
ing that the ELM is highly scalable. Moreover, it is worth noting that decision-making is achieved
without individuals knowing which individuals are the informed ones.

We apply the ELM to an optimal control mechanism for self-organizing systems that we pro-
posed in previous work (Kuze et al. 2016). In self-organizing control systems with this optimal
control mechanism, an external controller monitors the system state via partial nodes known as
controlled nodes, and provides control feedback to them for faster convergence of self-organization.
In other words, controlled nodes collect a larger amount of information about the system than
do the other nodes, and are informed by the external controller as to how they should behave,
thereby accelerating convergence. We view the controlled nodes as leader nodes (corresponding
to informed individuals in the ELM) that lead all nodes in the system to make the same, correct
decision.

In this study, we consider potential-based routing with the optimal control mechanism for
wireless sensor networks (WSNs). Potential-based routing is a self-organizing routing mechanism
in which a gradient field (known as a potential field) is used to determine the forwarding in a
self-organizing manner. The next-hop nodes of data packets are determined stochastically in ac-
cordance with the potential field. However, which data-packet forwarding scheme is appropriate
depends on the state of the system. For example, data packets should not be forwarded based on
the potential field if that field is changing, because data packets could be forwarded to incorrect
nodes. To address this problem, we propose a mechanism for determining the data-packet
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Fig. 1. Potential-based routing.

forwarding scheme based on the ELM. Note that although potential-based routing and WSNs are
good examples of the application of the ELM, it can in fact be applied to many other mechanisms,
situations, and environments.

The remainder of this article is organized as follows. In Section 2, we briefly explain potential-
based routing and how it can be improved by using an optimal control mechanism. In Section 3,
we propose and explain data-packet forwarding based on collective decision-making to deal with
information uncertainty. We then conduct simulation experiments to demonstrate the advantages
and properties of our proposed scheme. Finally, we give our conclusions and mention possible
future work.

2 POTENTIAL-BASED ROUTING WITH AN OPTIMAL CONTROL MECHANISM

Potential-based routing is a self-organizing routing mechanism in which each node chooses a
route by means of a hop-by-hop forwarding rule. Such mechanisms are actively used in the fields
of WSNs, mobile ad-hoc networks, and information-centric networks (Kominami et al. 2013; Basu
et al. 2003; Jung et al. 2009; Wu et al. 2008; Sheikhattar and Kalantari 2014; Eum et al. 2015; Lee
et al. 2015). Here, we assume that potential-based routing is used in a WSN in which information
gathering is infrequent and the capacity of each node is strictly limited.

In potential-based routing, each node has a scalar value called its potential, and data packets are
forwarded to a neighbor whose potential is lower than that of the forwarder. In WSNs, data packets
are generally sent to a sink node, and a smaller number of hops to the sink node is reflected in
a lower potential value. The simple forwarding rule to “forward data to a neighboring node with
a lower potential” can therefore result in data packets gathering at sink nodes, as illustrated in
Figure 1. Potential-based routing is highly scalable because each node uses only local information
to calculate potentials and uses a local rule to forward data. In Sections 2.1 and 2.3, we describe a
method for constructing a potential field and show how to use it to select the next hop node.

2.1 Potential-Field Construction

Sheikhattar and Kalantari (2014) focused on the convergence of potential-based routing and en-
hanced the potential convergence speed. They proposed a potential-calculation method based on
not only current potentials but also prior potentials to accelerate the convergence. The potential
θn (t ) of node n at time t is given by

θn (t + 1) = θn (t ) + α (θn (t ) − θn (t − 1)) + βσn
���
∑

k ∈N (n)

{θk (t ) − θn (t )} + fn (t )��� . (1)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 7. Publication date: April 2018.



7:4 N. Kuze et al.

Fig. 2. Potential-based routing with controller feedback in which an external controller collects potential

values from observable nodes and periodically provides control inputs to controllable nodes.

Here,N (n) is the set of the neighbors of node n, and α is a weighting parameter for the increase in
potential from time t − 1 to t when calculating the potential at t + 1. Larger values of α mean that
the amount by which the potential changes is more important and, therefore, the system becomes
less subject to current noise but it converges more slowly. The parameter β determines the amount
of influence exerted by the potentials of neighboring nodes. The node-dependent weighting σn is
defined as σ0/|N (n) | (where σ0 is a parameter), and fn (t ) corresponds to the flow rate of node n
at time t . For sensor nodes, fn (t ) is a negative value that indicates the data-generation rate; this
rate is generally application dependent.

In contrast, for sink nodes, fn (t ) is a positive value that determines the rate at which data pack-
ets are delivered to the node. The network manager can set the data-packet delivery rate to an
arbitrary value. If the flow-conservation constraint is satisfied (i.e.,

∑
n∈{1, ...,N } fn (t ) = 0), then a

potential field is constructed such that the actual rates at which data packets are delivered to nodes
satisfy the given flow rates (i.e., all gradients). Specifically, the potential differences between next-
hop nodes correspond to the appropriate flow rates.

2.2 Potential-Field Construction with Optimal Control

We now describe our construction of a potential field with an associated optimal control mecha-
nism using a method that we proposed in previous work (Kuze et al. 2016). The convergence of
potentials based on Equation (1) is faster than that of simple Jacobi iterations (as used in our previ-
ous work (Kominami et al. 2013)), but it still takes a long time to converge because the calculation
is based on local information only. We therefore introduce a controller to observe and estimate the
network state (potential values) and to regulate the potentials of a partial set of nodes to achieve
faster convergence.

The controller monitors network information, in particular the potential values of a partial set
of nodes, which we call the observable nodes. The controller then returns suitable control inputs
to a partial set of nodes, which we call the controllable nodes, to accelerate the convergence of the
potential distribution toward the target potential distribution. We assume that the controller has
direct connections with the controlled nodes to regulate their potentials. The controller collects
the potential information of observable nodes via controlled nodes, as illustrated in Figure 2. The
controller cannot directly access node potentials of non-observable nodes, but it can estimate them
by utilizing a model of the potential dynamics, which describes potential changes based on local
node interactions.
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Note that information about the network topology and the flow rates of nodes is needed to de-
sign a controller and to calculate target potential values. Such information is difficult to estimate,
and is reported to the controller only when it changes because we assume that the intervals over
which the network topology and flow rates change are lower than the convergence time of the
potentials. This assumption is plausible because potential convergence is generally achieved as a
result of iterative behavior (nodes’ potential updates and the controller’s feedback) in potential-
based routing with optimal feedback. This requires the frequencies of potential updates and con-
trols to be much higher than those of changes in the network topology and flow rates.

2.2.1 Network Dynamics. Let the dynamics of potentials be given by a deterministic discrete-
time model. Nodes interact locally with each other to update their potentials. With our proposed
mechanism, the controller sends feedback inputsu (t ) = [η1 (t ) · · · ηNctr l

(t )]T toNctr l controllable
nodes to facilitate potential convergence. In this study, the update rule of each potential is the same
as that in Sheikhattar and Kalantari (2014), except for the controllable nodes. Node n updates its
potential at time t by

θn (t + 1) = (α + 1)θn (t ) − αθn (t − 1) + βσn
���
∑

k ∈Nb (n)

{θk (t ) − θn (t )} + f̄n
��� + ηn (t ). (2)

If node n is not controllable, then ηn (t ) = 0. We set σn to a constant value σ (0 < σ < 1) for all n
(∈ {1, . . . ,N }) because the original value of σn (σ0/|N (n) |) proposed in Sheikhattar and Kalantari
(2014) leads to oscillation of potentials in some situations.

Next, we describe the potential dynamics of the network. The potential values of N nodes in the

network are described as a vector Θ(t ) = [θ 1 (t ) · · · θN (t )]T using θn (t ) = [θn (t ) θn (t + 1)]. The
potential dynamics of the network are given by Equation (3) using the flow matrix F i and control
inputs ui :

Θ(t + 1) = AΘ(t ) + (Eu (t ) + βσF ) ⊗
[

0
1

]
, (3)

where

A = IN×N ⊗
[

0 1
−α α + 1

]
− Γ ⊗

[
0 0
0 βσ

]
. (4)

Matrix IN×N is the N × N identity matrix, and Γ corresponds to the graph Laplacian, which rep-
resents the network topology. The (N × Nctr l )-matrix E specifies the controllable nodes: that is,
element ei j ∈ {0, 1} of E is 1 if and only if node i receives the jth element of u (t ) as control input
ηi (t ).

Under these dynamics, the target potential distribution is given by a solution of

(I 2N×2N −A)Θ̄ = βσF ⊗
[

0
1

]
. (5)

The controller calculates the target potential distribution of the network to calculate the control
inputs.

2.2.2 Optimal Controller Design. We now explain how the controller calculates the control
feedback given to the controlled nodes. To calculate the control inputs u, the controller monitors
the potentialsY of the observable nodes in the network via the controllable nodes. The (2Nobs × 1)-
vectorY (t ) is given byY (t ) = HX (t ) usingX (t ) = Θ̄ − Θ(t ), the gap between the current and tar-
get potential values. Nobs is the number of observable nodes in the network, and the (2Nobs × 2N )-
matrix H determines the observable nodes. The element h(2n, 2m), h(2n + 1, 2m + 1) ∈ {0, 1} of H
is 1 if and only if the controller monitors the potential value of nodem as the nth element of Y .
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The controller estimatesX (t ) from the observable informationY , and then calculates the control

inputsu. The (2N × 1)-vector X̃ (t ) is the estimation ofX (t ) by the controller, where X̃ (t ) andu (t )
are given by

X̃ (t + 1) = AcX̃ (t ) + BcY (t ), (6)

u (t ) = CcX̃ (t ) + DcY (t ). (7)

If X̃
i
(t ) is close to zero, then the potentials are estimated to be close to their target values. Ac , Bc ,

Cc , and Dc are design parameters.
Concerning the performance criteria, let us define

ϕ (k ) = X (k )TX (k ) + ru (k )Tu (k )

as the stage cost, where r specifies the tradeoff between convergence speed and input energy. With
a larger r , control inputs become smaller and the stability of the system is enhanced. Specifically,
potentials change more gently; however, the convergence of the potentials is slower. Our design
objective is then to minimize the worst-case error

sup
d

∑∞
k=0 ϕ (k )

∑∞
k=0d (k )Td (k )

.

This min–max-type problem is called H∞ optimization (Zhou et al. 1995).
With the estimation model described by Equations (6) and (7), which has 2N state variables,

the optimal feedback u (t ) is calculated with computational cost O (N2). To reduce the computa-
tional cost, the controller uses reduced-order models that have h (<2N ) state variables (Zhou et al.
1995; Antoulas et al. 2006) for which the computational cost is O (h2). The details are explained in
previous work (Kuze et al. 2016).

2.3 Routing

A node with a data packet forwards it according to the potential values of itself and its neigh-
bors. In our potential-based routing, when a sensor node generates or receives a data packet, it
probabilistically selects a subsequent node that has a lower potential value than its own, and the
packet eventually arrives at a sink node in this way. Specifically, a next-hop node is selected with
a probability that is proportional to the difference of potential values: the probability pn→j (t ) that
sensor node n selects neighbor node j as the next-hop node for a data packet at time t is given by

pn→i (t ) =
⎧⎪⎨⎪⎩

θn (t )−θi (t )∑
k∈Nl (n ) {θn (t )−θk (t ) } , if i ∈ Nl (n)

0, otherwise
, (8)

whereNl (n) is the neighbor node set of node n that are assigned lower potential values than node
n. In other words, θn (t ) − θi (t ) > 0 for all i (∈ Nl (n)). If node n has no neighbor node with lower
potential, that is, |Nl (n) | = 0, then the data packet is not sent to any node and is dropped; however,
this generally occurs only in transient cases, such as node failures or changes of potential values
at the sink node.

3 DATA PACKET FORWARDING BASED ON COLLECTIVE DECISION-MAKING

TO DEAL WITH INFORMATION UNCERTAINTY

We now propose a mechanism for determining a scheme for data-packet forwarding based on the
ELM.
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3.1 Overview

The ELM (Couzin et al. 2005; Conradt et al. 2009) is a mathematical model that describes col-
lective decision-making in swarms. There are two types of individuals: informed ones and unin-

formed ones. Informed individuals that have a preferred direction lead uninformed individuals in
that direction. In contrast, uninformed individuals perceive only the positions and velocities of
their neighbors in order to follow them. As a result, all individuals in the group go in an accurate
direction.

For potential-based routing with optimal control, we introduce the concept of leader nodes and
follower nodes, corresponding to informed individuals and uninformed individuals, respectively.
We consider controlled nodes to be leader nodes, and the others to be follower nodes. This is
because the controller collects information about the system via controlled nodes so that controlled
nodes have a larger amount of information than the others, which allows controlled nodes to
determine which forwarding scheme should be used for data-packet forwarding. Leader nodes,
whose role is to guide follower nodes, use the collected information to determine which forwarding
scheme is preferred, and make their decision accordingly. In contrast, follower nodes decide which
forwarding scheme to use in accordance with the decisions of their neighbors.

We explain the ELM briefly in Section 3.2. We then describe our scheme in Section 3.3.

3.2 Effective Leadership Model

Given a group of N individuals, individual n has position vector cn (t ) and velocity vectorvn (t ) at
time t . Individuals move at a distance from each other to avoid collisions. If there are individuals
within distance α , individual n changes its direction to be farther from them. The desired direction
dn (t ) of individual n at time t is updated by

dn (t + Δt ) = −
∑

i ∈Nb (n,α )

ci (t ) − cn (t )

|ci (t ) − cn (t ) | , (9)

whereNb (n,α ) is the set of individuals within distanceα from individualn. Otherwise, uninformed
individual n determines its direction by following neighboring individuals, and updates its desired
direction by

dn (t + Δt ) =
∑

i ∈Nb (n,ρ )

ci (t ) − cn (t )

|ci (t ) − cn (t ) | +
∑

i ∈Nb (n,ρ )

vn (t )

|vn (t ) | , (10)

where ρ corresponds to the range that individuals can perceive.
In contrast, informed individual n determines its desired direction d ′n (t ) based not only on the

local coordination but also on the preferred direction дn . Its desired direction is calculated by

d ′n (t + Δt ) =
d̂n (t + Δt ) + ωдn

|d̂n (t + Δt ) + ωдn |
, (11)

where d̂n (t + Δt ) = dn (t + Δt )/|dn (t + Δt ) |. The parameter ω (≥0) determines the weight of the
preferred direction to the desired direction. The larger the value of ω, the more an informed in-
dividual attempts to go in its preferred direction. On the contrary, the smaller the value of ω, the
more the individual is influenced by local coordination. In the original context, ω was regarded as
the degree of assertiveness (Conradt et al. 2009).

3.3 Data-Packet Forwarding Mechanism Based on the Effective Leadership Model

We propose a mechanism for determining a data-packet forwarding scheme based on the ELM. In
our proposal, a node decides based on the ELM which forwarding scheme it uses when transmitting
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data packets. Note that a node does not move in itself and we do not consider the mobility of nodes
in this article.

A node n with a data packet selects forwarding scheme ri from the set R = {r1, . . . , rM } of for-
warding schemes and uses it to forward the data packet. Node n has a decision vector cn (t ) =
[c1

n (t ), . . . , cM
n (t )], and stochastically selects a forwarding scheme in accordance with cn . Element

ci
n is a real value, and its lower and upper bounds are ci

min and ci
max (i.e., ci

n ∈ [ci
min , c

i
max ] for all

nodes n). The probability that node n selects scheme i at time t is given by

P i
n (t ) =

ci
n (t )

∑
j ∈{1, ...,M } c

j
n (t )
. (12)

The larger the value of ci
n , the more likely node n is to select scheme i .

Decision vector c is updated based on the ELM. Follower node n updates its decision vector cn

with local coordination by

cn (t + 1) =
∑

n′ ∈Nb (n)

cn′ (t )

|Nb (n) | + δn (t )
∑

n′ ∈Nb (n)

cn′ (t ) − cn′ (t − 1)

|Nb (n) | , (13)

whereNb (n) is the set of neighboring nodes of node n. Equation (13) corresponds to the direction
update of uninformed individuals, as described in Equation (10). Vector δn = {δ 1

n , . . . ,δ
M
n } is a

parameter vector that determines the weight given to the change of c of the neighboring nodes.
Element δ i

n is given by

δ i
n (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ci

max −
∑

n′ ∈Nb (n)
c i

n′ (t )

|Nb (n) | , if
∑

n′ ∈Nb (n)
c i

n′ (t )

|Nb (n) | ≥ ci
max/2

∑
n′ ∈Nb (n)

c i
n′ (t )

|Nb (n) | − c
i
min , otherwise

. (14)

In contrast, leader node n updates its decision vector cn using both local coordination and its
preferred decision vector дn by

c ′n (t ) = (1 − ω)cn (t ) + ωдn (t ), (15)

where ω ∈ [0, 1] is a parameter that determines the weight given to the preferred decision vector
д. The larger the value of ω, the more leader node n is influenced by its preferred decision vector.

4 PERFORMANCE EVALUATION

4.1 Overview

We conducted a computer simulation to demonstrate the advantages and properties of our pro-
posed scheme. We first show in Section 4.3 that, in our proposed scheme based on ELM, nodes can
select the proper forwarding scheme according to the network condition. Then, we investigate in
detail the properties of our proposed scheme in Sections 4.4 and 4.5.

For the network simulator, we use an event-driven packet-level simulator written by us in Visual
C++ that calls MATLAB functions dlqr to design an optimal central controller and sub-controllers
with PBR-h-opt and PBR-h-opt-mr, dhinflmi to design an optimal external controller with PBR-
opt-mr, and balred to obtain a reduced-order model with PBR-opt-mr and PBR-h-opt-mr on a 64-bit
PC with a 2.70-GHz Intel Xeon CPU and 64.0GB of memory. In the MAC layer, each node sends
information about its own potential to its neighbors for their potential updates using intermit-
tent receiver-driven data transmission (IRDT) (Kominami et al. 2013), which is an asynchronous
receiver-driven data transmission protocol. We use a disk model as a physical layer model in which
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Table 1. Network Settings

Parameter Value
Buffer size 1

Interval of ID packet emissions 0.5s
Potential update interval 50s
Control feedback interval 50s

data packets drop with 100% probability if they collide with each other. Because the capacity of
each sensor node is limited in a WSN, we set the queue size of each sensor node to 1.

In the simulator, nodes are not synchronized. Nodes do not match their timing to receive feed-
back from the controller or to update their potentials. We set the interval of the control feedback
by the controller, and that of potential updates in nodes, to be equal so that the controller can
estimate the dynamics of the network with small errors.

4.2 Simulation Settings

In this evaluation, nodes select a scheme for data-packet forwarding from two types of scheme:
potential-based forwarding and hop-based forwarding. Leader nodes choose a preferred scheme
in accordance with the state of the potential field. If the potential value changes by only a small
amount, the leader nodes assume that the potential field has already converged to the target po-
tential distribution: that is, potential-based forwarding is preferred. Otherwise, if the potentials are
changing by large amounts, the leader nodes assume that the potential field has not yet converged,
in which case hop-base forwarding is preferred. As for the follower nodes, they select a scheme in
accordance with local coordination.

The detailed implementation is as follows. The decision vector c of nodes is given by

[cpotential , chop]T . The proportion of nodes that select potential-based forwarding is
cpot ential

cpot ential+chop
,

and the proportion of nodes that select hop-based forwarding is
chop

cpot ential+chop
. If the amount by

which the potential changes is lower than a specified threshold, τ , the leader nodes set their pre-
ferred decision vectorд to [1 0]T ; otherwise, they setд to [0 1]T . Nodes that select potential-based
forwarding choose the next-hop nodes of their data packets stochastically in accordance with the
potential field, that is, by using Equation (8). In contrast, nodes that select hop-based forwarding
send their data packets to nodes that are close to a sink node. The assertiveness ω of the leader
nodes is set to 1. In other words, the decision vector c of a leader node is always equal to its own
preferred decision vector д. Note that cpotential and chop are initialized with random values.

We use the network with 100 nodes that is depicted in Figure 3. This network includes four sink
nodes (red dots) and 96 sensor nodes (black dots). The 96 sensor nodes are randomly placed in a
field of 550 m × 550 m; the four sink nodes are placed at the points (137.5 m, 137.5 m), (137.5 m,
412.5 m), (412.5 m, 137.5 m), and (412.5 m, 412.5 m). The communication range of all nodes is set
to 100 m. In this evaluation, we assume that the controller can access the potential information of
all nodes with no delay.

In the MAC layer, nodes send data packets to their neighbors using IRDT (Kominami et al. 2013).
If a node has no data packets to send, it intermittently broadcasts ID packets to its neighbors at a
specified interval to inform them that it is ready to receive a data packet. Note that such a node also
informs its neighbors of its own potential value with an ID packet so that its neighbors can update
their own potentials. A node that has a data packet to send to a neighbor node does so when it
receives an ID packet from a neighbor node. The network settings are summarized in Table 1. The
values of parameters (α , β,σ , r ) for optimal control are set to (0.4, 0.2, 0.1, 10).
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Fig. 3. Network topology.

Fig. 4. Potential changes.

4.3 Adaptation to Environmental Changes Based on Our ELM-based Mechanism

To evaluate and demonstrate the advantages and properties of ELM-based data-packet forwarding
we consider four scenarios. First, we compare the following two cases to evaluate the impact of
selecting the forwarding scheme.

—Without data-packet-forwarding selection. Nodes forward data packets with an identical for-
warding scheme (potential-based or hop-based forwarding).

—Data-packet forwarding based on ELM with leaders sharing their preferred decision vectors.
There are leaders and followers. Leaders update their decision vectors with the same pre-
ferred decision vector. Specifically, each leader shares information about its own preferred
decision vector and uses the one that is preferred by most leaders to update its decision
vector. Followers update their decision vectors using local coordination.

At the beginning of the simulation, the potential values of all nodes are initialized to zero.
During the first 1,000s, each node exchanges its potential value with neighbor nodes and updates
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Fig. 5. Results for data-packet forwarding based on the effective leadership model (ELM).

Fig. 6. Data packets received by each sink node when all nodes use the same mechanism for data-packet

forwarding.

its potential value so that the potential values are stabilized. At 1,000s, data packets begin to be
generated at sensor nodes according to the Poisson process for their flow rates. At 10,000s after
the start of the simulation, the data-generation rates at the nodes are changed. We evaluate the
changes in the decision vectors, data packets delivered to each sink node, and data-packet delays
after traffic changes.

The data-generation rates are set initially to 0.02 packets/s for the sensor nodes in the left-hand
half of the network depicted in Figure 3, and to 0.06 packets/s for the remaining sensor nodes.
After the traffic change at 10,000s, the data-generation rates are increased to 0.06 packets/s for the
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Table 2. Data-packet Drop Rates During

the 5,000s After the Traffic Changes

Data-packet forwarding Drop rate [%]
Based on ELM 3.53
Potential-based 8.86

Hop-based 1.41

Fig. 7. Results for the case in which data-packet forwarding is based on only local interactions.

sensor nodes in the left-hand half, whereas those for the remaining sensor nodes are decreased to
0.02 packets/s. Note that we construct the potential fields such that all sink nodes can receive data
packets at equal rates because load balancing is known to be a challenging task for a WSN. We set
the four sink nodes to be controlled nodes that receive control feedback from the controller. The
four sink nodes are also set to be leader nodes that guide the other nodes to their preferred states.

Figure 4 shows potential changes against time. The horizontal axis represents the elapsed time
after traffic changes, and the vertical axis represents X (t ) = Θ̄(t ) − Θ(t ), the difference between
each potential and its target value. The colored lines correspond to sink nodes, whereas the gray
lines correspond to sensor nodes. Note that the potential changes do not depend on changes in the
decision vectors.

Figure 5 shows the results for the case in which data-packet forwarding is based on effective-
leadership nodes. In that figure, the horizontal axes represent the elapsed time after traffic changes.
The vertical axes in Figure 5(a) and (b) represent the values of cpotential and chop , respectively. Fig-
ure 5(c) shows the numbers of data packets delivered to each sink node in the previous 100s and
their average values. Figure 5(d) shows data-packet delays before arrival at sink nodes, averaged
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Fig. 8. Results in the case in which data-packet forwarding is based on ELM (but leaders do not share their

preferred decision vectors).

over the previous 100s. In this case, leader nodes change their decision vectors [cpotential chop]T

to [0 1]T just after traffic changes, as shown in Figure 5(a) and (b). This is because leader nodes
perceive changes of potentials according to traffic changes, and set their preferred decision vec-
tors to [0 1]T . Follower nodes follow leader nodes through local coordination, and their decision
vectors approach [0 1]T . When the potential changes become small, the leader nodes change their
preferred decision vectors to [1 0]T , and follower nodes follow them. Under this situation, data
packets are forwarded in accordance with the state of the network, specifically the state of poten-
tials, in this evaluation.

For comparison, in Figure 6 we show changes in the data packets delivered to each sink node
in the case in which nodes all use the same data-packet forwarding scheme—either potential-
based forwarding or hop-based forwarding. In this evaluation, the potential field is constructed so
that the numbers of data packets delivered to each sink node are equal for load balancing. With
potential-based forwarding, the numbers of data packets delivered to each sink node become differ-
ent after traffic changes, as shown in Figure 6(a). This is because the potential field is reconstructed
according to the traffic changes. Roughly 3,000s after the traffic changes, the potentials come close
to converging to their target values, and therefore the numbers of data packets delivered to each
sink node become approximately equal.

One problem in the case with potential-based forwarding is that, during the potential-field re-
construction, the next-hop nodes of the data packets are not selected correctly. Consequently, the
average number of data packets reaching the sink nodes is reduced. This is because some sink
nodes temporarily have the largest potential values within their communication ranges according
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Fig. 9. Results for the case when the communication range is 90m.

to the control inputs, so data packets cannot arrive at sink nodes and are sometimes dropped. In
contrast, with hop-based forwarding, data packets can be delivered to sink nodes with a small
delay regardless of environmental changes because each node forwards data packets to neighbor
nodes that are closer to a sink node. One problem with hop-based forwarding is that load balanc-
ing is not considered. The numbers of data packets delivered to each sink node are different all
the time, as shown in Figure 6(b), which indicates that traffic is concentrated in a part of the net-
work. Such concentration of traffic can shorten the network lifetime. The appropriate forwarding
scheme depends on the network state.

With data-packet forwarding based on the ELM, nodes select the data-packet forwarding scheme
stochastically in accordance with the state of the potentials. For roughly 1,800s after the traf-
fic changes, the numbers of data packets delivered to each sink node are different, as shown in
Figure 5(c), as they are in the hop-based forwarding case shown in Figure 6(b). This is because,
according to the potential changes, the decision vectors of nodes approach [0 1]T through lead-
ers’ preference and local coordination. The number of data packets delivered to sink nodes is also
reduced just after the traffic changes, when the decision vectors are still close to [1 0]T and the
nodes are likely to select potential-based forwarding. However, the decision vectors of the nodes
approach [0 1]T soon after and, as a result, data packets arrive at the sink nodes.

Table 2 gives the data drop rates during the 5,000s after the traffic changes. Compared with
potential-based forwarding, the data drop rate is lower for data-packet forwarding based on the
ELM. From roughly 1,800s after the traffic changes, the numbers of data packets delivered to each
sink node are approximately equal, as shown in Figure 5(c), as they are in the potential-based
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Fig. 10. Results for the case when the communication range is 100m.

forwarding case shown in Figure 6(a). This is because potentials come close to converging to their
target values, and the decision vectors of the nodes approach [0 1]T .

It is worth mentioning that nodes select the data-packet forwarding scheme in accordance with
the network state, although each follower node perceives only information about its neighbors;
that is, the information held by each follower node is incomplete. Moreover, follower nodes do
not know which nodes are leaders, and simply follow their neighbors through local interactions.
Consequently, with data-packet forwarding based on the ELM, nodes can forward data packets
in accordance with the network state even when the perceived information is incomplete and
dynamic.

Next, we evaluate the following case to demonstrate the role of the leader nodes.

—Data-packet forwarding based on only local coordination. There are no leader nodes. Each
node updates its own decision vector using local coordination, and decides stochastically
which forwarding scheme to use in accordance with its decision vector.

Figure 7 shows the results for the case in which data-packet forwarding is based on only local
coordination. In that case, both cpotential and chop converge to roughly 0.5 and do not change, as
shown in Figure 7(a) and (b), despite the changes in potential after the traffic changes, as described
for Figure 4. Without leader nodes, all nodes update their decision vectors with local coordination.
For this reason, the decision vector of each node converges to the average values of all initial
decision vectors. In this evaluation, cpotential and chop are initialized with random values so that
the average values of the initial decision vectors are approximately 0.5. Therefore, cpotential and
chop finally converge to roughly 0.5. Moreover, because there are no leaders to update the decision
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Fig. 11. Results for the case when the communication range is 120m.

vectors with a preferred decision vector determined in accordance with the state of the potentials,
the decision vectors do not change even when the potentials are changing.

In that situation, the proportions of nodes that select potential-based forwarding and that select
hop-based forwarding are approximately equal. As a result, both the load balancing of potential-
based forwarding and the small communication delay of hop-based forwarding are lost, as shown
in Figure 7(c) and (d). This indicates that leader nodes play an important role in selecting the means
of data-packet forwarding according to the network state.

Finally, we evaluate the following case.

—Data-packet forwarding based on the ELM with leaders not sharing their preferred decision

vectors. There are leaders and followers. Leaders update their decision vectors with their
own preferred decision vectors, whereas followers update their decision vectors using local
coordination.

Figure 8 shows the results for data-packet forwarding based on the ELM with leaders not
sharing their preferred decision vectors. In this case, leader nodes change their decision vectors
[cpotential chop]T to [0 1]T just after the traffic changes, as shown in Figure 8(a) and (b), as in the
case with data-packet forwarding based on the ELM with leaders sharing their preferred decision
vectors, which is shown in Figure 5(a) and (b). However, some leader nodes change their preferred
decision vectors to [1 0] faster than other leader nodes. This is because the information that can
be perceived is different among leader nodes. As a result, the decision vectors of follower nodes
do not approach either [0 1] or [1 0].
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Table 3. The Diameter and the Minimum/Average/Maximum

Distance Between a Node and Its Nearest Leader Node in the

Networks Used in the Evaluation of Section 4.4

Communication
Diameter

Distance to the leader node

range Min Avg Max

90 12 1 1.81 4

100 10 1 1.62 3

120 7 1 1.36 2

Fig. 12. Results in the case with two leader nodes.

In that situation, either the potential-based or hop-based forwarding scheme can be selected for
data-packet forwarding. The difference from the case in which data-packet forwarding is based
on only local coordination is that each leader node can adapt to environmental changes and fol-
lower nodes are affected more by closer leader nodes. This indicates that nodes can adapt to local
environmental changes even if leader nodes are in conflict with each other.

4.4 Influence of the Network Density on Adaptability

Intuitively, given a certain number of leader nodes, the speed of adaptation of follower nodes is
faster in a denser network. To investigate the influence of network density on adaptability, we use
the network shown in Figure 3, and set the communication range of nodes to 90, 100, or 120 m. We
set the four sink nodes to be controlled nodes that receive control feedback from the controller.
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The four sink nodes are also set to be leader nodes that guide the other nodes to their preferred
states.

At the beginning of the simulation, the potential values of all nodes are initialized to zero. Dur-
ing the first 1,000s, each node exchanges its potential value with neighbor nodes and updates its
potential value so that the potential values are stabilized. At 1,000s, data packets begin to be gen-
erated at sensor nodes according to the Poisson process for their flow rates. At 10,000s after the
start of the simulation, the data-generation rates at the nodes are changed. At 11,000s and 12,000s,
the generation rates at nodes are changed again. Finally, at 13,000s, the generation rates at nodes
are changed back to the initial values. We evaluate the adaptation speed after traffic changes (from
10,000s to the ending of the simulation). Note that the networks whose communication ranges are
90, 100, and 120m have different topologies which affects data-packet flow and delays as well as
potential changes. Therefore, in this evaluation, we focus on the adaptation speed of the decision
vectors of the follower nodes.

The data-generation rates are set initially to 0.04 packets/s for all sensor nodes. During
10,000–11,000s and 12,000–13,000s, the data-generation rates are set to 0.06 packets/s for the sen-
sor nodes in the left-hand half of the network depicted in Figure 3, and to 0.02 packets/s for the
remaining sensor nodes. During 11,000–12,000s, the data generation rates are set to 0.02 pack-
ets/s for the sensor nodes in the left-hand half, whereas those for the remaining sensor nodes are
set to 0.06 packets/s. After 13,000s, the data generation rates are set to the initial values, that is,
0.04 packets/s for all nodes. In this simulation, we also construct the potential fields such that all
sink nodes can receive data packets at equal rates.

We show the results of our proposal when the communication range is set to 90, 100, and 120m
in Figures 9, 10, and 11, respectively. These figures plot changes of cpotential, chop, and potential
values after traffic changes (from 10,000s to the ending of the simulation).

Figures 9, 10, and 11 indicate that the adaptation of decision vectors to changes of network
condition is faster with a larger communication range. The larger the communication range, the
shorter the distances between follower nodes and leader nodes. The influence of the leader nodes’
preferred values of decision vectors is propagated hop by hop so that the speed of adaptation of
the decision vectors of followers is faster when these distances are shorter. In Table 3, we show the
graph diameter (the length of the longest shortest path between any two nodes) and the distance
between a node and its nearest leader node in these networks.

4.5 Influence of the Number of Leader Nodes on Adaptability

To investigate the influence of the number of leader nodes on adaptability we compare networks
with 2, 5, and 10 leader nodes.

To shorten the distance between each node and a leader node, we select leader nodes as follows.
When we select l leader nodes, we first divide the network into l sub-networks according to coor-
dinates of nodes using k-means clustering. We then select a node in each sub-network as a leader
node so that the maximum distance between the leader node and nodes within the correspond-
ing sub-network is minimized. Note that leader nodes are also set to be the controlled nodes. The
settings of traffic changes are the same as in Section 4.4. Since the number of leader nodes affects
data-packet flow and delays as well as potential changes, in this simulation we also focus on the
speed of adaptation of decision vectors of follower nodes.

We show the results for 2, 5, and 10 leader nodes in Figures 12, 13, and 14, respectively. These
figures plot changes of cpotential, chop, and potential values after traffic changes (from 10,000s to the
ending of the simulation).

Figures 12, 13, and 14 indicate that the adaptation of the decision vectors to changes of
network condition is faster with a larger number of leader nodes. With two leader nodes, as
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Fig. 13. Results in the case with five leader nodes.

shown in Figure 12, the values of cpotential and chop of follower nodes reach at most 0.05 and 0.95,
respectively, although the potential values are changing and leader nodes prefer to select the
hop-based forwarding scheme. In contrast, with 5 or 10 leader nodes, as shown in Figures 13 and
14, the values of cpotential and chop of followers reach nearly 0 and 1 in 2,000s (from 1,000s to 3,000s).
Comparing the case with 5 leader nodes with that with 10 leader nodes, the speeds of adaptation
of the decision vectors are not so different, although the number of leader nodes increases twofold.

In conclusion, if the number of leader nodes is too small, the speed of adaptation of decision
vectors is slow, which leads slow adaptation to environmental changes. However, if the number of
leader nodes is larger than a certain value (5 in the evaluation of this section), decision vectors can
adapt quickly to environmental changes. This indicates that fast adaptation can be achieved with
a comparatively small number of leader nodes, which is an advantage of our proposed scheme
because the deployment cost of leader nodes is higher than that of follower nodes.

5 CONCLUSION AND FUTURE WORK

Uncertainty of information is a significant problem for the practical use of self-organizing control
systems. To develop a system that can overcome this problem, we applied a mathematical model
based on the collective decision-making of animal groups. The model used is the effective leader-
ship model (ELM). This enables the system to achieve consensus even under adverse conditions. In
this study, we considered a network using potential-based routing with optimal control and sup-
plemented it with a variant of the ELM applied to the selection of a packet-forwarding scheme by
network nodes. Through computer simulations, we demonstrated the advantages and properties
of our proposed scheme.
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Fig. 14. Results in the case with 10 leader nodes.

In future work, we will investigate the relationships among network size, leader node propor-
tion, and performance in other information networks. In the original ELM, it has been demon-
strated that the fraction of informed individuals required to achieve consensus decreases as the
group becomes larger (Couzin et al. 2005). Moreover, we intend to investigate the influence of
information ambiguity.
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